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Abstract

This paper studies the e�ects of vertical integration on innovation in the chipset and smartphone in-

dustries. I formulate and estimate a dynamic structural model of a dominant upstream chipset maker

and downstream smartphone handset makers. The two sides make dynamic investment decisions and

negotiate chipset prices via Nash bargaining. Using the estimates, I simulate market outcomes should

the upstream �rm merge with a downstream �rm. I �nd that the vertical merger would increase in-

novation rates and social welfare, driven primarily by the investment coordination of the two merged

�rms.

1 Introduction

In vertical industries, upstream and downstream innovations are often complementary. Upstream �rms

upgrade the core technology essential to performance enhancement, and downstream �rms combine the

technology with innovative designs in new consumer products. Examples of complementary innovations

include traction batteries (upstream) and electric vehicles (downstream), CPU’s (upstream) and personal

computers (downstream) and chipsets (upstream) and smartphones (downstream). This paper studies how

vertical integration a�ects innovation, pricing and welfare.

A large body of theoretical literature (e.g., Perry (1989); Holmström and Roberts (1998); Tirole (1999);

Riordan (2008); Aghion and Holden (2011)) has examined the investment and price e�ects of vertical inte-

gration. Vertical integration may be pro-investment by aligning the investment incentives of the merged
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�rms, but the impact on other downstream competitors depends on two additional factors. First, faster

upstream innovation lifts the technology ceiling, allowing non-integrated downstream �rms to develop

higher quality products. Second, faster innovation of the integrated downstream �rm reduces both the

pre-innovation and post-innovation pro�ts of its competitors. Because the marginal value of innovation is

the di�erence between these two pro�ts, whether these downstream �rms would innovate faster is an em-

pirical question. The second e�ect is similar to the economics behind how competition a�ects innovation

(Aghion et al. (2005)).

Vertical integration also produces the well-known e�ciency trade-o� between two pricing forces: re-

duced double marginalization allows the integrated downstream �rm to charge consumers lower prices,

but the integrated upstream �rm has an incentive to charge higher prices to the downstream rivals (raising

rivals’ cost or the foreclosure e�ect). The two e�ects are likely to increase the pro�ts of the merged �rms

and reduce the pro�ts of the downstream rivals, both before and after innovation. Similar to the discussion

above, how the two pricing forces a�ect innovation is also an empirical question.

Understanding the relative magnitudes and the interaction of the investment and price e�ects is crucial

for policy and regulation. For example, the potential trade-o� between one �rm’s innovation and industry-

wide innovation was a key issue in the European antitrust case against Microsoft in 2004. Microsoft owned

the popular proprietary operating system used on computer servers and foreclosed other server software

companies. Microsoft argued in its defense that the foreclosure would increase its own innovation. The

European Commission, however, believed that if Microsoft were to provide downstream rivals (server

software producers) with reasonable access to its upstream technology (operating system), “the positive

impact on the level of innovation in the whole industry outweighed the negative impact of the dominant

undertaking’s incentives to innovate.”1 The court ruled against Microsoft. In e�ect, the authorities believed

that preventing foreclosure would increase the innovation of other downstream �rms, and the resulting

bene�ts would be greater than the potential reduction in the integrated �rm’s innovation.

The chipset and smartphone industries provide an interesting setting to study complementary inno-

vations. The chipset2 includes the CPU of a smartphone, but may also combine the functions of the GPU,

modem and other components (Yang et al. (2014)). Chipset quality determines a smartphone’s key met-

rics, such as the computing power (CPU), network support (modem), graphic rendering (GPU) and energy

e�ciency. The innovations of chipsets center on improving these metrics without signi�cantly increasing

manufacturing costs (Yeap (2013)). New chipsets allow handset makers to improve other hardware. For
1Case T-201/04, Microsoft Corp. v. Commission, 2007 E.C.R. II-3825 (Ct. First Instance).
2Sometime a smartphone modem is also called a communication chipset. Throughout this paper a chipset always means the

application processor chipset, or system-on-chip (SoC).
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example, to increase the screen size or display resolution, handset makers need to �nd additional com-

putational power to render high de�nition graphics without quickly draining the battery or overheating

the phone, which is only possible with more advanced chipsets (Chen et al. (2013), Phone Arena (2015)).

