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Abstract

This paper investigates the role played by informational frictions in college and
the workplace. We estimate a dynamic structural model of schooling and work deci-
sions, where individuals have imperfect information about their schooling ability and
labor market productivity. We take into account the heterogeneity in schooling invest-
ments by distinguishing between two- and four-year colleges, graduate school, as well
as science and non-science majors for four-year colleges. Individuals may also choose
whether to work full-time, part-time, or not at all. A key feature of our approach is to
account for correlated learning through college grades and wages, whereby individuals
may leave or re-enter college as a result of the arrival of new information on their
ability and productivity. Our findings indicate that the elimination of informational
frictions would increase the college graduation rate by 9 percentage points, and would
increase the college wage premium by 32.7 percentage points through increased sorting
on ability.
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To the extent that there is a large wage premium to receiving a four-year college degree
(Heckman et al. 1996, 2006, Goldin & Katz 2008, Bound & Turner 2011), this suggests that
imperfect information and learning may be important to the decision to leave college. In this
paper, we quantify the importance of imperfect information on academic ability as well as
labor market productivity in the context of college enrollment decisions and of the transitions
between college and work. We estimate the impact of these informational frictions on college
enrollment, attrition and re-entry, and document the extent to which imperfect information
acts as a barrier to college completion and sorting on ability in the labor market.

In order to quantify the role played by informational frictions in the decision to enter,
leave or return to college, we estimate a dynamic model of schooling and work decisions in
the spirit of Keane & Wolpin (1997, 2000) with the crucial distinction that such decisions
are allowed to depend on the arrival of new information about the abilities of individuals
both in school and in the workplace. After graduating from high school or receiving a
GED, individuals decide in each period whether to attend college and/or work part-time
or full-time, or engage in home production. Should the individual attend college, he must
also choose between attending a two-year college, a four-year college in a science major, or
a four-year college in a non-science major. Upon college graduation, his schooling options
become whether to attend graduate school or not. Importantly, individuals are allowed to
have imperfect information about their abilities, and enter each year with beliefs regarding
their different kinds of schooling abilities as well as their skills in the workplace. At the end
of each year, individuals update their beliefs given their grades for their particular schooling
option (if they attended school) and their wages (if they worked). We account for the
multidimensional nature of ability in our model and allow the different kinds of schooling
and workplace abilities to be arbitrarily correlated, implying that signals in one area may
be informative about abilities in another area.

We estimate a richer model than previously possible by making use of recent innovations
in the computation of dynamic models of correlated learning. Following James (2011),
we (i) integrate out over actual abilities as opposed to the signals and (ii) use the EM
algorithm where at the maximization step ability is treated as known, resulting in a correlated
learning model that is computationally feasible. Using results from Arcidiacono & Miller
(2011), estimation continues to be computationally simple even in the presence of unobserved
heterogeneity that is known to the individual. Using this approach in our current context
makes estimation of our correlated learning model both feasible and fast. Importantly, it also
allows us to easily take into account heterogeneity in schooling investments by distinguishing
between two- and four-year colleges, as well as science and non-science majors for four-year
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colleges.1

We use the estimates of our model to quantify the importance of informational frictions
in explaining college enrollment decisions and the observed transitions between college and
work, and to evaluate the impact of mperfect information on ability sorting. We find that
a sizable share of the dispersion in college grades and wages is accounted for by the ability
components that are initially unknown to the individuals. Focusing on the ability compo-
nents which are unknown to the individuals at the time of high school graduation, we find
that schooling abilities are highly correlated across college types and majors (namely 2-year
college, 4-year college science major, 4-year college non-science major). The correlation be-
tween productivities in the unskilled and skilled sectors is also large, stressing the importance
of allowing for correlated learning in this context. On the other hand, schooling abilities are
only weakly correlated with productivity in both sectors, thus indicating that grades earned
in college actually reveal little information about future labor market performance once we
account for background characteristics and college readiness.

We then simulate our model under a counterfactual scenario where all individuals have
perfect information on their abilities by the end of high school, and examine how schooling
choices and sorting patterns would be affected. We find that the share of four-year college
graduates would increase by around 9 percentage points (38%) relative to the baseline,
virtually all through a decrease in dropout rates. Simulations further reveal that ability
sorting would be much stronger in the perfect information scenario. We provide evidence
that imperfect information on ability significantly limits the extent to which individuals can
pursue their comparative advantage through schooling choices. We also find that, in the
counterfactual scenario, wages in the skilled sector would increase by 16.7% while wages in
the unskilled sector would decrease by 16%, resulting in a large (32.7 percentage points)
increase in the college wage premium. Taken together, these results provide evidence that
informational frictions play a major role in schooling decisions as well as subsequent labor
market outcomes.

Our analysis builds on seminal research by Manski & Wise (1983) and Manski (1989),
which argues that college entry can be seen as an experiment that may not lead to a college
degree. According to these authors, an important determinant of college attrition lies in
the fact that, after entering college, students get new information and thus learn about
their ability. More recently, several other papers in the literature on college completion
stress the importance of learning about schooling ability to account for college attrition

1See the recent surveys by Altonji, Arcidiacono & Maurel (2016) and Altonji, Blom & Meghir (2012),
who discuss the importance of heterogeneity in human capital investments.
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(see, e.g., Altonji 1993, Arcidiacono 2004, Heckman & Urzúa 2009). Of particular relevance
to us are the articles by Stinebrickner & Stinebrickner (2012, 2014a), who provide direct
evidence, using subjective expectations data from Berea College (Kentucky), that learning
about schooling ability is a major determinant of the college dropout decision.2

Much of the learning literature assumes that the labor market is an absorbing state, im-
plying that the decision to leave college is irreversible (Stange 2012, Stinebrickner & Stine-
brickner 2012, 2014a).3 In this paper we relax this assumption, which is important to predict
the substantial college re-entry rates of 40% which are observed in the data. By quantify-
ing the importance of learning on schooling abilities as well as labor market productivities,
and evaluating the joint informational value of schooling and labor market outcomes, our
paper brings together the literatures on schooling choices, and occupational choices under
imperfect information (see, e.g., Miller 1984, Sanders 2010, James 2011, Antonovics & Golan
2012).

The remainder of the paper is organized as follows. Section 2 presents the data. Section 3
describes a dynamic model of schooling and work decisions, where individuals have imperfect
information about their schooling ability and labor market productivity, and update their
beliefs through the observation of grades and wages. Section 4 discusses the identification
of the model, with Section 5 detailing the estimation procedure. Section 6 presents our
estimation results. Section 7 studies the role of informational frictions on educational and
labor market outcomes. Finally, Section 8 concludes. All tables are collected at the end of
the paper.

2 Data

We use data from the National Longitudinal Survey of Youth 1997 (NLSY97). The NLSY97
is a longitudinal, nationally representative survey of 8,984 American youth who were born
between January 1, 1980 and December 31, 1984. Respondents were first interviewed in
1997 and have continued to be interviewed annually (for a total of 15 Rounds as of 2011,
which corresponds to the most recent data used in the paper) on such topics as labor force
activities, education, as well as marriage and fertility.

2See also recent work by Hastings et al. (2016) who provide evidence using a large-scale survey conducted
in Chile that individual beliefs about earnings and costs of higher education at the time of college entry are
associated with dropout outcomes.

3In a different context, Pugatch (2012) provides evidence that the option to re-enroll in high school in
South Africa is an important determinant of the decision to leave school and enter the labor market.
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2.1 Data construction

From the NLSY97 data we classify individuals based on their labor force participation and
educational choices. Specifically, we classify individuals in each period using the following
rules:

1. Any individual attending a college in the month of October is classified as being in
college for this year (either in a two- or a four-year college). For four-year colleges, our
definition of “Science” majors includes majors in Sciences, Technology, Engineering,
and Mathematics (STEM). See Table A.1 for details on the exact majors in each
category. Hereafter, we use “Science” and “STEM” interchangeably.

2. Any individual reporting college attendance who also reports working at least four
weeks in October and at least 10 hours per week is classified as working part-time
while in school, with full-time work requiring at least 35 hours per week and four
weeks worked in October.

3. Any individual not in college (according to the criterion above) is classified as working
part-time or full-time according to the criteria above.4

4. Finally, all other cases are classified as home production.5

The two variables which provide information to students regarding their abilities are
college grade point averages (GPA) and wages. College GPA, which we hereafter simply
refer to as grades, is measured on a four-point scale and calculated as the average GPA
across all semesters in the calendar year. Wages are calculated as follows:

1. We compute the hourly compensation (i.e. wage plus tips and bonuses) for the self-
reported main job, converted to 1996 dollars.6

2. If a person does not report hourly compensation, we impute earnings as annual income
divided by annual hours worked. Specifically, 6.7% of observations that are classified as
working part- or full-time have earnings that are defined using this alternative measure.

4These criteria for labor force participation resemble those of Keane and Wolpin (1997).
5Following this criterion, any individual who is unemployed in October is classified in the home production

sector.
6Note that one can think of this variable as a measure of performance on the job. As such, we do not

need to assume that employers have perfect information about workers’ abilities, but rather that workers are
paid according to their realized productivity.
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3. Finally, we top- and bottom-code the resulting earnings distribution at the 99.5 per-
centile and 2.5 percentile, respectively.

It is worth noting that grades and college majors are missing (or reported as “don’t
know”) frequently in our data. Grades are missing for 28% of college students, and majors
are missing for 25% of four-year college students. This partly reflects the fact that interviews
primarily occur between October and March when academic outcomes have yet to be realized,
resulting in a significant fraction of students reporting college attendance but not answering
college-specific questions.7 We address this missing data issue as discussed in Section 5.6.

Finally, we restrict our analysis to males who have (i) either graduated high school or
have obtained their GED and (ii) have valid Armed Services Vocational Aptitude Battery
(ASVAB) test scores. As measures of academic preparation, we use the math and verbal
components of the SAT score when observed.8 If an individual did not take the SAT,
we predict the individual’s SAT score using each of his ASVAB component test scores.9

This predicted SAT score is used synonymously with actual SAT score throughout. We
drop all current and future observations for any respondents missing wage observations
while choosing a work activity. We integrate out over the first missing grade and/or college
major (see Section 5.6), but drop current and future observations when a second missing
grade or college major is observed. Our final estimation sample includes 21,343 person-year
observations for 2,713 males. Table A.2 in Appendix A gives further details about the sample
selection.

2.2 Descriptive statistics

Table 1 presents background characteristics conditional on the first college option chosen.
Individuals who attend college at some point and start at a four-year institution have, on
average, higher SAT test scores, with science majors having higher scores than non-science

7The modal interview months are November and December. Data are collected for the period of time
between interviews, so if, for example, a respondent is interviewed in October 2004 and again in November
2005, college information related to the Fall 2004 and Spring 2005 semesters would both be reported in the
November 2005 interview. This lag in reporting is also likely to contribute to the missing data problem.

8The distribution of raw SAT scores for each component is standardized to be zero-mean and standard
deviation 1 for the NLSY97 population who took the SAT.

9Each ASVAB component test score is standardized to be zero-mean and standard deviation 1 for the
NLSY97 population. The sub-tests used are Arithmetic Reasoning, Mathematical Knowledge, Numerical
Operations, Paragraph Comprehension and Word Knowledge. Estimates of these two regressions are listed
in Table A.4
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majors, even for SAT verbal. The same pattern holds for high school grades. Those who
begin in a two-year college have worse academic credentials than those who start in a four-
year college, but significantly stronger backgrounds than those who do not attend college at
all. Those who begin in a four-year institution have higher parental income and parental
education, with those who begin in a two-year college being stronger on these measures than
those who never choose a college option. Overall, this difference in composition between
two- and four-year colleges (and between majors in four-year colleges) stresses the need to
distinguish between college and major type when modeling college enrollment decisions.

Table 2 gives the frequencies of continuous enrollment (either in two- or four-year col-
leges) until graduation from a four-year college, stopping out (i.e. leaving college before
graduating from a four-year college and returning to school at some point) and dropping
out (i.e. permanently leaving college before four-year graduation). Evident from Table 2 is
that dropping out and stopping out are more common in two-year colleges than four-year
colleges. Four-year science majors have the lowest proportions of dropping out and stopping
out. This again points at the need to distinguish between these two types of colleges and
majors in our model. Due to the ongoing nature of the survey and the fact that some re-
spondents are still enrolled in college, the information from Table 2 can be used to calculate
lower bounds on the overall stopout rates. The frequencies reported in this table indicate
that stopout rates are sizable. For example, of those who had graduated with a four-year
college degree by round 15 of the survey, 17% were stopouts. For those beginning college in
a four-year college science major, this number is 9.8%, compared with 14.1% for those who
began as non-science majors. For those originating in a two-year college, the stopout rate
among four-year graduates is significantly higher (39.5%). As another example of stopout
prevalence, Table 2 shows that, of those who had left college at any point before graduating,
40.8% re-enrolled at some later point.

2.3 Descriptive investigation of learning

Given the substantial dropout and stopout rates, we next see if there is any descriptive
evidence suggesting that learning about one’s abilities may play a role in these decisions.
The first panel of Table 3 shows than those who stay in school at period t+1 have significantly
higher grades at period t that those who were in school at t but not at t+ 1. Further, higher
grades are associated with staying in the major if one is in a four-year institution, and
with switching to a four-year college if one is at a two-year institution. These differences,
however, may not reflect learning as those with lower grades may have come from worse
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family backgrounds and/or be of lower ability and at greater risk of dropping out.
We next run a linear regression of college grades on a set of academic and family back-

ground characteristics (including race dummies, SAT scores, high school grades, parental
education, age dummies, and whether the individual was working part- or full-time), and
compute the residuals. We then compare the mean residual at t for different educational
choices at t + 1 in the third and fourth panels of Table 3. Those who have higher grade
residuals are more likely to stay in school and less likely to switch majors. These descriptive
findings are consistent with two stories, which may not be mutually exclusive: (i) individ-
uals decide to leave or switch college/major as they learn about their schooling ability, or
(ii) those who leave or switch college/major tend to have a lower ability, that they observe
perfectly even before starting college, but that is unknown to the econometrician. Telling
apart these two explanations is a key objective of our structural estimation, which will be
discussed in the rest of the paper.