Furthermore, chipset innovation may directly add new features to a phone. For example, Qualcomm’s 805

chipsets signi�cantly reduced the time a phone needs to be fully charged (Savov (2014)).

I use a dynamic game of investment to model the innovations of the chipset and handset makers.

The main novelty is that both upstream and downstream �rms are dynamic. The upstream industry con-

sists of a dominant �rm (“Qualcomm”) and a non-strategic fringe, and the downstream �rms are a �nite

number of oligopolistically competitive handset makers. Qualcomm invests to increase the quality of its

chipsets. Downstream handset makers invest to increase the quality of their handsets, but some hand-

set makers are constrained by Qualcomm and cannot increase their handset qualities above Qualcomm’s

chipset quality. Handset makers also choose the proportion of their handsets that use Qualcomm chipsets.

A handset maker’s sunk cost of innovation depends on the amount of its quality increase and the pro-

portion of its handsets using Qualcomm chipsets. These decisions determine the set of products in every

period. Conditional on the set of products, Qualcomm and handset makers �rst negotiate chipset prices

via Nash bargaining. Handset makers then take the chipset prices as given and set wholesale prices. The

subgame perfect equilibrium of the overall static pricing game determines the period pro�ts. When de-

ciding whether to innovate, upstream and downstream �rms weigh the gains in the present discounted

values of future pro�ts due to innovation against the sunk costs, and the dynamic innovation decisions

form a Perfect Bayesian Equilibrium (PBE).

I estimate the model using data from the US smartphone market from 2009 to 2013. The estimation

procedure has three steps. First, price and quantity data of handsets allow me to estimate a static random

coe�cient logit model of consumer demand for smartphones. I refer to a linear combination of product

characteristics, where the weights are given by the estimated demand coe�cients, as the quality index

of the products, and I use this index to construct the quality frontiers of Qualcomm and handset makers.

Next, I recover chipset prices and other marginal costs of smartphones using equilibrium pricing condi-

tions and data on chipset markups. The �rst two steps do not involve estimating the dynamic model. The

estimates and the pricing equilibrium assumption imply the period pro�t functions of the upstream and

downstream �rms. In the last step, I use the estimated period pro�t functions and the evolution of quality

frontiers of Qualcomm and handset makers to estimate the innovation cost function. To keep the com-

putation tractable, I estimate a dynamic game among the upstream Qualcomm and three handset makers:

Apple, Samsung and HTC. Consistent with data, I assume that Apple only uses its own chipsets, whereas
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HTC only uses Qualcomm chipsets. Samsung can adjust the proportion of its handsets using Qualcomm

chipsets. Samsung and HTC are constrained by Qualcomm chipset quality, while Apple is not (it can in-

novate to a quality level not yet reached by Qualcomm). I use a Simulated Minimum Distance estimator to

estimate the model. To ensure the existence and uniqueness of the dynamic equilibrium, I make two as-

sumptions: (1) the dynamic game has a �nite horizon, and (2) �rms make investment decisions sequentially

within every period. I later perform robustness checks on these assumptions.

I examine the counterfactual should Qualcomm merge with HTC, a key handset maker that primarily

uses Qualcomm chipsets. The vertical integration allows Qualcomm and HTC to jointly make innovation

decisions. This treatment follows the view that vertical integration facilitates the transfer of knowledge

input between the merged �rms (Atalay, Hortaçsu and Syverson (2014); Natividad (2014)). In the main

speci�cation, I �nd that the upstream Qualcomm’s innovation rate, de�ned as the average increase of

quality per period, increases 13% to 35% (95% con�dence interval), and the innovation rate of the integrated

HTC increases 14% to 20%. Moreover, Samsung’s innovation rate increases 9% to 22%. Apple’s innovation

rate increases less than 3%. Consumer surplus increases 4% to 8%. I decompose the e�ects of vertical

integration into the investment e�ects and price e�ects. The investment e�ects dominate the price e�ects.