Finally, to illustrate learning in the labor market as a reason for stopouts to return to
college, we perform a similar analysis as in Table 3 but now using information on wages.
The first panel of Table 4 presents mean log wages for those who remain working and those
who have stopped out, broken out by next-period decision, while the second panel of Table
4 shows the difference between actual and expected log wages.10 Overall, these tables show
that those who decide to return to school earn lower wages in previous year. For example,
those who have left college for the labor force and choose to return to school have 5% lower
wages on average the year before returning to school, even when controlling for a rich set
of individual, family background, and schooling and labor force experience characteristics.
This pattern is consistent with learning on labor market productivity contributing to the
decision to return to college. However, in order to quantify the impact of learning on col-
lege re-entry, one needs to account for the possibility that individuals also differ in their
expected (but unobserved to the econometrician) productivity by the end of high school.
Our empirical analysis incorporates and distinguishes between these two types of abilities
that are unobserved to the econometrician, but initially known or unknown, respectively, to
the individuals themselves.

10Notice that these tables are conditioning on the sample of individuals who are working and have attended
at least one year of college but did not graduate.
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3 Model

3.1 Overview

After graduating from high school, individuals in each period make a joint schooling and
work decision. For those who have not graduated from a four-year college, their schooling
options include whether to attend a two-year institution, a four-year institution as a science
major, or a four-year institution as a non-science major. After graduating from a four-
year college, the schooling option includes whether or not to enroll in graduate school. In
addition to choosing among the different schooling options, individuals also choose whether
to work full-time, part-time, or not at all. These work options are available regardless of
their schooling choice.11

Individuals only have imperfect information about their abilities. Importantly, we treat
abilities as multidimensional vectors with five components. Namely, individuals have differ-
ent abilities for each of the schooling options (two-year, four-year science, and four-year non-
science) as well as abilities in the labor market without a college degree (labeled unskilled)
and with a college degree (labeled skilled). Individuals update their beliefs by receiving
signals that depend on their choices: enrolling in school provides signals through grades,
and working provides signals through wages. These signals then reveal different information
regarding their abilities. Since the different schooling abilities will likely be correlated in
addition to being correlated with different labor market abilities, grades in one of the school-
ing options will provide information regarding the student’s abilities in the other schooling
options, as well as their productivities in the labor market. Similarly, unskilled wages may
be informative not only with regard to unskilled productivity, but also with regard to the
individual’s schooling abilities and skilled productivity.

Individuals are assumed to be forward-looking and choose the sequence of actions yielding
the highest value of expected lifetime utility. Hence, when making their schooling and labor
market decisions, individuals take into account the option value associated with the new
information acquired on different choice paths. Individuals who choose to work while in
college will get two signals on their abilities and productivities: one through their grades,
and one through their wage. It is interesting to note that, in this setting, while working
while in college may be detrimental to academic performance (see, e.g., Stinebrickner &
Stinebrickner 2003), it is also an additional channel through which individuals can learn both

11See also, e.g., Keane & Wolpin (2001) and Joensen (2009) who estimate dynamic structural models of
schooling and work decisions allowing for work while in college.
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about their productivities and schooling abilities while in school. Our framework incorporates
this tradeoff.

We now detail the main components of the model. We first discuss the components indi-
viduals are forming beliefs over, namely, the grade and wage equations, and the probability
of graduating. We then describe how individuals update their beliefs. Finally, we model the
flow payoffs and the optimization problem the individuals face.

3.2 Grades

In the following, we denote by j ∈ {a, bs, bn} the type of college and major attended, where
a (for Associate) denotes a two-year college, bs (for Bachelor, Science) a four-year college
science major, and bn (for Bachelor, Non-science) a four-year college non-science major.
Individuals are indexed by i.

We assume that grades depend on Aij, where Aij is the unobserved schooling ability
about which individuals have some initial beliefs given by the prior distribution N (0, σ2

Aj).
Grades also depend on a set of covariates for college type j and period of college enrollment
τ ,12 Xijτ , that are known to the individual and include observed skill measures (i.e. high
school grades, math and verbal SAT), indicators denoting participation in the labor market
(i.e. working part-time or full-time), and background characteristics (i.e. age, race, and
parental education).13 Importantly, Xijτ also includes characteristics that are observed to
the individual but not the econometrician which may reflect unobserved ability. In practice,
we account for unobserved (to the econometrician only) heterogeneity by allowing for two
different unobserved heterogeneity types, where the type is a permanent characteristic of
the individual.14 In the following and throughout the paper, we assume that unobserved
ability and unobserved heterogeneity type are mutually independent, and that they are also
independent from the observed covariates at period t = 1.

Grades in two-year colleges and in the first two years of four-year colleges are given by:

Gijτ = γ0j +Xijτγ1j + Aij + εijτ (1)
12τ is defined as the period of college enrollment irrespective of the type of college and major. For instance,

someone who completes two years of a community college and then transfers to a four-year college will be
in his τ = 3rd period of college enrollment.

13The specification for grades in two-year college also includes an indicator for whether an individual has
spent more than one year in this type of college.

14In estimation we account for unobserved heterogeneity using a finite mixture approach a la Heckman &
Singer (1984).
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The idiosyncratic shocks εijτ are mutually independent and distributed N (0, σ2
jτ ), and are

also independent from the other state variables. Define the type-j (college, major) academic
index of i in period τ , AIijτ , as:

AIijτ = γ0j +Xijτγ1j + Aij (2)

The academic index AIijτ gives expected grades conditional on knowing Aij but not the
idiosyncratic shock εijτ (see Arcidiacono 2004, for a similar ability index specification).

Finally, for four-year colleges and periods τ > 2, we express grades relative to AIijτ as
follows:

Gijτ = λ0j + λ1jAIijτ + εijτ (3)

Hence, the return to the academic index varies over period of college enrollment and across
majors. As such, while remaining parsimonious, this specification allows for different effects
of ability on grades for lower- and upper-classmen. Grade dynamics may also be different
for science and non-science majors.

3.3 A two-sector labor market

Individuals who choose one of the work options (either full-time or part-time) receive an
hourly wage that depends on their graduation status. We assume that there are two sectors
in the labor market, which are indexed by l and referred to as skilled (l = s) and unskilled
(l = u) in the following. All four-year college graduates and individuals with a graduate
school degree who participate in the labor market are part of the skilled sector. The unskilled
sector includes all other labor market participants, namely high school graduates or GED
recipients, college students, college dropouts and stopouts (before graduating from college),
as well as two-year college graduates.

Denoting by t calendar time (year), log wages in sector l are assumed to depend linearly on
sector-specific productivity Ail, a set of observed (to the individual) characteristics Xilt (i.e.
years of education, indicators for working part-time or full-time or being enrolled in college,
labor marker experiences, age, ability measures, race, parental education, and college major
for those in the skilled sector), sector-specific time dummies δlt, and idiosyncratic shocks εilt:

wilt = δlt +Xiltγ1l + Ail + εilt (4)

Similar to the model for grades, Xilt may contain information on abilities that are known to
the individual but not the econometrician. The returns to the various components in Xilt are
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sector-specific. Note that this specification allows for human capital accumulation through
schooling as well as on-the-job. The idiosyncratic shocks, εilt, are assumed to be distributed
N (0, σ2

l ) and are independent over time as well as across individuals and both sectors, and
independent of the other state variables.

We account for nonstationarities in wages by including calendar year dummies, δlt, thus
incorporating business cycle effects. If we did not control for these non-stationarities, we
may falsely conclude that learning about ability is important when in reality workers are
simply responding to aggregate shocks. The time dummies at t are observed in period t

but individuals must form expectations over this variable for periods t+ 1 and beyond. We
formalize this feature of the model in detail in Section 3.4.2.

3.4 Beliefs

Individuals are uncertain about (i) their future preference shocks, (ii) their schooling ability
and labor market productivity, (iii) the evolution of the market shocks (the δlt’s), and
(iv) (four-year) college graduation. The first component, future preference shocks, will be
discussed in Section 3.5 when we describe preferences. We discuss the other components
here.

3.4.1 Beliefs over schooling ability and labor market productivity

We denote Ai as the five-dimensional ability vector, Ai ≡ (Aia, Aibs, Aibn, Ais, Aiu)′ (simply
referred to as ability in the following). We assume that individuals are rational and update
their beliefs in a Bayesian fashion. Their initial ability beliefs are given by the population
distribution of A, which is supposed to be multivariate normal with mean zero and covariance
matrix ∆. Importantly, we do not restrict ∆ to be diagonal, thus allowing for correlated
learning across the five different ability components.

At each period τ of college attendance, individuals use their realizations of grades and
wages (if they work while in college) to update their beliefs about their schooling abilities in
all college options (Aia, Aibs, Aibn), as well as their labor market productivity in both sectors
(Ais, Aiu). Grade realizations provide noisy signals regarding abilities, with Sijτ denoting
the signal for individual i from a type-j college option at enrollment period τ . Specifically,
for two-year colleges and the first two years of four-year colleges, the signal is given by:

Sijτ = Gijτ − γ0j −Xijτγ1j (5)

For four-year colleges in subsequent enrollment periods (τ > 2), the index specification
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yields:

Sijτ = Gijτ − λ0j − λ1j(γ0j +Xijτγ1j)
λ1j

(6)

Similarly, individuals who participate in the labor market update their ability beliefs
after receiving their wages. The signal for sector l and period t is given by:

Silt = wilt − δlt −Xiltγ1l (7)

Finally, individuals may choose to work while in college, in which case they will receive two
ability signals (Sijτ , Siut).15

To describe the updating rules, we first introduce some notation. Let Ωit be a 5 × 5
matrix with zeros everywhere except for the diagonal terms corresponding to the choices
made by individual i in period t (namely two-year college, four-year college science major,
four-year college non-science major, skilled or unskilled labor market). The diagonal ele-
ments corresponding to the choices made are given by the inverse of the variances of the
idiosyncratic shocks.16 The maximum number of positive diagonal elements is two, which
corresponds to receiving two signals: one from grades in a particular schooling option and
one from wages. Similarly, denote by S̃it a 5 × 1 vector with zeros everywhere except for
the elements corresponding to the choices in period t. Here, the non-zero elements are the
ability signals received in this period.

It follows from the normality assumptions on the initial prior ability distribution and on
the idiosyncratic shocks that the posterior ability distributions are also normally distributed.
Specifically, denoting by Et(Ai) and Σt(Ai) the posterior ability mean and covariance at the
end of period t, we have (see DeGroot 1970):

Et(Ai) = (Σ−1
t−1(Ai) + Ωit)−1(Σ−1

t−1(Ai)Et−1(Ai) + ΩitS̃it) (8)

Σt(Ai) = (Σ−1
t−1(Ai) + Ωit)−1 (9)

As in a more standard one-dimensional learning model, prior variances decrease towards zero
as individuals receive additional ability signals, thus giving more weight to the prior ability
and less to the signal.

3.4.2 Beliefs over market shocks

We now specify how individuals form their beliefs about the labor market. Individuals
observe the current values of δst and δut. We assume that the process governing the aggregate

15Once an individual graduates from college, we assume that learning only occurs through wage signals.
16Note that, for the college options, the idiosyncratic variances will depend on the year of enrollment.
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shocks is an AR(1) with a sector-specific autocorrelation parameter:

δlt = φ1lδlt−1 + ζlt (10)

where the ζlt are assumed to be i.i.d. over time, but allowed to be correlated across sectors,
following a N (0, σ2

ζ ). The assumption that the aggregate shocks follow an AR(1) process, or
a discretized version of it (Markov process of order 1) is common in the literature (see, e.g.,
Adda et al. 2010, Robin 2011). Given the realizations of the market shocks δlt−1’s, individuals
then integrate over possible realizations of the ζlt’s when forming their expectations over the
future.17

3.4.3 Beliefs over graduation

We treat graduation as probabilistic. Individuals are only at risk of graduating if they have
completed at least three years of college and if they are currently attending a four-year
institution. Individuals in this risk set face a probability of graduation in their τ -th period
of college enrollment that depends on a set of characteristics Xigτ . This set of characteristics
includes time-invariant measures like SAT scores, high school grades, and demographics, as
well as an unobserved (to the econometrician) heterogeneity type dummy. It also includes
time-varying components like years in each type of school (two-year or four-year), current
college major, current work decisions, and the individual’s prior beliefs about his four-year
college abilities in science and non-science majors.18 We then assume that the probability of
graduating conditional on Xigτ takes a logit form:

Pr(gradiτ = 1|Xigτ ) = exp(Xigτψ)
1 + exp(Xigτψ) (11)

Individuals are assumed to know the parameters ψ and form expectations over their proba-
bilities of graduating using (11).

3.5 Flow utilities

We now define the flow payoffs for each of the schooling and work combinations. We denote
the various schooling options by j, where j ∈ {a, bs, bn, 0} for those who have not graduated

17In practice, we estimate separately for each sector the autocorrelation parameter and the variance of the
shocks from the (estimated) calendar time dummies (δ̂st)t and (δ̂ut)t.

18While we do allow the prior ability beliefs to enter the graduation probability, we do not allow unobserved
ability Ai itself to affect graduation. If we did so, then individuals could learn about their abilities through
graduation realizations which would substantially complicate our model.

14



from a four-year institution and where, indexing graduate school by gs, j ∈ {gs, 0} for those
who have graduated from a four-year college. We denote the work options by k ∈ {p, f, 0}
where p and f respectively refer to part-time and full-time work. The choice dit = (0, 0)
refers to the home production option: no work (k = 0) and no school (j = 0).

Up to an intercept term and an idiosyncratic preference shock, we assume that the utility
of the choice (j, k) is additively separable in its schooling and work components. Let Z1it

denote the variables that affect the utility of school and Z2it denote the variables that affect
the utility of work. These variables need not be mutually exclusive; both include many of
the same variables that affect grades and wages. The flow payoff for choice dit = (j, k) is
then given by (letting Zit = (Z1it, Z2it)′):

Uijk(Zit, εijkt) = αjk + Z1itαj + Z2itαk + εijkt (12)

= ujk(Zit) + εijkt (13)

where the idiosyncratic preference shocks εijkt are assumed to be i.i.d. following a Type 1
extreme value distribution. Specific to Z1it is the expected ability in schooling option j, which
is computed with respect to individual i’s prior ability distribution at the beginning of period
t.19 Specific to Z2it are the expected log wages in sector k, which depend on the expected
productivity in sector k as well as on the beliefs about the aggregate shocks affecting sector
k in period t.20 Z1it and Z2it also include demographics, ability measures (SAT math and
verbal, high school GPA), as well as controls for the previous choice to allow for switching
costs, similar in spirit to Keane & Wolpin (1997). Finally, both sets of variables also include
controls for unobserved type-specific heterogeneity, allowing for unobserved preferences for
the different schooling and work alternatives.

Finally, the home production sector (dit = (0, 0)) is chosen as a reference alternative, and
we normalize accordingly the corresponding flow utility to zero. The flow utility parameters
therefore need to be interpreted relative to this alternative.

19Expected ability is included in Z1it as an (inverse) proxy of the cost of effort associated with college
attendance.

20See also Belzil & Hansen (2002), Arcidiacono (2004, 2005), Pavan (2011), Beffy et al. (2012) and Wiswall
& Zafar (2015, 2017) who estimate models of human capital accumulation where the utility of work is assumed
to be logarithmic in earnings. In practice, we impose that the coefficient on log wages is the same in both
sectors. Note that differences in hours between part- and full-time work will come out in the intercept term.
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3.6 The optimization problem

Individuals are forward-looking, and choose the sequence of college enrollment and labor
market participation decisions yielding the highest present value of expected lifetime utility.
The individual chooses (dit)t, a combination of schooling and work decisions, to sequentially
maximize the discounted sum of payoffs:

E

 T∑
t=1

βt−1∑
j

∑
k

(ujk(Zit) + εijkt)1{dit = (j, k)}
 (14)

where β ∈ (0, 1) is the discount factor. The expectation is taken with respect to the dis-
tribution of the future idiosyncratic shocks, the signals associated with the different choice
paths, the beliefs over the aggregate shocks to wages, and the probability of graduating.

Let Vt(Zit) denote the ex ante value function at the beginning of period t, that is, the
expected discounted sum of current and future payoffs just before the current period idiosyn-
cratic shock is revealed. The conditional value function vjkt is given by:

vjkt(Zit) = ujk(Zit) + βEt(Vt+1(Zit+1)|Zit, dit = (j, k))

where the term Et(.|) is indexed by t to highlight the fact that this expectation is conditional
on the information set of the individual at the beginning of period t, which includes in
particular the sequence of ability signals received from periods 1 up until t− 1. Finally, the
assumption that the ε’s are i.i.d. Type 1 extreme value yields the following familiar log-sum
formula:

vjkt(Zit) = ujk(Zit) + βEt

 ln
∑

j

∑
k

exp(vjkt+1(Zit+1))
∣∣∣∣∣∣Zit, dit = (j, k)

+ βγ (15)

where γ denotes Euler’s constant.

4 Identification

Before turning to the estimation procedure, we first informally discuss the identification of
the model. For the sake of exposition, we start by considering the case of the model without
type-specific unobserved heterogeneity, before discussing the identification of the unobserved
heterogeneity parameters. As is common for dynamic discrete choice models (see, e.g., Rust
1994, Magnac & Thesmar 2002, Arcidiacono & Miller 2015a), identification of the flow utility
parameters relies on the distributional assumptions imposed on the idiosyncratic shocks, the
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normalization of the home production utility and the discount factor β, which is set equal
to 0.9 throughout the paper.

First consider the identification of the outcome equations (grades and log wages). The
grades Gijτ are only observed for the individuals who are enrolled in a type-j (college, major)
in their τ -th period of college enrollment. To the extent that college enrollment decisions
depend on the ability (Ai), this raises a selection issue. We show the identification of the
grade equation parameters by using, for each period τ , the prior ability at the beginning of
the period (Eτ−1(Aij)) as a control function in the grade equation. Specifically, we consider
the following augmented regression, for j ∈ {bs, bn} and τ > 2:

Gijτ = λ0j + λ1j(γ0j +Xijτγ1j) + λ1jEτ−1(Aij) + νijτ (16)

where it follows from the Bayesian updating rule (see Equation (8) on p. 13) that Eτ−1(Aij)
can be expressed as a weighted sum of all the past ability signals. Under the key assumption,
consistent with the specification of the flow utilities discussed in Subsection 3.5, that college
decisions only depend on ability through the ability beliefs, application of ordinary least
squares to Equation (16) identifies the location and scale parameters (λ0j, λ1j), with the
ability index coefficients (γ0j, γ1j) being identified from the first and second period grades.

Grades in the first two years of four-year college, as well as in two-year colleges, can
indeed be expressed as follows:

Gijτ = γ0j +Xijτγ1j + Eτ−1(Aij) + νijτ (17)

Application of ordinary least squares therefore directly identifies (γ0j, γ1j). Identification of
the ability index coefficients also follows from the assumption that enrollment decisions only
depend on ability through the past ability signals. Similar arguments can be used for the
identification of the parameters of the log wage equations in each sector.

Turning to the distribution of the unobserved ability vector A, the signal-to-noise ratios
as well as the ability covariance matrix ∆ are identified from the observed history of grade
and wage signals, and in particular from the correlations between current grades and wages,
and past ability signals. Of particular interest in our context are the correlations between
the different ability components. These are primarily identified from individuals switching
across types of colleges and majors, as well as between unskilled and skilled labor market
sectors. However, switchers are not the only source of identification here. Importantly,
college employment provides a more direct cross-sectional source of identification for the
correlations between productivity in the unskilled sector and all three schooling abilities.21

21See Table A.3 which lists the number of individuals in our sample that ever participate in any given
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Finally, in our specification with latent heterogeneity types, one also needs to tell apart
the type-specific unobserved (to the econometrician only) heterogeneity components, from
the ability A unobserved to the econometrician as well as, at least initially, the individual
himself. Telling apart heterogeneity (known to the agent throughout) from uncertainty is
a difficult problem, which has been the object of a rich literature (see Cunha et al., 2005,
and references therein). Initial choices made before the individuals get a chance to learn
about their ability A – together with the distributional assumptions that are imposed on
the idiosyncratic preference shocks – offer a natural solution to this deconvolution problem,
and, as such, are a key source of identification.

These initial choices, however, need to be combined with subsequent responses to realized
outcomes in order to separate out the role played by unobserved abilities versus preferences,
both of them being known by the agents beforehand. Consider the example of low-SAT math
individuals who enroll in four-year college science right after high school. While this behavior
is consistent with both high taste for four-year college science majors and high ability in four-
year college science, future schooling decisions conditional on past grades make it possible
to tell apart the two competing explanations. For instance, some of these individuals may
decide to leave college, or switch out to a non-science major or a two-year college, after
receiving high grades. Individuals exhibiting this type of behavior will be predicted to have
a high unobserved ability for four-year college science. Conditional on their ability type,
the remaining portion A of the ability that is unobserved both to the econometrician and,
initially, to the agent can then be inferred from the observed sequences of outcomes. For
instance, a high schooling ability type and high-SAT individual who consistently performs
poorly in college would be predicted to be endowed with a relatively low unobserved schooling
ability A.

Similar patterns can be used to infer unobserved preferences for work separately from
unobserved productivity. For instance, high-SAT individuals who enroll in the workforce and
consistently earn low wages over multiple subsequent periods would be predicted to have low
unobserved productivity. Besides, one can infer from the fact that these individuals decide
to stay in the workforce in spite of these low wages that they also have high preferences for
work.

The types of longitudinal patterns described above play an important role in separating
out abilities and preferences known to the agent, on the one hand, as well as teasing out the
role of heterogeneity – known throughout – and abilities initially unknown by the individuals.

combination of sectors and schooling options.
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5 Estimation

For expositional reasons, we first present the estimation procedure for the specification with-
out type-specific unobserved heterogeneity (Subsections 5.1-5.4). We then discuss how the
procedure can be extended to allow for unobserved heterogeneity types (Subsections 5.5-
5.6).22

5.1 Additive separability

Assuming that the idiosyncratic shocks are mutually and serially uncorrelated, and in the
absence of type-specific unobserved heterogeneity, the model can be estimated sequentially.
Specifically, estimation in this case proceeds in two key stages. In the first stage, one can esti-
mate the parameters from the grade and wage equations and the college graduation process,
as well as the choice probabilities associated with all schooling and work alternatives.The
second stage is devoted to the estimation of the flow utility parameters, taking as given the
first-stage estimates. The validity of this sequential approach rests on the likelihood being
separable in the contributions of the choices and outcomes.23

Namely, consider the case of an individual i attending college during Tc periods, who
participates in the unskilled (resp. skilled) labor market during Tu (resp. Ts) periods, and
for whom we observe a sequence of Td decisions. We write the individual contributions to
the likelihood of the grades, log wages and choices by integrating out the unobserved ability
terms A = (Aa, Abs, Abn, As, Au)′. This breaks down the dependence across the grades, log
wages, choices and between all of these variables. The contribution to the likelihood then
writes, denoting by (Giτ )τ (τ ∈ {1, . . . , Tc}) the grades, (wiuτ )τ (τ ∈ {1, . . . , Tu}) the log
wages in the unskilled sector, (wisτ )τ (τ ∈ {1, . . . , Ts}) the log wages in the skilled sector,
and (diτ )τ the decisions (τ ∈ {1, . . . , Td}), as a five-dimensional integral:

L(di1, . . . , diTd
, Gi1, . . . , GiTc , wiu1, . . . , wiuTu , wis1, . . . , wisTs)

=
∫
L(di1, . . . , diTd

, Gi1, . . . , GiTc , wiu1, . . . , wiuTu , wis1, . . . , wisTs|A)ϕ(A)dA

where ϕ(.) denotes the pdf of the unobserved ability distribution, which is N (0,∆).
From the law of successive conditioning, and using the fact that schooling and work

22Note that throughout this section we keep the conditioning on the observed covariates implicit to save
on notation.

23Since college graduation does not depend on learned ability except through the choices, the additive
separability of this portion is clear so we omit it from this discussion.
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choices depend on ability A only through the observed sequence of signals, we obtain the
following partially separable expression (using y as a shorthand for the vector of grades and
log wages):

L(di1, . . . , diTd
, Gi1, . . . , GiTc , wiu1, . . . , wiuTu , wis1, . . . , wisTs) = Lid × Liy (18)

Where the contribution of the sequence of schooling and work decisions is given by:

Lid = L(di1)L(di2|di1, Gi1) . . . L(diTd
|di1, di2, . . . , diTd−1, Gi1, Gi2, . . . wiu1, wiu2, . . . , wis1, wis2, . . .)

This simply corresponds to the product over Td periods of the Type 1 extreme value choice
probabilities obtained from the dynamic discrete choice model.

Finally, the contribution of the sequence of grades, unskilled and skilled log wages is
given by:

Liy =
∫
L(Gi1|di1, A) . . . L(GiTc|di1, di2, . . . , A)L(wiu1|di1, A) . . . L(wiuTu|di1, di2, . . . , A)

× L(wis1|di1, A) . . . L(wisTs|di1, di2, . . . , A)ϕ(A)dA (19)

Where (L(wiuτ |di1, . . . , A))τ , (L(wisτ |di1, . . . , A))τ , and (L(Giτ |di1, . . . , A))τ denote the
normal pdf’s of the unskilled and skilled log wage as well as college grade distributions,
respectively, all conditional on the ability A and the sequence of choices. Taking logs of (18)
results in the choice part of the log likelihood being additively separable from the outcome
(grades and log wages) part of the log likelihood.24

5.2 Estimation of grade and wage parameters

Estimation of the parameters of the outcome equations proceeds as follows. Instead of di-
rectly maximizing the likelihood of the outcomes, which would be computationally costly
because of the ability integration, we compute the parameter estimates using the EM al-
gorithm (Dempster et al. 1977). The estimation procedure iterates over the following two
steps, until convergence:25

• E-step: update the posterior ability distribution from all the observed outcome data
(log wages and grades), using the outcome equation parameters obtained from the

24With type-specific unobserved heterogeneity, the log likelihood is no longer be additively separable.
However, applying the EM algorithm restores the additive separability at the maximization step (Arcidiacono
& Jones 2003). See Section 5.5 for more discussion.

25In this context, the EM algorithm is guaranteed to converge to a local optimum.
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previous iteration. This follows from the Bayesian updating formulas (8), for the pos-
terior ability mean and covariance, given in Section 3.4.1. The (population) covariance
matrix of the ability distribution is then updated as follows, for each iteration k of the
EM estimation:

∆k = 1
N

N∑
i=1

(
Σk
i (A) + Ek

i (A)Ek
i (A)′

)
(20)

where N denotes the number of individuals in the sample, Ek
i (A) the posterior ability

mean (Ek
i (A)′ its transpose) and Σk

i (A) the posterior ability covariance computed at
the beginning of the E-step.

• M-step: given the posterior ability distribution obtained at the E-step, maximize the
expected complete log likelihood of the outcome data, which is separable across sectors
(two-year college, four-year college science major, four-year college non-science major,
skilled or unskilled labor).