In addition, although the raising rivals’ cost e�ect increases Samsung’s retail prices, the elimination of

double marginalization lowers HTC prices, and the overall price e�ects increase the consumer surplus. The

�ndings thus suggest that vertical integration policies should fully take into account a vertical merger’s

dynamic implications and in particular the investment e�ects, which may be much larger than the price

e�ects. The qualitative patterns are robust across a number of alternative speci�cations.

The model is grounded in the theory of incomplete contract (Grossman and Hart (1986); Hart and

Moore (1990)). Speci�cally, I assume that Qualcomm and handset makers neither contract on the outcomes

of innovation ex ante nor cooperate tacitly. A complete contract or tacit cooperation between Qualcomm

and HTC could e�ectively achieve vertical integration, but such an arrangement may be unlikely in this

context. First, this industry is new, and the chipset technologies are complex and rapidly improving. Firms

face many unforeseen contingencies. Month-to-month adjustment of smartphone product lines (Fan and

Yang (2016)) also contributes to this di�culty. Non-HTC handset makers that use Qualcomm chipsets

may also be concerned about the safety of their proprietary designs if Qualcomm and HTC have a con-

tract that coordinates their innovative activities (Allain et al. (2011)). Furthermore, the ability to design

in-house chipsets seems to be a desirable goal for many handset makers. Technology commentators extol

how Apple’s custom-designed chipsets deliver superior performance compared with other handsets that

use general-purpose chipsets from Qualcomm (Colon (2013); Bradshaw (2015); Smith (2015)). Recogniz-
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ing the potential performance advantage of custom-made chipsets, handset makers either maintain (like

Samsung) or are trying to start their own chipset divisions (LG, Sony and Chinese handset makers such as

Xiaomi and Huawei), to varying degrees of success (Sohail (2015); Low (2017)). Formally identifying the

degree of cooperation requires excluded demand shifters not available in my data. I instead use accounting

investment and cost data in �nancial reports to provide additional evidence that the assumption of incom-

plete contract is appropriate. In the absence of both demand shifters and cost data, the paper provides an

approach to quantify the upper bound of the bene�ts of vertical integration.

Related Literature and Contributions Lafontaine and Slade (2007) surveys the empirical literature

on vertical integration. Examples of empirical work that examines the competitive e�ects of vertical inte-

gration using reduced form analyses include Waterman and Weiss (1996), Chipty (2001), Hastings (2004),

Hastings and Gilbert (2005), Chen and Waterman (2007) and Hortacsu and Syverson (2007). Researchers

have also used static structural models to understand the e�ects of vertical integration (e.g., Brenkers and

Verboven (2006); Murry (2015); Asker (2015); Crawford, Lee, Whinston and Yurukoglu (2015)). The model

in this paper endogenizes both forward-looking dynamic investment decisions as well as the pricing of

intermediate goods. I also contribute to the literature that analyzes innovation with dynamic oligopoly

models (Ericson and Pakes (1995), Goettler and Gordon (2011), Borkovsky (2012), Igami (2015) and others)

by modeling the complementarity of innovations between the upstream and downstream �rms. The static

model of product competition is built on the empirical bilateral bargaining framework developed in Horn

and Wolinsky (1988). This type of model has been widely used to analyze the pricing of services and phys-

ical goods in vertical industries. Examples include Draganska, Klapper and Villas-Boas (2010), Crawford

and Yurukoglu (2012), Grennan (2013), Gowrisankaran, Nevo and Town (2014), Crawford et al. (2015) and

Ho and Lee (2016). Like many papers in this literature, I assume that �rms in my model use linear price

contracts. I later discuss the pros and cons of this modeling choice in more details. Another strand of the

empirical structural literature on vertical relations studies the pricing and welfare e�ects of alternative

upstream-downstream relationships (e.g., Villas-Boas (2007); Mortimer (2008); Bonnet and Dubois (2010)).

Compared with the existing literature, the key modeling innovation in this paper is the speci�cation

of dynamic upstream and downstream �rms in a vertical industry. In addition, I also highlight a data

di�culty that Qualcomm’s chipset quality is not directly observed. Data only provide quality measures of

observed handsets, whereas the relevant measure for Qualcomm’s chipset quality is the maximum quality

of a phone that a Qualcomm chipset would enable a handset maker to design. I overcome this di�culty

by imposing bounds on Qualcomm qualities and using a Simulated Minimum Distance estimator with an
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inequality constraint. I sample parameters from the estimated con�dence set to conduct counterfactual

simulations, and the predictions are reasonably precise.

Closely related to this paper, Crawford, Lee, Whinston and Yurukoglu (2015) uses a multi-stage static

model to study how vertical integration a�ects program carriage choices, prices and ultimately welfare

in the US television market. I focus on the dynamic process of innovation, where �rms have rational ex-

pectations about the future evolution of the industry. In particular, the states and actions of the upstream

�rm (Qualcomm’s quality level and its investment to increase the quality) do not directly a�ect its own or

downstream �rms’ current period pro�ts, and Qualcomm is solely motivated to innovate by the expecta-

tion that downstream �rms will innovate and adopt Qualcomm chipsets in the future. Without modeling

the forward-looking behavior, explaining why Qualcomm innovates would be hard. In one robustness

analysis in Appendix D, I weaken the dynamic incentives by setting the discount rate at 0.5 and obtain

the implausible result that increasing the Qualcomm quality level must decrease the innovation cost to

rationalize the data.

Road Map The rest of the paper is organized as follows. I �rst describe the market structure and data in

Section 2. Next, I detail the dynamic model of innovation in Section 3 and the static model of bargaining and

pricing in Section 4. Section 5 discusses the estimation of the model. Section 6 reports the counterfactual

experiments. Section 7 considers two main robustness checks, and nine additional robustness analyses are

available in Appendix D.

2 Industry and Data

Qualcomm is the most important upstream chipset producer. Qualcomm sells most of its application pro-

cessor chipsets to non-Apple handset makers, because Apple is vertically integrated and exclusively uses

its own chipsets. In 2009, 53% of non-Apple smartphones sold in the US carried a Qualcomm chipset, and

the �gure increased to 72% in the �rst quarter of 2013. The price of a chipset is usually between $16 and

$40 (Woyke (2014)). According to reports published by iHS, a tear-down company that tracks component

prices, the chipset accounts for 10% to 20% of the material cost of a smartphone.3

Qualcomm innovation corresponds with the releases of a new generation of chipsets. A majority of

chipsets in the generation Snapdragon S1 were released in October 2008. Qualcomm chipset generations

Snapdragon S2, S3 and S4 were released in April 2010, October 2010 and January 2012. Qualcomm Snap-
3iHS publishes the material cost estimates of select handsets through its press releases. I have collected some of the published

data, which are available upon request.
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dragon S4 is the last generation observed in the data. Products in a later generation feature signi�cant

gains in performance (more cores and higher frequency) and energy e�ciency.

Qualcomm also competes with several other chipset producers. Qualcomm’s main competitors include

Samsung’s chipset division (South Korea), MediaTek (Taiwan), Texas Instruments (US) and NVIDIA (US).

Table 1 reports the origins of chipsets used in major non-Apple handset makers. Compared with other

chipset producers, Qualcomm is able to combine more functionalities in its chipsets, and Qualcomm claims

that (for example, in Cheng (2012)) this design could enhance performance and extend battery life.