Namely, at the M-step of each iteration k of the EM estimation, denoting by ϕki (.) the
pdf of the posterior ability distribution computed at the E-step, we maximize the expected
complete log likelihood Elki :

Elki =
∫

ln(L(Gi1|di1, A) . . . L(GiTc|di1, di2, . . . , A)L(wiu1|di1, A) . . . L(wuiTu |di1, di2, . . . , A))ϕki (A)dA

= Elki,a + Elki,bs + Elki,bn + Elki,s + Elki,u (21)

For instance, the parameters of the unskilled wage equation are updated by maximizing
the contribution Elki,u, which writes, denoting by ϕkiu(.) the pdf of the posterior distribution
of Au:

Elki,u =
∫

(ln(L(wiu1|di1, Au)) + . . .+ ln(L(wiuTu|di1, di2, . . . , Au)))ϕkiu(Au)dAu (22)

Note that this term is additively separable over time. For any given period τ of unskilled
labor market participation, it follows from the normality assumptions on the idiosyncratic
productivity shocks and the unobserved ability that:

∫
ln(L(wiuτ |di1, di2, . . . , Au))ϕkiu(Au)dAu =

−1
2 ln(2πσ2

u)−
1

2σ2
u

(
Σk
iuu(A) + (wiuτ −Xiutγ1u − δut − Ek

iu(A))2
)

(23)
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where t refers to calendar time, while Ek
iu(A) and Σk

iuu(A) denote respectively the posterior
mean and variance of the ability in the unskilled sector (computed at the E-step).26 This
equality implies that the wage equation parameters (γ1u, δut) can be simply updated by re-
gressing via OLS the log wages in the unskilled sector net of the posterior unskilled ability
mean (which plays the role of a selection correction term) on the set of observed character-
istics and calendar time dummies. The idiosyncratic shock variance (σ2

u) is then updated as
follows:

σ2,k+1
u =

∑
i,τ

(
Σk
iuu(A) + (wiuτ −Xiutγ1u − δut − Ek

iu(A))2
)

Nobs
u

(24)

where Nobs
u is the total number of wage observations in the unskilled sector. Skilled wage

equation parameters are updated similarly.
The updating rule above needs to be adjusted to account for the ability index specification

of the grade equations along with the time-varying variances of the idiosyncratic shocks. For
instance, for four-year colleges (period of enrollment τ > 2), the contribution to the log
likelihood writes: ∫

ln(L(Gijτ |di1, di2, . . . , Aj))ϕkij(Aj)dAj =

−1
2 ln(2πσ2

jτ )−
1

2σ2
jτ

(
λ2

1jΣk
ijj(A) + (Gijτ − λ0j − λ1jAI

k
ijτ )2

)
(25)

where j ∈ {bs, bn}, Σk
ijj(A) denotes the posterior variance of the college-j ability (computed

at the E-step), AIkijτ = γ0j + Xijτγ1j + Ek
ij(A) is the posterior mean of the ability index

in college and major j, and ϕkij(.) denotes the pdf of the posterior distribution of Aj. It
follows that the parameters (γ0j, γ1j, λ0j, λ1j, (σ2

jτ )τ ) are updated by solving the following
minimization problem:

min
∑
i,τ

(
ln(σ2

jτ ) + 1
σ2
jτ

(
λ2

1jτΣk
ijj(A) + (Gijτ − λ0jτ − λ1jτAI

k
ijτ )2

))
(26)

where (λ0jτ , λ1jτ ) = (0, 1) for τ ≤ 2, and (λ0jτ , λ1jτ ) = (λ0j, λ1j) otherwise.

5.3 Estimation of the graduation parameters

Under the assumption that the graduation probabilities take a logit form, we use individual
data pooled over time on college graduation and on the set of characteristics Xigτ and

26t is the calendar time that corresponds to the τ -th period of unskilled labor market participation of
individual i. As such, while time is simply indexed by t for notational simplicity, it should be understood as
individual-specific here.
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estimate via maximum likelihood the parameters ψ governing the graduation probabilities
(see Equation 11, Section 3.4.3). In the absence of type-specific unobserved heterogeneity,
these parameters can be consistently estimated separately from all of the other parameters
of the model. We discuss in Subsection 5.5 below how the estimation procedure needs to be
adjusted to accommodate type-specific unobserved heterogeneity.

5.4 Estimation of the flow payoffs

With the estimates of the grade, wage and graduation parameters taken as given, we estimate
the flow payoffs in a second stage. Following Arcidiacono & Miller (2011), we express the
future payoffs in such a way that avoids solving the full backward recursion problem. Namely,
the expected value function at time t+ 1 can be expressed relative to the conditional value
function for one of the choices, plus a (known) function of the choice probabilities. With the
assumption that the preference shocks are distributed Type 1 extreme value, the expected
value function can be expressed as:

Et [Vt+1 (Zit+1) |dit = (j, k)] = Et [vj′k′t+1 (Zit+1)− ln (pj′k′t+1 (Zit+1)) |dit = (j, k)] (27)

for any choice (j′, k′), where pj′k′t+1(Zit+1) is the conditional choice probability (CCP) of
choosing dit+1 = (j′, k′) conditional on the state variables Zit+1.

Recall that in estimation it is differences in the conditional value functions that are
relevant, not the conditional value functions themselves. Consider any choice dit = (j′, k′)
as well as the choice dit = (0, 0) (home production). Given these initial choices and the
structure imposed by the model, it is easy to show that there exists two sequences of choices
such that the probabilities associated with each of the three-period-ahead states are the same
after making the choices in the sequences.27 It follows that:

Et [Vt+3(Zit+3)|dit = (0, 0), dit+1 = (j′, k′), dit+2 = (0, 0)] =

Et [Vt+3(Zit+3)|dit = (j′, k′), dit+1 = (0, 0), dit+2 = (0, 0)] (28)

The finite dependence property holds here because, conditional on the same lagged decision,
the sequence of the previous choices does not affect the current state.

We can then reformulate the problem in terms of two-period ahead flow payoffs and
conditional choice probabilities, and then estimate the CCPs in a first stage. The differenced

27For a full characterization of models that have the finite dependence property see Arcidiacono & Miller
(2015b).
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conditional value function for choices prior to college graduation is:28

vjkt(Zit)− v00t(Zit) =


ujk(Zit)− βEt (ln [p00t+1(Zt+1)] |Zit, dit = (j, k))

+βEt (ln [pjkt+1(Zt+1)]− ujk(Zt+1)|Zit, dit = (0, 0))
+β2Et (ln [p00t+2(Zt+2)] |Zit, dit = (0, 0), dit+1 = (j, k))
−β2Et (ln [p00t+2(Zt+2)] |Zit, dit = (j, k), dit+1 = (0, 0))

 (29)

Estimation of the flow utility parameters then involves the following steps:

1. Estimate the CCPs via a flexible multinomial logit model.

2. Calculate the expected differenced future value terms along the finite dependence paths.

3. Estimate the flow utility parameters after expressing the future value function as a
function of the CCPs. Having estimated the CCPs in a first step, this simply amounts
to estimating a multinomial logit with an offset term.

Applying CCP methods to our model is key to making our model computationally feasi-
ble. With five-dimensional unobserved ability plus the integration over the aggregate labor
market shocks, solving this type of multi-armed bandit model by backward recursion would
be computationally prohibitive. By using the finite dependence property of our model, we
only need to integrate out over the future shocks for two periods.29

5.5 Estimation with type-specific unobserved heterogeneity

We account for permanent heterogeneity, unobserved to the econometrician but known to
the individuals, by assuming that individuals belong to one of R heterogeneity types, where
type is orthogonal to the covariates at t = 1. Accounting for type-specific unobserved
heterogeneity breaks down the separability between the choice and outcome components of

28The differenced conditional value function is normalized with respect to v0pt(Zit), i.e. no school and
part-time work, for all choices after college graduation. We do so since home production is rarely chosen
among college graduates. Finite dependence still holds in this case, but the expression for vjkt(Zit)−v0pt(Zit)
(available from the authors on request) is more complex because u0p(·) is not equal to zero, whereas u00(·)
is normalized to zero.

29Another advantage of applying this approach is that we do not have to make assumptions about beliefs
far out into the future: everything about the future is captured in the conditional choice probabilities. Note
that conducting counterfactuals requires more assumptions as in this case we do not have counterfactual
data and hence do not observe the conditional choice probabilities.
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the likelihood described above as our full log likelihood function becomes:

∑
i

ln
[
R∑
r=1

πrLidrLibrLiyr

]
(30)

where πr denotes the population probability of being of type r, and Lidr, Libr, and Liyr

respectively denote individual i’s contribution to the likelihood of (i) the choices, (ii) four-
year college graduation outcomes, and (iii) grade and wage outcomes y = (G,wu, ws)′, all
conditional on the unobserved heterogeneity type r.

Following Arcidiacono & Miller (2011), we use an adaptation of the EM algorithm that
restores the additive separability of the likelihood function. Rather than updating the struc-
tural parameters of the decision process at each step, we use their two-stage approach and
approximate the decision process with a reduced form. Specifically, let L∗idr give the reduced-
form choice likelihood conditional on being of type r. The posterior probability of i belonging
to the r-th type follows from Bayes’ rule:

qir = πrL
∗
idrLibrLiyr∑R

r′=1 πr′L∗idr′Libr′Liyr′
(31)

In the first stage we recover the parameters of the grade and wage processes, the graduation
probabilities, the (type-specific) CCPs, and the conditional probabilities of being of each
type. The second stage boils down to a weighted multinomial logit with an offset term.
Note that this is identical to the case without unobserved heterogeneity except that now the
qir’s are used as weights.30

Finally, standard errors are estimated using a parametric bootstrap procedure with 150
replications.31 We discuss this procedure in detail in Appendix C.

30The CCPs are identified from the data and could in principle be estimated nonparametrically. However,
we choose to estimate them using a parametric specification to avoid the curse of dimensionality. We use
different specifications depending on the graduation status. In the first estimation stage and for those who
have not graduated from college, we use a quadratic in age and each type of work and schooling experience.
We also include year dummies, a running mean for each of the outcome variables, previous decision dummies,
and heterogeneity type interacted with work and schooling experiences. We impose more structure for college
graduates to avoid overfitting. In particular, we impose additive separability between the graduate school and
work options, and do not include interaction terms between heterogeneity types and experiences. Finally, we
impose additional linearity restrictions on the experience variables in the CCPs that are used in the second
estimation stage.

31For finite mixture models like ours, the asymptotic variance tends to be a particularly poor approximation
with typical sample sizes. See McLachlan & Peel (2004, Section 2.16) who recommend the use of parametric
bootstrap in this context.
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5.6 Missing college majors and grades

In our data, college grades and four-year college majors are each missing at a non-trivial rate.
This is especially true for those who drop out of college after one period. These individuals
likely received negative grade realizations which, if ignored, could bias our results. We take
this issue into account within our estimation procedure by treating the first instance of
unobserved grades or major as another unobserved discrete latent variable. In practice we
discretize the observed grades distribution into quartiles, and approximate the distribution of
unobserved grades with a discrete distribution with finite support given by these quartiles.32

The estimation procedure discussed above can be easily adjusted to allow for these additional
latent variables.

Specifically, along with the type-specific unobserved heterogeneity distribution, the distri-
bution of unobserved grades and majors, conditional on each heterogeneity type, is estimated
within the first stage of our estimation procedure. The log likelihood which is maximized
at the M-step is now conditional on both the unobserved heterogeneity type as well as the
major or grade quartile.33 The implementation of this procedure is more fully described in
Appendix B.

6 Results

In this section, we present and discuss the estimation results. All of the results discussed
below are obtained assuming the existence of R = 2 unobserved heterogeneity types. Type 1
(respectively type 2) individuals account for 50.3% (resp. 49.7%) of the overall population.34

6.1 Grade parameters

The parameter estimates for the grade equations are presented in Table 5. Since high school
grades and SAT scores have been standardized, the coefficients associated with these char-
acteristics represent the effects of one standard deviation increases. For all the schooling
options, high school grades are associated with larger effects on college grades than either

32The corresponding cut points of the grades distribution occur at {0, 2.5, 3.0, 3.6, 4.0}.
33Accounting for missing grades and majors in this fashion results in a finite mixture model with R×2×4 =

8R points of support.
34Results for the specification without type-specific unobserved heterogeneity are available from the authors

upon request.
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of the test score components. SAT verbal matters more for college grades than SAT math,
with the exception of four-year science where the effects are similar.

Working while in college is associated with lower grades for both types of colleges and
majors, although the effects are modest and generally not statistically significant at standard
levels. Interestingly and consistent with the findings of Hansen et al. (2004) regarding the
effects of latent ability on achievement test scores, returns to the ability index are found
to be smaller after sophomore year for both groups of majors in four-year colleges. Finally,
turning to the type-specific unobserved ability (known to the agent), students in the type 1
group have lower GPA in two-year colleges, and higher GPA in both science and non-science
majors in four-year colleges.

6.2 Wage parameters

Estimates of the wage equations are given in Table 6.35 For both sectors we find significant
and sizable returns to a one-standard deviation increase in SAT math scores (6% and 11% in
the unskilled and skilled sectors, respectively). On the other hand, the returns to SAT verbal
are negative for both sectors. The latter finding echoes several other papers documenting a
negative effect of SAT verbal scores after controlling for SAT math scores (see, e.g., Arcidi-
acono 2004, Kinsler & Pavan 2015, Sanders 2015). High school grades are significant in the
skilled sector only, both statistically and economically with a one-standard deviation increase
in high school GPA being associated with about 8% higher wages in that sector. Overall, the
differences in returns in the labor market for the different ability measures versus the returns
to these measures in terms of of college grades (see Section 6.1) provide evidence that the
skills necessary to succeed in college do not fully line up with those that are rewarded in the
labor market.

Returns to experience are slightly larger in the skilled sector (8%) than in the unskilled
sector (6%), although both returns are of similar order of magnitude. Experience in the
unskilled sector does not translate into higher earnings in the skilled sector.36 This highlights
the importance of accounting for sector-specific labor market experience in this context, as
both types of experience are rewarded very differently in the labor market.

Returns to schooling in the unskilled sector are positive and significant but relatively
35Estimates of the AR(1) processes governing the aggregate shocks are reported in Table A.5.
36This finding may partly reflect the fact that, after graduating from college, individuals who have accu-

mulated more experience in the unskilled sector might also be more likely to end up working in a relatively
low-paying occupation. Investigating this issue would require modeling the choice of occupation.
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small, averaging about 4% a year. Working while in college (as opposed to working without
being enrolled in college) results in a substantial wage loss, particularly for part-time work
in both two-year and four-year colleges. The part-time penalty itself, however, is higher in
the skilled sector.