I divide all chipsets into �ve generations, with the chipsets released before Qualcomm S1 as the 0th

generation, and the rest into four generations consistent with Qualcomm chipset generations. I classify

non-Qualcomm chipsets based on the number of cores on the chipset, the clock speed of cores and a

variety of benchmark scores. Taking January 2009 as month 1, I document when Qualcomm announced the

availability of a generation’s chipsets and when a handset maker released a phone using that generation’s

chipset (not necessarily Qualcomm’s) in Table 2. Apple relies on its own proprietary chipsets, and a new

generation of chipsets is used in a new generation of iPhones. Other handset makers also use the latest

chipsets in their new �agship phones, but they rely on Qualcomm at least partially to supply new chipsets

for their phones. For example, while Samsung used its own chipsets (Exynos) for Galaxy S2 sold in the US

market, Samsung still used Qualcomm chipsets for the same phone sold in China. Although the release

timings of these alternative chipsets are not available, Qualcomm usually releases its chipsets more than

�ve months before the release of non-Apple phones that use the same generation’s chipsets.

New and better smartphones arrive on the market around the year. Several key dimensions of smart-

phone qualities, in addition to the generations of chipsets, include the size of the screen (measured by the

diagonal length in inches), the resolution of the camera (megapixel) and the maximum talk time (hours)

when the phone is fully charged. In Figure 1, I plot the maximum screen size, camera resolution and talk

time of all products by Apple, Samsung and HTC in every month. All three measures increase over time.

Smartphone quantity and price data are from ITG Market Research, and the information on a phone’s

chipset and other characteristics is scraped from technology websites and press releases. The data set cov-

ers smartphones sold in the US through the four national carriers from January 2009 to March 2013. The

observation is at the handset-carrier-month level. In Table 3, I document the retail revenues and quantity

sold by the major handset makers for all generations and the more advanced generations. Although Black-

Berry sold many low-end handsets in the �rst year of the data, its sales decreased sharply in later years.

Apple, Samsung and HTC account for 70% of sales (quantity) in the sample, and the top �ve producers in

Table 3 account for 95%. The US market accounts for about 15% of the global shipment in Q4 2011 (Gart-
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ner (2012)), but is likely more important to the high end handset makers. For example, CSIMarket (2014)

reports that the US market accounted for 37% of Apple’s revenue in 2014, and this proportion is relatively

constant throughout the sample period. In this paper, I assume that the US market accounts for a constant

proportion of the world market. Although I do not observe chipset prices directly, I collect the accounting

gross margin data of Qualcomm from its quarterly �nancial reports. The gross margin is de�ned as

chipset sales− cost of chipsets
chipset sales , (1)

where the cost of chipsets includes manufacturing, handling, inventory and other costs. Investment and

�xed costs (in the accounting sense) are not included. I use the data as the sales-weighted average markup

of Qualcomm chipsets. The average markup data allow me to impute product-speci�c chipset prices,

detailed in Section 5. The average gross margin over 17 quarters from January 2009 to March 2013 is 46%,

with a maximum of 60% and a minimum of 33%. Treating the gross margin data as markup allows me to

estimate the bargaining model, but there are two potential issues. First, these gross margin data may not

re�ect the true economic markup. In addition, Qualcomm also sells wi-� chips and standalone modems, and

�nancial reports do not itemize the gross margins by the types of chipsets. I therefore conduct robustness

checks by perturbing the gross margin data in Appendix D. One additional complication is that some of

these standalone modems are sold to Apple and other handset makers. I discuss how this issue may a�ect

my analysis in Section 7.

Qualcomm owns a large number of patents, and collects royalties as a percentage of a phone’s whole-

sale prices. Because virtually every phone in the world uses Qualcomm’s patents, every phone maker pays

such fees to Qualcomm, even if the phone maker does not use Qualcomm chipsets. Qualcomm agreed to

“Fair, Reasonable and Non-discriminatory” royalty rates when Qualcomm patents were adopted as indus-

try standards and widely used, but di�erences in fee levels exist (Geradin et al. (2012)). These fees do not

enter the gross margin calculation above. I check whether results are robust to the presence of royalties

in Section 7.

3 A Dynamic Model of Upstream and Downstream Innovation

Time is discrete t = 1, 2, . . . , T . The upstream industry consists of Qualcomm and a non-strategic fringe.

The downstream industry consists of a �nite and �xed set of �rmsN . I will �rst discuss the state variables,

and their roles in the model will be clear later. The Qualcomm state variable is the quality frontier qQ. The

state variables of a handset maker n include the proportion of n’s handsets using Qualcomm and n’s
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quality frontier, sn = {ηn, qn}, ηn ∈ (0, 1). The industry state consists of s =
{
t, qQ, {ηn, qn}n∈N

}
.

In the empirical game estimated later, η’s of Apple and HTC are �xed, and Apple is not constrained by

Qualcomm innovation. To simplify the presentation of the model, I assume in this section that all handset

makers can adjust their proportions of handsets using Qualcomm, and are constrained by Qualcomm’s

quality frontier.

In every period, Qualcomm chooses the quality increment of its frontier, aQ ∈ {0, ∆, 2∆ . . . ,K1∆},

and the next period Qualcomm state transitions to qQt+1 = qQt + aQ. The action in the data that corre-

sponds with Qualcomm innovation is its release of new chipsets. A handset maker also chooses quality

increments anq ∈ {0, δ, 2δ, . . . ,K2δ}. If n does not innovate (anq = 0), the proportion ηnt stays the same.

If n innovates (anq > 0), n also chooses its proportion of handsets using Qualcomm from a discrete set,

anη ∈ {η1, η2, . . . , ηK3}, at the new quality level qnt+1 = qnt + anq . n’s state transition can be summarized

as follows: when n takes action an =
{
anq , a

n
η

}
, the next period state becomes


qnt+1 = qnt+1 + anq , η

n
t+1 = anη , if anq > 0

qnt+1 = qnt , η
n
t+1 = ηnt , if anq = 0.

The action in the data corresponding with handset maker n’s innovation is the launch of a handset whose

quality is higher than any of n’s previous handsets.

The game starts in t = 1. In every period, �rms �rst receive period pro�ts πt (st), and make dynamic

decisions sequentially. Qualcomm period pro�t πQt and handset maker period pro�t πnt are given by a

pricing game to be detailed in Section 4. Qualcomm moves �rst, and handset makers move in the sequence

n1, . . . nN :

• Qualcomm draws i.i.d. private cost shock εQt , takes action aQt and pays a sunk cost of CQ
(
aQt , ε

Q
t

)
.

• Handset maker n1 observes Qualcomm’s decision, draws i.i.d. private cost shock εn1
t , takes action

an1
t and pays Cn1 (an1

t , ε
n1
t )

...

• Handset maker nN observes all previous actions, draws i.i.d. private cost shocks εnNt , takes action

anNt and pays CnN (anNt , εnNt ).

The dynamic optimization problem of Qualcomm in period t solves

max
aQ

(
−CQ

(
aQ, εQt

)
+ βE

(
V Q
t+1 (st+1) |st

))
,
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where the expectation is taken over the action probabilities of �rms that have not moved in period t. The

value function of Qualcomm satis�es the Bellman equation

V Q
t (st) = πQ (st) +

∫
εQt

{
−CQ

(
aQ?, εQt

)
+ βE

(
V Q
t+1 (st+1) |st

)}
, (2)

where the strategy aQ? is a function of its own cost shock and the current state. Similarly, a handset maker

n solves

max
an

(
−Cn (an, εnt ) + βE

(
V n
t+1 (st+1)

∣∣aN (n), a
n, st

))
.

aN (n) denotes the actions of �rms that have moved before n. A key component of the model is the con-

straint that qnt + anq ≤ qQt+1. I use this constraint to capture the complementarity of the upstream and

downstream innovations. The Bellman equation of handset maker n is identical to (2), with the super-

script Q replaced by n. Also note that n’s strategy is a function of its shocks and the actions of �rms that

have moved. Players in this game have private information and move sequentially, and I solve for the PBE.

The last period value function is speci�ed as VT =
π (sT )

1− β
.