Turning to the skilled sector, graduating from a science (as opposed to non-science) major
increases on average the wage in the skilled sector by 14%. While economically significant,
it is interesting to note that this estimate is lower than most of the science major premia
which have been obtained in earlier studies, including those based on structural models of
college major choice (Altonji, Arcidiacono & Maurel 2016). This finding may partly reflect
the fact that our estimates control for selection on ability using a choice model that is more
flexible in what is included in the individual’s information set.37 The estimates also suggest
positive returns to graduate school, though these disappear after the first year.

Finally, all else equal, blacks have significantly lower wages (9.1% penalty) in the unskilled
sector, but no penalty in the skilled sector, a finding that is consistent with Arcidiacono
(2004) and Arcidiacono et al. (2010). Turning to unobserved type-specific heterogeneity,
type 1 individuals have substantially higher wages than type 2 individuals in the skilled
sector (17% premium) but lower wages in the unskilled sector (11% penalty). These results
are consistent with the existence of a sector-specific comparative advantage, which is part of
the information set of the agents as they start making their college decisions.

6.3 Learning

Table 7 presents the estimated correlation matrix for the unobserved abilities (initially un-
known to the individual) in each sector, along with their variances. A first key takeaway
from the correlation matrix is that it clearly supports the idea that skills are multidimen-
sional. Indeed, eight out of the ten correlation coefficients are significantly different from one
at the 1% level, while the other two correlation coefficients (across science and non-science
majors in four-year colleges, and across two-year colleges and four-year colleges non-science
majors) are significantly different from one at the 10% level only. A unidimensional skill
model, or even a model with two imperfectly correlated skills (schooling ability and labor
market productivity), are unambiguously rejected by the data. As such, these results add to
a large and growing empirical literature providing evidence that skills are multidimensional

37Indeed, our specification allows individual choices to depend on the information about their ability that is
revealed over time, in addition to the more standard source of unobserved heterogeneity which is permanent.
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in nature (see Heckman & Mosso 2014, and multiple references therein).
Schooling ability is highly correlated across college types and majors. The correlations

across college types and majors range from 0.7 (for four-year college science majors and
two-year colleges) to 0.9 (for four-year colleges non-science majors and four-year colleges
science majors). A similar picture emerges across skilled and unskilled sectors within the
labor market, which are strongly correlated (estimated correlation coefficient of 0.78).

The correlations between schooling abilities and labor market productivity are all pos-
itive, but markedly lower than the correlations across college types and majors. Notably,
the correlations between ability in four-year college non-science or science major, and pro-
ductivity in the skilled sector are very small (between 0.05 and 0.06). Correlations between
schooling abilities in four-year colleges and labor market productivity are larger for the un-
skilled sector, although both of them remain below 0.21. Taken together, these patterns
provide clear indication that grades earned in college, in science as well as in non-science
majors, reveal little new information about future labor market performance. Correlations
are larger for two-year colleges, possibly reflecting the fact that courses and examinations
in two-year colleges tend to be more geared toward professional life than in four-year col-
leges. However, these correlations remain much smaller than the correlations across schooling
options or between skilled and unskilled labor market sectors.

The variances of each of the ability measures are given in the bottom row of Table
7. These estimates provide clear evidence that individuals have a substantial amount of
uncertainty about their own abilities by the end of high school. A sizable share of the
dispersion in college grades and wages is attributable to the ability components that are
gradually revealed to the individuals. Specifically, those ability components account for
between 13% of the variance of grades in two-year college, to as much as 38.7% of the
variance of log wages in the skilled sector. Among the schooling options, the share is highest
for four-year sciences (35.1%), highlighting the important role of unobserved ability in science
majors. Overall, these results provide evidence that it is important in this context to allow
for a portion of ability to be imperfectly known by the individuals. Even in the case with
the smallest variance—ability in the unskilled sector—a one standard deviation increase in
ability would translate into a 27% increase in wages.

While the unknown ability component is large, learning may still take time due to the
noise of the signals. Table 8 gives the estimated variances of the idiosyncratic components
of wages and grades respectively. It shows that, even though we account for both types of
unobserved ability (known and unknown to the individuals), residual variation in log wages
and grades remains sizable. This is particularly true in the first year of college where the
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signal-to-noise ratios are 0.27, 0.20 and 0.09 only for four-year science, four-year non-science,
and two-year respectively.38 Signals are much more informative in the second year of college
with the corresponding signal to noise ratios of 0.59, 0.44, and 0.19. The signal-to-noise
ratios for the skilled and unskilled sectors are 0.46 and 0.31, respectively.

6.4 Graduation parameters

Estimates of the parameters governing graduation are given in Table A.6. Recall that no one
is at risk of graduating until their third year of undergraduate education, and individuals
are only at risk of graduating if they are attending a four-year college. As expected, more
time in school makes graduation more likely, especially time at a four-year institution.

More interesting are the major-specific components. All else equal, being a science major
delays graduation. The degree to which it delays graduation, however, depends on one’s
abilities in the sciences and non-sciences. Having higher abilities in one’s subject area in-
creases graduation probabilities but does so more in the sciences. Since science ability also
has a higher variance, this again underscores the importance of abilities in the sciences.

6.5 Flow payoffs

Table 9 reports the structural parameter estimates of the flow utility parameters. Higher
SAT scores, both math and verbal, make the four-year non-science option more attractive,
while only SAT math scores are important for four-year science enrollment. Higher high
school grades make all four-year options more attractive. While none of these measures has
a direct effect on the payoff to working (the coefficients are all small and insignificant), they
still have an indirect effect on the payoff to working through higher wages.

The coefficients on prior academic ability—with the variables here referring to two-year,
four-year science, and four-year non-science respectively—indicate that academic ability is
particularly important to the utility of the four-year college options. The effects on the
four-year options, as well as the effects of SAT scores and high school grades, suggest lower
costs of effort when these measures are high. Ability in the workforce enters through log
wages. Although the coefficient is positive and large, it is imprecisely estimated.

The estimated coefficients on previous activities point to the existence of large switch-
38Signal-to-noise ratios are defined and computed as the share of the variance of the signal that is at-

tributable to the latent ability (as opposed to the noise).
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ing costs across types of colleges and majors, as well as large costs to changing one’s work
status. The parameters on working full-time in the college options indicate negative com-
plementarities between school and full-time work. Finally, type 1 individuals are found to
have higher preferences for four-year colleges and a relative distaste for two-year colleges.
Together with the estimation results obtained for the grade equations, the latter estimates
point to a positive correlation between preferences and abilities for both types of colleges.

The bottom panel of Table 9 gives the estimated probability of missing grades being in
each quartile of the grade distribution, conditional on the (first) occurrence of a missing
grade. If grades were missing completely at random, we would expect these probabilities to
be close to a quarter. Since individuals are more likely to leave college when they receive low
grades, and individuals are more likely to not report their grades when they leave college, it
is not surprising that the conditional distribution is shifted towards lower grades.

6.6 Model fit and ability sorting

We now discuss the fit of the model as well as the (predicted) sorting patterns by forward
simulating the model. Model comparisons are computed through forward simulation, us-
ing the structural parameter estimates presented above along with the reduced-form CCPs.
Specifically, we begin by drawing an ability vector for each individual from the population
distribution (a multivariate normal with mean zero and covariance ∆̂).39 We then draw an
unobserved type for each individual from a Bernoulli distribution with parameter π̂1 (esti-
mated unobserved type probability). Next, we draw preference shocks and compute choice
probabilities using the observed states (i.e. the demographic characteristics and heterogene-
ity type and ability drawn at the beginning of the simulation), the structural flow utility
estimates and the reduced-form CCPs to represent the future value term.40 We then draw id-
iosyncratic shocks for the outcome equations (wages and grades) corresponding to the choice
that was made. Finally, we compute the implied ability beliefs using the idiosyncratic shock
draws and the ability draws, and then update the state space and repeat T = 10 times.41

We perform this forward simulation 100 times for each individual in the estimation sample.
39The parameter values of the correlation matrix associated with ∆̂ are listed in Table 7.
40In the forward simulation after t = 1, the choice probabilities are a function of the demographic charac-

teristics, the unobserved type, the beliefs on unobserved ability, and the endogenous state variables such as
previous decision and experience.

41Updating the state space involves updating the ability beliefs and the choice-dependent state variables.
For example, if the person worked full-time in the previous period, then his work experience in the following
period is increased by one unit and his previous decision is work full-time.
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Tables 10 and 11 report the fit of the model in several relevant dimensions. Table 10
reports, for each period, the empirical frequency (Data column) and the choice frequency
predicted using the model (Model column) for four different events, namely college entry,
college attrition, college re-entry, and graduation.

Overall, most of the predicted choice frequencies are reasonably close to the empirical
ones, despite some non-trivial discrepancies in a couple of cases. Importantly, our model
does a good job in predicting the dynamics of these choices across all periods. Table 11
shows the fit of the model in terms of choice frequencies, pooled across all periods. The fit
is generally very good, with the predicted choice frequencies being in most cases very close
to the empirical frequencies.

Turning to the ability sorting patterns, Table 12 shows the posterior mean of each unob-
served ability, for different choice paths. These results are obtained by forward simulating
100 times, for each individual in the sample, the outcomes and sequences of choices.42

Though sorting effects are relatively small, the signs are generally in the expected di-
rection. Those who go continuously to college and graduate with a degree in science have
relatively high (posterior) ability in science, but also, to a lesser extent, in non-science ma-
jors and two-year colleges. Individuals who are continuously enrolled in college and graduate
with a non-science degree also have larger abilities in all types of schools and majors than
dropouts and stopouts, as well as individuals who never attend college. However, it is in-
teresting to note that, among the group of individuals who do not work while in college,
science college graduates are on average not only better than non-science college graduates
in science, but they also have higher non-science posterior ability. This pattern points to
four-year college graduates in sciences having an absolute advantage in both types of majors.

Those who go continuously to college and work while in school at all periods have higher
unskilled (and skilled) labor market productivities than those who never work while in school.
Individuals who stop out, but then graduate from college in science have lower schooling
ability in four-year sciences than the continuous enrollees who work in college and obtain a
degree in science. On the other hand, these stopouts who graduate have substantially larger
schooling abilities, for all types of college and majors, than the individuals who stopped out
but then left college again without graduating. Individuals for whom dropping out was an
absorbing state have on average higher schooling abilities than those who stop out and drop
out from science or non-science majors, but substantially smaller abilities than those who

42Note that one could alternatively construct a similar table by using the learning estimates only and
then compute the average posterior abilities for those who chose particular paths. Using forward simulations
enables us to work with larger cell sizes.
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graduate after stopping out.

In order to investigate how ability uncertainty gets resolved, Table 13 reports the poste-
rior ability variances for different choice paths at either (i) time of college graduation (for
those who do graduate) or (ii) in the last survey period (for those who do not). Focusing on
the first two panels (continuous enrollees graduating in science or non-science), the results
show that a fair amount of ability learning takes place while in college. On average among
all college graduates in science, the posterior ability variance in science is about six times
smaller upon graduation than when they graduated from high school. Consistent with the
existence of a smaller signal-to-noise ratio in non-science majors, learning is somewhat slower
but nonetheless sizable in non-science fields, with the posterior ability variance being more
than four times smaller upon graduation than those who do not attend college. Individuals
also learn about their abilities in other types of colleges and majors than the one they grad-
uate from. Learning across different schooling options is a non-trivial source of information
revelation. For instance, the posterior non-science ability variance is three and a half times
smaller upon graduation from a science major than for those who do not attend college.43

7 The Importance of information

We now use the structural parameter and learning estimates to investigate the importance
of information about one’s abilities. In the following, we simulate individual choices and
labor market outcomes under a counterfactual scenario where we assume that individuals
have perfect information on their abilities once they leave high school. To do this, we set
a retirement date at age 65. We then give all individuals initial draws on the five ability
components—two-year, four-year science, four-year non-science, unskilled productivity, and
skilled productivity—which individuals are now assumed to know when making their edu-
cational and labor supply decisions. Three sources of uncertainty remain: the probability

43Table A.7 in Appendix A reports the posterior ability variances at the end of the panel (2011), broken
out by background characteristics. The speed of ability learning is quite heterogeneous across those different
subgroups, particularly so for the academic abilities. This finding reflects the fact that individuals with
different background characteristics tend to choose different paths in college and in the labor market, some
of these paths carrying significantly more information about individual abilities than others. As such,
the posterior variances reported in this table point to sizable informational inequalities by race, parental
education and ability (as measured by SAT scores and high school GPA). In particular, blacks and Hispanics,
individuals below the median of the SAT math, SAT verbal and high school GPA distributions, as well as
those whose parents have not graduated from college are on average more uncertain about their abilities.
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of graduating from a four-year college conditional on attendance, aggregate labor market
shocks to both sectors, and individual preference shocks. We then solve the model back-
wards to get the counterfactual choice probabilities, and then forward simulate to obtain the
distribution of choices and the average abilities across different choice paths.

7.1 Information and educational choices

Table 14 reports the college completion status frequencies in the baseline and counterfactual
scenario (referred to as full- or perfect-information scenario in the following). The fraction
of individuals who never attend college is virtually unchanged. However, the predicted share
of individuals graduating from four-year college would increase by about nine percentage
points (a 38% increase) if they had perfect information on their ability by the end of high
school.44 Of the nine percentage point increase, over eight percentage points is due to the
increase in the share of individuals who attend college continuously.

These findings are explained by a set of individuals who enroll in college under imperfect
information, find out they are not a good match, and then drop out. When ability is
known, these individuals do not enroll in the first place. In contrast, there are a set of
students who do not enroll under the imperfect information scenario. In the scenario where
ability is known, however, these individuals realize they are academically talented and/or
have high levels of skilled productivity and choose to enroll in college continuously. These
countervailing forces result in the number of individuals never attending college remaining
the same but the number of college graduates substantially increasing.

We next investigate how the counterfactual scenario changes the ability compositions
across the different choice paths. Table 15 replicates Table 12, but with the abilities now
calculated based on the counterfactual simulations. Comparing how much ability sorting
there is in this counterfactual full information scenario with the baseline sorting patterns
discussed above (Table 12) speaks to the cost of imperfect information in this context. In

44Stinebrickner & Stinebrickner (2014a) show that learning about grades accounts for 45% of dropouts in
the first two years, a finding based on predictions had students received their prior abilities as their grade
signals. The corresponding numbers from providing full information in our case result in smaller percentage
changes in the drop out rates. This is partly due to differences driven by receiving full information rather
than one’s prior, focusing on the first two years of college as opposed to all years of enrollment, as well as
differences in the sample composition (the full population versus enrollees at Berea). See also Stinebrickner
& Stinebrickner (2014b) who show that ability learning plays a particularly important role in explaining
attrition in science majors.
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most cases, the sorting effects go in the same direction as the ones obtained earlier without
assuming perfect information. However, the magnitudes of these effects are generally much
larger. In particular, we find much stronger evidence of sorting on comparative advantage
in the perfect information scenario. For instance, individuals who do not work while in
school, are continuously enrolled, and graduate from a science major in a four-year college
have on average a 0.86 standard deviation higher science ability than those who never enroll
in college. The ability differences are much smaller in the baseline scenario, where the
continuous enrollees in four-year science have a 0.25 standard deviation higher science ability
than those who never enroll in college.

It is also interesting to compare sorting on science and non-science abilities across both
types of majors, in the baseline and in the counterfactual scenario. In the full information
scenario, among those who do not work while in school, continuous enrollees in science
majors have a 0.18 standard deviation higher science ability than the continuous enrollees
in non-science majors. Those differences are smaller in the baseline scenario (0.09 standard
deviation), which provides evidence that imperfect information limits the extent to which
individuals sort across college majors based on their comparative advantage.

7.2 Information and labor market outcomes

In order to assess the importance of information about labor market productivity and school-
ing ability on labor market outcomes, we next study how full information affects wages in
each of the labor market sectors. Panel (a) of Table 16 shows mean log wages in the skilled
and the unskilled sectors under two different scenarios. Column (1) of Table 16 reports
our baseline case, which serves as a benchmark. Columns (2) and (3) provide the coun-
terfactual full information cases with the only difference being that in the latter case the
level of labor market experience is held constant with respect to the baseline. The results
reported in columns (1) and (2) indicate that, in the presence of full information, wages in
the skilled sector increase on average by approximately 16.7%, while in the unskilled sector
wages decrease by 16%.

As wages in the skilled sector increase while wages in the unskilled sector decrease, the
college wage premium increases by 32.7 percentage points in the full-information scenario.45

45Recall that the unskilled sector includes all the individuals who have enrolled in two- and four-year
colleges but have not obtained a bachelor’s degree, while the skilled sector also includes individuals who
enrolled in graduate school after graduating from college. As such, the college wage premia reported in
Table 16 are also affected by the returns to graduate school and to each year of college. If instead we were
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In order to understand to what extent part of this increase can be explained by differences in
the experience profiles between the baseline and counterfactual cases, as opposed to the direct
effect of information through ability sorting across sectors, column (3) presents counterfactual
log wages when experience is held constant. Results show that the college wage premium
increases by 19.8 percentage points in this case, thus indicating that a significant portion
of the increase in the college wage premium in the full information scenario occurs through
the accumulation of sector-specific labor market experience. Taken together, these results
provide evidence that imperfect information about ability plays an important role in the
composition of the workforce in both sectors. Eliminating these informational frictions would
result in a large increase in the average college wage premium.46

Panel (b) of Table 16 further examines the extent to which wages in the two sectors
are different in the baseline versus full information scenario as a result of differences in
observable characteristics. First, we calculate, for the baseline and the full information
scenarios, the mean (counterfactual) wages in the skilled sector for high school graduates,
conditional on having on average the same experience, choice of major, and graduate school
enrollment decisions as those who graduated from college. Similarly, we also compute the
wages in the unskilled sector for college graduates, conditional on having on average the
same experience and college enrollment decisions as those who only graduate from high
school. Results indicate that, in the baseline scenario, high school graduates would earn on
average in the skilled sector 17.6% less than college graduates working in that sector. In the
counterfactual scenario, the gap goes up to 39%. The larger difference in the counterfactual
scenario highlights how providing more information to individuals would amplify sorting into
the different sectors. In a similar vein, the decomposition shows that wages for high school
graduates, had they instead chosen the skilled sector but holding their characteristics fixed,
would have been higher in the baseline than in the counterfactual scenario. The opposite

to compute the college wage premium as the effect of graduating from a four-year college only (without
graduate education) relative to high school only (without college education), this would result in a baseline
premium of 26.9% instead of 24.7% which is reported in the table. The fact that the estimated college
premium is relatively low is mainly due to the early point of evaluation in the life cycle, with workers in the
skilled sector averaging less than 3.5 years of skilled experience. In particular, the estimated premium goes
up to about 37% after 4 additional years of experience.

46The predicted decline in the wages in the unskilled sector is compatible with individuals making more
informed choices in the counterfactual scenario. Even in the case of the standard Roy model where sorting
across sectors is purely based on monetary gains, mean wages can decrease in one of the two sectors if agents
sort across sectors according to their comparative advantage, as opposed to a random allocation (Heckman
& Honoré 1990). In our model, non-monetary components of individual preferences is an additional channel
through which mean wages can decrease in a given sector.
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holds for college graduates in the unskilled sector. This asymmetry captures the essence of
the sorting mechanism which is driven by the fact that ability is highly correlated across
sectors, and that individuals who graduate from college tend to be more productive in both
sectors, particularly so in the full information case.

To conclude, our results show that informational frictions play an important role in shap-
ing labor market outcomes. Providing full information to students about their own abilities
by the end of high school would result in a sizable increase in four-year college graduation
rates. Moreover, beyond the college graduation margin, providing more information to stu-
dents would also result in significant changes in the average productivity levels of workers
within each sector, leading in turn to a substantial increase in the college wage premium.

8 Conclusion

In this paper, we examine the role played by imperfect information about own schooling
ability and labor market productivity in the context of college enrollment decisions, and the
transitions between school and work. Using longitudinal data from the NLSY97, we estimate
a dynamic model of college attendance, major choice and work decisions. At the end of each
year, individuals update their ability and productivity beliefs through college grades and
wages. A central feature of our framework is to allow the different kinds of schooling and
workplace abilities to be arbitrarily correlated, implying that signals in one area may be
informative about abilities in another area.

Estimation results show that a sizable fraction of the dispersion in college grades as well as
log wages is attributable to the ability components which are gradually revealed to individuals
as they accumulate more signals. These ability components are highly correlated across
college types and majors, and across the skilled and unskilled labor market. In contrast,
grades earned in college turn out to reveal little information about future labor market
performance. To the extent that part of the mission of higher education is to help prepare
students for the labor market, this finding suggests that there is room for improvement in
the screening mechanisms in place in college.

Finally, simulations conducted under a counterfactual full information scenario indicate
that four-year college graduation rates would increase substantially (by 38%) relative to
the baseline imperfect information scenario, mostly through a decrease in dropout rates.
Imperfect information on ability also has significant implications regarding the composition
of college graduates in science and non-science majors, dropouts and stopouts. In particular,
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we find evidence that imperfect information on ability acts as a barrier to the pursuit of
comparative advantage through schooling choices. Providing full information to the students
would result in significant changes in the average productivity levels of workers within each
sector, leading in turn to a substantial increase in the college wage premium. As such, our
results suggest that providing more opportunities to learn about own ability before starting
college,47 as has been recently implemented in different contexts (Bobba & Frisancho 2016,
Pistolesi 2017), would have significant implications in terms of schooling decisions and on
the relative skill composition of the college versus non-college educated workforce.

47This could include such policies as encouraging more enrollment in advanced placement or concurrent
enrollment courses, arranging for high school students to audit a sample of college courses, as well as en-
couraging students to work before enrolling in college.
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Table 1: Background characteristics of estimation sample by college en-
rollment status

Starting College Type
Two-year Four-year Sci Four-year Non-Sci Four-year Missing Major No college Total

Black 0.212 0.129 0.208 0.156 0.299 0.228
(0.409) (0.336) (0.406) (0.363) (0.458) (0.420)

Hispanic 0.211 0.112 0.108 0.128 0.208 0.177
(0.408) (0.317) (0.311) (0.334) (0.406) (0.381)

SAT math -0.252 0.488 0.121 0.216 -0.47 -0.157
(0.635) (0.789) (0.736) (0.758) (0.640) (0.751)

SAT verbal -0.225 0.252 0.131 0.142 -0.477 -0.179
(0.646) (0.750) (0.787) (0.783) (0.715) (0.770)

HS Grades 0.035 0.889 0.626 0.689 -0.259 0.168
(0.856) (0.833) (0.807) (0.802) (0.893) (0.951)

Parent graduated college 0.263 0.579 0.527 0.488 0.102 0.296
(0.441) (0.495) (0.500) (0.500) (0.303) (0.457)

Family Income ($1996) 36,789 53,070 54,204 54,949 28,394 40,036
(36,778) (51,502) (56,847) (54,878) (30,241) (43,741)

Total N 760 178 332 461 982 2,713

Notes: This table reports summary statistics for the subsample of the NLSY97 that is used to estimate our structural model. Test scores are
standardized to the NLSY97 population. Grades are standardized to the NLSY97 male population. Standard deviations are listed directly below
the mean (in parentheses) for each entry. See Table A.2 for complete details on sample selection.
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Table 2: Outcomes of college enrollees (%)

Starting College Type
Two-Year Four-Year Sci Four-year Non-Sci Four-year Missing Major Total

Continuous completion (CC), grad. Sci 1.97 43.26 4.22 13.45 9.71
Continuous completion (CC), grad. Hum 7.11 13.48 45.48 38.83 23.57
Stopped out (SO), graduated Sci 1.84 2.25 1.51 0.87 1.56
Stopped out (SO), graduated Hum 4.08 3.93 6.63 6.72 5.26
Stopped out (SO) then dropped out 16.84 4.49 7.23 8.24 11.44
Dropped out (DO) 56.71 20.22 24.70 22.56 37.72
CC right censored 0.79 5.06 4.52 4.77 3.00
SO right censored 10.66 7.30 5.72 4.56 7.74

Total N 760 178 332 461 1,731

Notes: This table reports college completion status statistics for the subsample of the NLSY97 that is used to estimate our structural model, conditional
on ever attending college. Completion status is computed using the full available data regardless of missing outcomes. “Right censored” refers to
those who are still enrolled in college in the last period of the survey. Students who begin two-year college but never enroll in a four-year college are
considered as dropouts. See Table A.2 for complete details on sample selection.
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Table 3: Period-t GPA outcomes (by t+ 1 period college decision)

(a) 4-year Students, GPA levels

Mean GPA Std Dev N |t-stat|
Drop out from 4-year college 2.801 0.716 294 7.65

Stay 3.099 0.619 2,433
Switch majors (or to 2-year college) 2.925 0.690 176 3.36

Stay 3.089 0.615 2,340

(b) 2-year Students, GPA levels

Mean GPA Std Dev N |t-stat|
Drop out from 2-year college 2.834 0.878 317 4.37

Stay 3.052 0.678 748
Switch to 4-year college (any major) 3.135 0.627 99 2.06

Stay 2.972 0.759 966

(c) 4-year Students, GPA residuals

Mean residual Std Dev N |t-stat|
Drop out from 4-year college -0.188 0.686 263 5.64

Stay 0.021 0.555 2,253
Switch majors (or to 2-year college) -0.088 0.667 176 2.10

Stay 0.007 0.565 2,340

(d) 2-year Students, GPA residuals

Mean residual Std Dev N |t-stat|
Drop out from 2-year college -0.136 0.839 317 4.13

Stay 0.058 0.633 748
Switch to 4-year college (any major) 0.086 0.573 99 1.27

Stay -0.009 0.718 966

Note: Each t-statistic tests for difference in means between the specified activity and its comple-
ment. For residual outcomes, regression covariates include race dummies, SAT scores, parental
education, high school GPA, age dummies, and work intensity dummies.
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Table 4: Period t log wage outcomes for stopouts (by t+ 1 decision)

(a) Log wage levels

Mean log wage Std Dev N |t-stat|

Stay in work 2.424 0.557 3,152 4.41
Return to school 2.242 0.418 188

Total 2.414 0.552 3,340

(b) Log wage residuals

Mean residual Std Dev N |t-stat|

Stay in work 0.061 0.520 3,152 2.10
Return to school -0.020 0.403 188

Total 0.057 0.514 3,340

Note: Results are conditional on having attended at least one year of
college, currently working, and not yet having graduated from college. As
a result, the residuals do not average to zero here because the relevant
population is all wage observations in the estimation subsample of the
data. Regression covariates include levels and interactions of the following
variables: race and year dummies; SAT scores; experience; age; in-school
work dummies; and work intensity dummies.