The innovation cost is speci�ed as

CQ
(
aQ, εQt

)
=


0, aQ = 0

exp
(
γQ0 + γQ1 a

Q + σQεQt

)
aQ > 0

(3)

Cn (an, εnt ) =


0, anq = 0

exp
(
γn0 + γn1 a

n
q − γn2 anη + σnεqt

)
anq > 0.

(4)

The cost shocks ε follow the standard normal distribution. I allow the innovation cost of a handset maker

to depend on the increment of quality frontier and the choice of proportions of handsets using Qualcomm

chipsets.

Although the assumptions of a �nite horizon and sequential moves are quite strong, they provide three

crucial bene�ts: (1) the dynamic equilibrium is unique (by backward induction), (2) solving the dynamic

game does not involve value function iterations and su�ers no convergence problem (Egesdal, Lai and

Su (2015)), (3) the �nite horizon assumption also helps to capture the non-stationarity in data. The two

assumptions have also been used in Igami (2015) for similar purposes. I explore the robustness of both

assumptions in Appendix D.

In this model, I assume that dynamic innovation decisions are not contractible. Therefore HTC cannot
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enter into a contract with Qualcomm about future Qualcomm qualities before Qualcomm’s innovation is

realized. Such contracts would e�ectively achieve vertical integration. Grossman and Hart (1986), Hart

and Moore (1990) and others have shown that without investment coordination, two vertically separated

monopolists would invest below the joint pro�t maximizing level because neither �rm fully internalizes

the bene�t of investment for the other �rm. Central to the concept of “incompleteness” in the model

above is the di�culty of communicating a �rm’s innovation decisions to others before the realization of the

innovation. While the technology capability of a �rm is abstracted into a scalar q in the model, coordinating

innovations in the real world potentially would require the chipset maker and handset maker to agree on

the joint development of many dimensions of the technology. As discussed in the Introduction, identifying

and agreeing to the exact nature of innovation may be hard enough in the face of uncertain future demand

and product designs. The legal costs of writing down contracts that enumerate all aspects of cooperative

development could be high. Enforcement may be hard, because in the case of contract violations, �rms

may need to disclose proprietary designs in a legal proceeding. Given these considerations, I assume that

�rms cannot contract on future innovation.

On the other hand, the ex post enforcement problems may be overcome in an in�nite horizon dynamic

game, where a PBE may exist such that �rms condition strategies on past actions and Qualcomm may be

able to credibly delay new chipset releases and “punish” HTC, if HTC does not pay Qualcomm a transfer

or commit to Qualcomm chipsets after a Qualcomm innovation. The assumptions of a �nite horizon and

sequential moves in my model have the e�ect of a Markov re�nement and eliminate the cooperative equi-

libria. In an in�nite horizon game, the folk theorem suggests that upstream and downstream �rms can

play cooperatively when the discount factor β is su�ciently close to 1. A body of theoretical literature

has examined such cooperative strategies and how the holdup problems manifest di�erently in a dynamic

context (e.g., Halonen (2002); Baker et al. (2002); Che and Sákovics (2004); Che and Sákovics (2007)).

One way to capture coordination in the structural model above is to specify the period pro�t of HTC

as ςπQ + πHTC , where ς ∈ (0, 1) is a reduced form cooperation parameter to be estimated from data.

Identifying conduct parameters such as ς requires excluded demand shifters (Bresnahan (1982); Berry and

Haile (2014)) or data on innovation costs. In Section 5.2.2, I discuss how investment data can provide

information on ς .
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4 Bargaining Model

This section describes a static model of bargaining that determines the pro�t function π (st) used as input

to the dynamic model. I assume that prices are set in the following order:

1. Qualcomm and handset makers negotiate chipset prices via Nash bargaining.

2. Handset makers take the chipset prices and other components of the marginal cost as given and set

wholesale prices.

I start with the demand function.