47



Table 5: Estimates of 2- and 4-year GPA Parameters

4 year Science 4 year Non-Science 2 year
Coeff. Std. Error Coeff. Std. Error Coeff. Std. Error

Constant 3.070 (0.141) 2.908 (0.083) 2.779 (0.063)
Black -0.136 (0.119) -0.073 (0.075) -0.200 (0.056)
Hispanic 0.013 (0.123) -0.093 (0.069) -0.027 (0.053)
SAT math 0.135 (0.067) 0.081 (0.047) 0.003 (0.039)
SAT verbal 0.121 (0.072) 0.125 (0.045) 0.087 (0.043)
HS Grades 0.212 (0.059) 0.208 (0.031) 0.168 (0.027)
Parent graduated college 0.011 (0.092) 0.066 (0.050) 0.017 (0.051)
Work FT -0.100 (0.069) -0.072 (0.041) -0.017 (0.051)
Work PT -0.040 (0.054) -0.046 (0.030) -0.076 (0.044)
Age 18 and under -1.005 (0.088) -0.652 (0.055) -0.391 (0.056)
Age 19 -0.592 (0.078) -0.300 (0.052) -0.255 (0.067)
Age 20 -0.252 (0.070) -0.192 (0.041) -0.328 (0.061)
Age 21 -0.113 (0.057) -0.139 (0.038) -0.086 (0.060)
Year 2+ 0.430 (0.041)
λ0 (ability index intercept) 0.118 (0.217) 0.251 (0.161) 0.000 ( — )
λ1 (ability index loading) 0.901 (0.063) 0.928 (0.051) 1.000 ( — )
Unobserved type 1 0.058 (0.151) 0.052 (0.094) -0.078 (0.063)
Person-year obs. 1,045 2,248 1,570

Notes: Bootstrap standard errors in parentheses. Age 22 and older is the reference category for the age
dummies. Not working while in school is the reference category for the work intensity dummies.
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Table 6: Estimates of Skilled and Unskilled Wage Parameters

Skilled Unskilled
Coeff. Std. Error Coeff. Std. Error

Constant 2.083 (0.134) 1.981 (0.057)
Black 0.032 (0.042) -0.091 (0.018)
Hispanic -0.020 (0.053) -0.010 (0.019)
SAT math 0.109 (0.026) 0.062 (0.013)
SAT verb -0.047 (0.027) -0.015 (0.013)
HS Grades 0.079 (0.022) -0.008 (0.008)
Parent graduated college -0.009 (0.033) -0.004 (0.018)
Age 0.002 (0.009) 0.008 (0.005)
Unskilled Experience 0.001 (0.009) 0.056 (0.003)
Skilled Experience 0.081 (0.008)
PT work -0.072 (0.034) -0.018 (0.011)
PT 2 year -0.111 (0.021)
PT 4 year -0.159 (0.018)
FT 2 year -0.050 (0.018)
FT 4 year -0.073 (0.019)
PT graduate school 0.001 (0.075)
FT graduate school -0.081 (0.046)
1 year graduate school 0.112 (0.050)
2 years graduate school 0.057 (0.050)
3 years graduate school 0.100 (0.078)
4+ years graduate school 0.090 (0.095)
1 year college 0.055 (0.012)
2 years college 0.055 (0.015)
3 years college 0.107 (0.016)
4+ years college 0.150 (0.019)
Science major 0.139 (0.035)
Unobserved type 1 0.166 (0.067) -0.113 (0.022)
person-year obs. 1,700 12,372

Notes: Bootstrap standard errors in parentheses. Full-time outside of school is
the reference category for the work intensity dummies. Controls for calendar year
dummies were also included.
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Table 7: Correlation Matrix and Variances for Unobserved Abilities

Skilled Unskilled Science Non-Science 2-year
Skilled 1.000

(—)
Unskilled 0.781 1.000

(0.053) (—)
4 year Science 0.057 0.212 1.000

(0.067) (0.066) (—)
4 year Non-Science 0.053 0.163 0.902 1.000

(0.059) (0.049) (0.052) (—)
2 year 0.321 0.180 0.703 0.883 1.000

(0.116) (0.079) (0.115) (0.066) (—)
Variances 0.127 0.074 0.235 0.165 0.085

(0.008) (0.003) (0.045) (0.020) (0.013)

Note: Bootstrap standard errors in parentheses.

Table 8: Idiosyncratic Variances

Period Skilled Unskilled Science Non-Science 2-year
1 0.148 0.161 0.646 0.670 0.897

(0.004) (0.002) (0.057) (0.039) (0.050)
2 0.160 0.212 0.352

(0.026) (0.017) (0.029)
3 0.140 0.135 0.372

(0.044) (0.024) (0.028)
4 0.120 0.111

(0.041) (0.022)
5+ 0.321 0.199

(0.085) (0.033)

Notes: Bootstrap standard errors in parentheses. The third variance in
2-year college is the same for all periods after period 3.
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Table 9: Flow Utility Estimates

2-year 4-year Sci 4-year Non-Sci Work PT Work FT Grad Sch.
Constant -3.594 -6.643 -5.193 -4.159 -3.318 -3.470

(0.155) (0.265) (0.162) (1.056) (1.068) (0.853)
Black -0.024 0.108 0.165 -0.174 -0.186 0.134

(0.123) (0.133) (0.065) (0.079) (0.053) (0.391)
Hispanic 0.071 0.018 -0.049 -0.066 -0.037 0.020

(0.099) (0.085) (0.074) (0.099) (0.047) (0.480)
SAT math 0.066 0.456 0.181 -0.070 -0.006 -0.007

(0.081) (0.094) (0.166) (0.129) (0.063) (0.138)
SAT verbal 0.016 -0.005 0.209 0.106 -0.017 0.018

(0.088) (0.139) (0.097) (0.053) (0.057) (0.130)
HS grades 0.098 0.436 0.326 0.038 0.019 0.009

(0.076) (0.092) (0.054) (0.022) (0.014) (0.064)
Parent graduated college 0.215 0.554 0.614 0.102 -0.117 0.101

(0.126) (0.068) (0.070) (0.048) (0.113) (0.059)
Prior Academic Ability 0.115 0.835 0.948 0.063

(0.172) (0.467) (0.256) (0.211)
Expected Log Wage 0.404 0.404

(0.452) (0.452)
Previous HS 1.595 2.794 2.234 1.131 0.887

(0.073) (0.142) (0.096) (0.069) (0.059)
Previous 2-year 2.932 1.770 1.487 0.320 0.305

(0.062) (0.174) (0.115) (0.079) (0.070)
Previous 4-year Sci 1.314 5.808 3.185 0.796 0.580 0.049

(0.218) (0.156) (0.140) (0.105) (0.107) (0.352)
Previous 4-year Non-Sci 0.608 2.671 4.425 0.664 0.614 0.324

(0.157) (0.166) (0.094) (0.078) (0.071) (0.263)
Previous Work PT 0.083 0.225 0.206 1.869 1.443 0.116

(0.087) (0.136) (0.088) (0.057) (0.058) (0.269)
Previous Work FT -0.214 -0.008 0.095 0.960 2.431 0.299

(0.081) (0.133) (0.090) (0.057) (0.051) (0.232)
Previous Grad School 0.259 0.438 3.437

(0.329) (0.230) (0.257)
Graduated 4-year college -0.320 0.567

(0.272) (0.342)
Work PT 0.464 -0.373 -0.160 -0.351

(0.233) (0.296) (0.239) (0.490)
Work FT -0.925 -1.403 -1.395 -3.671

(0.230) (0.236) (0.230) (0.596)
Unobserved type 1 -0.121 0.368 0.472 0.835 0.220 -0.107

(0.173) (0.146) (0.225) (0.081) (0.060) (0.615)
Pr (Unobs. type = 1) 0.5033

(0.028)
Pr (Unobs.major = science) 0.3139
Pr (Unobs.GPA ∈ [0.0, 2.5]) 0.4660
Pr (Unobs.GPA ∈ (2.5, 3.0]) 0.2211
Pr (Unobs.GPA ∈ (3.0, 3.6]) 0.2223
Pr (Unobs.GPA ∈ [3.6, 4.0]) 0.0905
log likelihood -25,836
Person-year obs. 21,343

Notes: Home production is the reference alternative. Bootstrap standard errors are listed below
each coefficient in parentheses. Beliefs on labor market productivity are included in the expected
log wage term.
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Table 10: Model fit: College entry, attrition, re-entry, and graduation
rates by period

College Entry College attrition College re-entry Ever graduated
Period Data Model Data Model Data Model Data Model

1 43.27 46.14 0.00 0.00 0.00 0.00 0.00 0.00
2 8.51 4.50 8.71 11.93 0.00 0.00 0.00 0.00
3 4.03 3.63 8.37 8.65 1.34 1.04 0.00 0.00
4 3.04 3.15 7.17 6.90 2.33 1.59 0.19 2.86
5 1.80 2.79 6.26 5.72 2.57 2.00 7.39 7.41
6 1.48 2.46 6.02 4.85 2.14 2.27 12.65 12.82
7 1.93 2.26 2.93 4.19 2.63 2.34 16.50 17.27
8 2.23 2.02 3.29 3.81 1.92 2.44 18.55 20.15

Notes: Model frequencies are constructed using 100 simulations of the structural model for
each individual included in the estimation.
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Table 11: Model fit: Choice frequencies

Choice alternative Data Frequency (%) Model Frequency (%)

2-year & work FT 2.35 2.13
2-year & work PT 2.43 2.12
2-year only 2.57 2.22
4-year Science & work FT 0.68 0.58
4-year Science & work PT 1.39 1.06
4-year Science only 2.83 2.15
4-year Non-Science & work FT 1.56 1.41
4-year Non-Science & work PT 3.03 2.49
4-year Non-Science only 5.94 4.75
Work PT only 7.50 7.29
Work FT only 46.35 51.45
Home production 22.29 20.44
Grad school & work FT 0.42 0.67
Grad school & work PT 0.23 0.34
Grad school only 0.43 0.89

Note: Model frequencies are constructed using 100 simulations of the structural model for each
individual included in the estimation.
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Table 12: Average posterior abilities after last year of college for different
choice paths

Choice Path Skilled Unskilled Science Non-Science 2-year Share(%)

Continuous enrollment, graduate in science with x years of in-school work experience
x = 0 0.009 0.045 0.252 0.233 0.185 1.3
x ≥ 1 0.014 0.042 0.204 0.191 0.154 4.8

Continuous enrollment, graduate in non-science with x years of in-school work experience
x = 0 -0.002 0.013 0.160 0.179 0.159 2.9
x ≥ 1 0.007 0.021 0.149 0.167 0.150 11.4

Stop out (SO)
SO, graduate in science 0.007 0.026 0.182 0.171 0.140 0.7
SO, graduate in non-science -0.002 -0.001 0.134 0.158 0.149 2.3
SO then DO, start in 2yr -0.015 -0.027 -0.079 -0.083 -0.072 3.8
SO then DO, start in science -0.010 -0.044 -0.261 -0.257 -0.213 0.8
SO then DO, start in non-science -0.010 -0.032 -0.187 -0.202 -0.177 2.2

Drop out (DO) after x years of school
x = 1 -0.005 -0.007 -0.040 -0.044 -0.040 13.8
x = 2 -0.006 -0.014 -0.109 -0.117 -0.105 7.2
x = 3 0.005 -0.006 -0.138 -0.147 -0.128 4.2
x = 4 -0.005 -0.021 -0.181 -0.192 -0.168 2.5
x ≥ 5 -0.006 -0.030 -0.213 -0.218 -0.185 2.4

Never attended college
Never attend college 0.002 0.003 0.001 0.001 0.001 29.6

Notes: Abilities are reported in standard deviation units. This table is constructed using 100 simulations of the
structural model for each individual included in the estimation. For those who never attended college, we use the
posterior in the 10th period.
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Table 13: Average posterior variance after last year of college for different
choice paths

Choice Path Skilled Unskilled Science Non-Science 2-year Share(%)

Continuous enrollment, graduate in science with x years of in-school work experience
x = 0 0.124 0.070 0.042 0.050 0.047 1.3
x ≥ 1 0.086 0.035 0.041 0.047 0.045 4.8

Continuous enrollment, graduate in non-science with x years of in-school work experience
x = 0 0.124 0.070 0.079 0.038 0.034 2.9
x ≥ 1 0.085 0.034 0.073 0.034 0.033 11.4

Stop out (SO)
SO, graduate in science 0.082 0.032 0.050 0.044 0.040 0.7
SO, graduate in non-science 0.081 0.031 0.076 0.036 0.032 2.3
SO then DO, start in 2yr 0.078 0.030 0.159 0.098 0.049 3.8
SO then DO, start in science 0.080 0.031 0.096 0.069 0.045 0.8
SO then DO, start in non-science 0.080 0.031 0.126 0.072 0.043 2.2

Drop out (DO) after x years of school
x = 1 0.101 0.050 0.211 0.146 0.075 13.8
x = 2 0.097 0.047 0.169 0.110 0.058 7.2
x = 3 0.094 0.043 0.136 0.083 0.047 4.2
x = 4 0.090 0.040 0.112 0.065 0.040 2.5
x ≥ 5 0.083 0.034 0.099 0.056 0.035 2.4

Never attended college
Never attend college 0.071 0.021 0.227 0.162 0.083 29.6

Time 0 population variance 0.127 0.074 0.235 0.165 0.085

Notes: This table is constructed using 100 simulations of the structural model for each individual included in the
estimation. For those who never attended college, we use the posterior in the 10th period.
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Table 14: College completion status frequencies: baseline and counterfac-
tual

Basline (%) Counterfactual (%)

Continuous completion (CC), Science 6.11 8.57
Continuous completion (CC), Non-Science 14.29 19.94
Stop out (SO) but graduated Science 0.74 0.91
Stop out (SO) but graduated Non-Science 2.29 2.90
Graduate from four-year college 23.42 32.31
Graduate from four-year college & ever attended two-year college 4.05 4.85
Stop out (SO) then drop out 6.80 5.03
Drop out (DO) 30.02 23.91
Never went to college 29.57 29.77

Notes: Figures constructed using 100 simulations of the structural model for each individual included in the estimation.
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Table 15: Average abilities for different choice paths in full-information
counterfactual scenario

Choice Path Skilled Unskilled Science Non-Science 2-year Share(%)

Continuous enrollment, graduate in science with x years of in-school work experience
x = 0 0.023 0.039 0.604 0.460 0.350 2.3
x ≥ 1 0.200 0.223 0.470 0.333 0.267 6.3

Continuous enrollment, graduate in non-science with x years of in-school work experience
x = 0 0.039 -0.028 0.426 0.529 0.543 4.5
x ≥ 1 0.218 0.181 0.335 0.415 0.452 15.5

Stop out (SO)
SO, graduate in science 0.109 0.136 0.451 0.355 0.285 0.9
SO, graduate in non-science 0.129 0.087 0.289 0.372 0.401 2.9
SO then DO, start in 2yr -0.127 -0.112 -0.212 -0.211 -0.213 3.2
SO then DO, start in science -0.195 -0.118 0.047 -0.013 -0.111 0.5
SO then DO, start in non-science -0.194 -0.118 -0.004 0.036 -0.020 1.4

Drop out (DO) after x years of school
x = 1 -0.092 -0.079 -0.208 -0.223 -0.225 12.2
x = 2 -0.118 -0.088 -0.160 -0.166 -0.182 5.7
x = 3 -0.141 -0.094 -0.074 -0.078 -0.116 3.1
x = 4 -0.168 -0.128 -0.079 -0.072 -0.102 1.6
x ≥ 5 -0.136 -0.100 -0.146 -0.140 -0.159 1.3

Never attended college
Never attend college -0.069 -0.063 -0.259 -0.279 -0.268 29.8

Notes: Abilities are reported in standard deviation units. This table is constructed using 100 simulations of the
structural model for each individual included in the estimation.
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Table 16: Wage decomposition results

(a) College wage premium

Counterfactual with
Baseline Counterfactual baseline experience

Skilled ln(wages) for college grads (Xgγg) 2.770 2.937 2.896
Unskilled ln(wages) for HS grads (Xnγn) 2.523 2.363 2.452
Gap (Xgγg −Xnγn) 0.247 0.574 0.445

(b) Decomposition of characteristics

Baseline Counterfactual

Skilled ln(wages) for HS grads (Xnγg) 2.595 2.547
Difference due to characteristics (Xgγg −Xnγg) 0.176 0.390
Unskilled ln(wages) for college grads (Xgγn) 2.547 2.603
Difference due to characteristics (Xgγn −Xnγn) 0.024 0.240

Notes: In panel (a), “Counterfactual with baseline experience” refers to the counterfactual
expected wage, but holding fixed the work experience levels from the baseline. The results in
all panels of this table assume that all individuals are working full time. Additionally, when
computing the counterfactual wages Xnγg, we condition the characteristics such that the HS
graduates have the same grad school, choice of major, and work experience as those who
went to college. Similarly, when computing the counterfactual wages Xgγn, we condition the
characteristics such that the college graduates have the same college and work experience as
those who did not graduate from college.
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A Additional data details and estimation results

This appendix section details the criteria we use to define science majors, as well as how
we select our estimation subsample. It also presents further estimation results that may
be useful to the reader. Table A.1 lists the majors in each category. Table A.2 outlines
each of the criteria used to construct our estimation subsample. Table A.3 shows cell sizes
that our ability covariance matrix estimates are based on. Table A.4 reports estimates of the
mapping between ASVAB subject tests and SAT scores. Table A.5 presents the wage market
shock equation estimates, while Table A.6 shows estimates of the probability of graduation
equation. Table A.7 lists the posterior variance of ability at the end of the panel, broken out
by demographic characteristics.

Table A.1: Major Definitions

Science (STEM) Majors Non-Science Majors

Agriculture and natural resource sciences All other majors
Biological sciences

Computer/Information science
Engineering
Mathematics

Physical sciences
Nutrition/Dietetics/Food Science
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Table A.2: Sample Selection

Selection criterion Resultant persons Resultant person-years

Full NLSY97 sample 8,984 134,760
Drop females 4,599 68,985
Drop other race 4,559 68,385
Drop missing test scores 3,502 52,530
Drop missing HS grades or Parental education 3,327 49,905
Drop HS Dropouts (or those not receiving GED) 2,959 44,385
Drop observations before HS graduation 2,843 31,573
Drop right-censored missing interview spells 2,841 29,749
Drop any who attend college at a young age or graduate college in 2 or fewer years 2,841 29,097
Drop any who are not in HS at age 15 or under or have other outlying data 2,841 29,061
Drop observations after and including the first instance of missing a wage while working,
or after the first instance of a missing college major or GPAa 2,713 21,343

Final estimation subsample 2,713 21,343
a Our structural estimation procedure incorporates integration of missing GPA and major observations, as discussed in Section 5.
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Table A.3: Cell sizes of ability covariance matrix

Skilled Unskilled Science Non-Science 2-year

Skilled 352
Unskilled 273 2,257
4 year Science 233 555 796
4 year Non-Science 300 731 660 990
2 year 67 767 143 197 843

Note: Numbers reflect the number of individuals that ever participate in
the given combinations of sectors.
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Table A.4: Estimates of SAT scores using ASVAB subject tests as predic-
tors

SAT Math SAT Verbal
Subject test Coeff. Std. Error Coeff. Std. Error

Constant -0.186 (0.054) -0.300 (0.036)
Arithmetic Reasoning 0.404 (0.037) 0.135 (0.052)
Coding Speed 0.055 (0.063) 0.064 (0.036)
Mathematical Knowledge 0.187 (0.043) -0.097 (0.061)
Numerical Operations -0.018 (0.055) -0.069 (0.042)
Paragraph Comprehension -0.142 (0.057) 0.165 (0.054)
Word Knowledge 0.117 (0.037) 0.542 (0.056)

Observations 842 827
R2 0.2928 0.3544

Note: Each of the test scores (both SAT sections and all ASVAB subject tests) is
normalized to be mean zero, unit variance.

Table A.5: Wage market shock forecasting estimates

Parameter Coeff. Std. Error

Autocorrelation (non-graduates) 0.9597 (0.0849)
Autocorrelation (graduates) 0.8793 (0.2036)
SD of shock (non-graduates) 0.0360 (0.0062)
SD of shock (graduates) 0.0334 (0.0096)

Notes: Estimates come from separate AR(1) regressions for each
sector. Bootstrap standard errors in parentheses.

62



Table A.6: Estimates of Probability of Graduation

Coeff. Std. Error
Constant -3.882 (0.239)
Black -0.673 (0.168)
Hispanic -0.671 (0.205)
SAT math 0.087 (0.093)
SAT verbal 0.119 (0.104)
HS grades 0.192 (0.075)
Parent graduated college 0.045 (0.113)
Years in 2-year college 0.474 (0.058)
Years in 4-year college 0.859 (0.052)
Science major -0.303 (0.114)
Prior ability science × Science major 1.249 (0.206)
Prior ability non-sci. × Non-Sci. major 1.004 (0.188)
Currently working part-time 0.146 (0.112)
Currently working full-time -0.197 (0.141)
Unobserved type 1 0.180 (0.107)
Person-year obs. 13,390

Notes: Parameter estimates from a logit predicting probability of gradu-
ating in the following period. Estimated only on students in their junior
year and above. Bootstrap standard errors in parentheses.
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Table A.7: Average posterior variances at end of panel by demographic
characteristics

Characteristic Skilled Unskilled Science Non-Science 2-year

Race
Black 0.070 0.025 0.174 0.118 0.063
Hispanic 0.065 0.021 0.174 0.118 0.063
White 0.058 0.022 0.145 0.097 0.054

Parental college status
Parent did not graduate college 0.065 0.021 0.175 0.119 0.063
Parent graduated college 0.052 0.025 0.112 0.072 0.044

SAT math quartile
1st quartile 0.068 0.022 0.187 0.127 0.066
2nd quartile 0.066 0.022 0.178 0.121 0.064
3rd quartile 0.060 0.022 0.147 0.098 0.055
4th quartile 0.051 0.024 0.112 0.074 0.046

SAT verbal quartile
1st quartile 0.067 0.022 0.181 0.124 0.065
2nd quartile 0.067 0.022 0.178 0.121 0.064
3rd quartile 0.060 0.022 0.147 0.098 0.055
4th quartile 0.053 0.024 0.120 0.078 0.047

HS GPA quartile
1st quartile 0.068 0.022 0.188 0.128 0.067
2nd quartile 0.061 0.022 0.148 0.098 0.055
3rd quartile 0.055 0.023 0.121 0.079 0.048
4th quartile 0.043 0.025 0.083 0.055 0.038

Time 0 population variance 0.127 0.074 0.235 0.165 0.085

Notes: This table is constructed using 100 simulations of the structural model for each individual
included in the estimation.
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B Integration of missing outcomes

This appendix section details our treatment of missing majors and GPA observations. In the
estimation, we treat the first missing major or GPA observation as a permanent unobserved
type, which we integrate out using a modified version of the EM algorithm detailed in Section
5.4.

The notation used throughout this section mirrors that which is used in Subsection 5.5.
Additionally, we introduce two time-invariant indices: (i) m ∈ {science, non-science}, which
indexes missing major; and (ii) g ∈ {1, . . . 4}, which indexes missing GPA quartile.

B.1 E-step

At the E-step of our algorithm, we need to take appropriate likelihood contributions for
each individual’s observations. The key idea is that the entire string of future likelihood
contributions depends on the missing choice that is being integrating over. To the extent
that the learning likelihood is non-separable across time (because of person-specific ability
that is being learned about), we treat the integration accordingly. Below, we list the joint
probabilities of i being of a particular unobserved type and unobserved major or GPA quartile
(if either or both of these outcomes are missing).

Pr(r|i) = qir = πrL
∗
idrLibrLiyr∑R

r′=1 πr′L∗idr′Libr′Liyr′
(B.1)

Pr(r,m|i) = qirm = πrL
∗
idrLibrLiyr (Gm, wu, ws)∑R

r′=1 πr′L∗idr′Libr′Liyr′ (Gm, wu, ws)
(B.2)

Pr(r, g|i) = qirg =
πr
∫
g′∈g L

∗
idrLibrLiyr (Gg, wu, ws) dg′∑R

r′=1 πr′
∫
g′∈g L

∗
idr′Libr′Liyr (Gg, wu, ws) dg′

(B.3)

Pr(r,m, g|i) = qirmg =
πr
∫
g′∈g L

∗
idrLibrLiyr (Gmg, wu, ws) dg′∑R

r′=1 πr′
∫
g′∈g L

∗
idr′Libr′Liyr (Gmg, wu, ws) dg′

(B.4)

(B.5)

where (B.1) holds for those who have no missing data and is the same as (31), (B.2) holds
for those who only have a missing major, (B.3) holds for those who only have a missing
GPA, and (B.4) holds for those who have both outcomes missing. Note that, for (B.3) and
(B.4), the integral in the numerator is over quartile g of the GPA distribution, while in the
denominator we integrate over the full support of the GPA distribution.

We then obtain the population unobserved type probabilities πr by marginalizing the
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above joint probabilities by a simple summation:

πr = 1
N

∑
i

∑
g

∑
m

qirmg (B.6)

where qirmg = 0 for the elements that correspond to non-missing outcomes.

B.2 M-step

At the M-step of our algorithm, we assign each individual a corresponding weight depending
on his missing outcome status.

• all who never have a missing major or missing GPA: weight by qir

• those who have a missing major but no missing GPA: weight by qirm for all observations
of the individual

• those who have a missing GPA but no missing major: weight by qirg for all observations
of the individual

• those who have both a missing major and missing GPA: weight by qirmg for all obser-
vations of the individual

B.2.1 Choice M-step

For the choice M-step, we construct L∗idr to estimate a weighted multinomial logit, using qirmg,
qirm, qirg, or qir as the weights—depending on what is observed and what is unobserved. This
multinomial logit is estimated on the entire population.

B.2.2 Learning M-step

For the learning M-step, we perform weighted M-estimation to obtain estimates of the γ1j’s
and γ1l’s, where again we use a different weight depending on the missingness of the key
outcomes.

To the extent that missing major and grades affect our estimates of the population
variance of ability (∆) and idiosyncratic noise of the signals (σ2), we also adjust the formulas
accordingly by weighting with the appropriate weights as described above.
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B.3 Second stage estimation

The estimation steps described above pertain only to the first stage of our model, in which
we recover the parameters of the learning process while accounting for selection through the
permanent unobserved heterogeneity types.

In the second stage of our model, we take the first stage parameters as given and estimate
the CCPs and the structural flow utility parameters. In this second stage, we continue to use
the weights described above for each individual, depending on his missing outcome status.
Thus, the second stage estimation is closely similar to the choice M-step of the first-stage
estimation in that we estimate a weighted multinomial logit to recover the CCPs and the
structural flow utility parameters.
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C Parametric bootstrap procedure

This appendix section details our parametric bootstrap procedure used to obtain standard
errors for the model estimates. We compute the standard errors based on B = 150 bootstrap
replications. The steps to create each bootstrap replication are similar to the steps used to
simulate the data when computing the fit of our model in Subsection 6.6. Namely:

1. Sample with replacement N individuals from the estimation subsample of the data,
and collect the vector of personal background covariates associated with this sample
of individuals.

2. For each individual, draw the ability vector from the estimated population distribu-
tion N

(
0, ∆̂

)
. Similarly, draw an unobserved type r ∈ {1, 2} from the estimated

population distribution of types, which is a Bernoulli distribution with parameter π̂
(i.e. probability of being unobserved type 1).

3. For each individual and each time period, generate the choice dummies using the
predicted reduced-form choice probabilities described in Subsection 5.5.

4. Draw the outcomes (wage and/or grade) corresponding to the choice that was drawn in
the previous step, using the parametric specifications of the grade and wage processes
(see Subsections 3.2-3.3).

5. If at risk of graduating, draw the graduation status using the predicted graduation
probability described in Subsection 3.4.3.

6. Compute the implied posterior ability beliefs given the outcomes and choices generated
previously as discussed in Subsection 3.4.1, and update the state space accordingly.

7. Finally, for each bootstrap sample generated from the previous steps, estimate the
model as discussed in Subsection 5.5.

8. Repeat the procedure B = 150 times.

Once we have obtained the vector of parameter estimates for all bootstrap replications
θ̂b, b = 1, . . . , B, we estimate the variance of θ̂ as follows:

V̂ ar
(
θ̂
)

= 1
B − 1

B∑
b=1

(
θ̂b − θ̂

)(
θ̂b − θ̂

)′
(C.7)
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where θ̂ = 1
B

∑B
b=1 θ̂b.

Note that, because we simulate the model to form the parametric bootstrap replicates,
we have no missing data and hence there is no need to employ the algorithm detailed in the
previous appendix section. For each bootstrap replicate, we simply weight each individual’s
choice, graduation, and outcome likelihoods by qir, which is the probability that i is of
unobserved type r.
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