4.1 Consumer Demand

I model the consumer demand for smartphones using a random coe�cient logit model (Berry, Levinsohn

and Pakes (1995)). Index consumers by i and handsets by j. The utility of consumer i purchasing handset

j in period t is

uijt = β0iqj − αpjt + θn(j) + κc(j)t + ξjt + εicjt

= β̄0qj − αpjt + θn(j) + κc(j)t + ξjt︸ ︷︷ ︸
µjt

+σνiqj + εijt (5)

where qj = xjβ is the linear quality index of handset characteristics, β0i is a normally distributed scalar

random coe�cient that captures the heterogeneous tastes for quality: β0i = β0 +σνi, νi ∼ N (0, 1), pjt is

the retail price of the smartphone, θn is the handset maker brand �xed e�ect, κct is the carrier-year �xed

e�ect plus a quarter �xed e�ect that captures carrier service heterogeneity and the values of time-varying

outside options (this term is referred to as carrier-time �xed e�ects in the rest of the paper), ξjt is the

unobserved product quality, and εijt is an i.i.d. type I extreme value shock. Smartphone characteristics

in xj include the screen size, chipset generation �xed e�ects, camera resolution, weight and battery talk

time (the longest time that a single battery charge will last when a user constantly talks on the phone). µjt
denotes the mean consumer utility, and the utility of no purchase is normalized to zero plus an i.i.d type I

extreme value shock εi∅t. The demand for j is given by

Djt = D0

∫
exp (µjt + σνiqj)

1 +
∑

j′∈Jt exp
(
µj′t + σνiqj′

)dFνi ,
where Jt is the set of all products available in period t, D0 is the market size and Fνi is the CDF of νi. I

next discuss the pricing of smartphones and chipsets.
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4.2 Smartphones Prices

Denote the set of handset maker n’s product as Jnt. Given the chipset prices ψjt and other parts of the

marginal cost ωjt, handset maker n sets wholesale prices wjt,∀j ∈ Jnt, to maximize its pro�t

∑
j∈Jnt

(wjt − ψjt − ωjt)Djt.

The non-chipset marginal cost of a smartphone is speci�ed as a function of observed characteristics plus

a shock:

ωjt ≡ λq exp (qjt) + λn(j) + λQ(j) + ζc(j)t︸ ︷︷ ︸
quality, handset maker FE

use Qualcomm?

carrier-time FE

+ κjt︸︷︷︸
shock

. (6)

To simplify computation, I assume that the carrier subsidy on product j is speci�ed as

rjt = λ̃q exp (qjt) + λ̃n(j) + λ̃Q(j) + λ̃c(j)t + κ̃jt,

such that the retail price satis�es pj = wjt − rjt. Handset maker n’s pro�t maximization problem can be

re-written as

max
pjt,j∈Jnt

∑
j∈Jnt

(pjt − ψjt − (ωjt − rjt))Djt, (7)

and handset makers e�ectively choose retail prices. To save on notation, I re-de�ne ωjt as ωjt − rjt, and

correspondingly, the coe�cients in the non-chipset component λ as λ − λ̃ and the shock κ as κ − κ̃.

Equilibrium retail prices satisfy the following �rst order condition:

Djt +
∑
j′∈Jnt

(
pj′t − ψj′t − ωj′t

) ∂Dj′t

∂pjt
= 0,∀j′ ∈ Jnt.

In vector notation similar to Eizenberg (2014), the vector of retail prices p satis�es

p− ψ − ω = (L ∗∆)−1D, (8)

where L is a |Jt| × |Jt| product origin matrix (Ljj′ = 1 if both j and j′ belong to Jnt and 0 otherwise),

∆jj′ is the derivative of the demand for j′ with respect to the price of j, and ∗ represents element-wise
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multiplication. If the price equilibrium is unique at this stage, the derived demand for chipsets on handset j

is well de�ned. However, there may be multiple Nash-Bertrand equilibria under logit demand with random

coe�cients and multi-product �rms (Echenique and Komunjer (2007)). To select an equilibrium given a set

of products Jt, I start with the prices of period t’s products whose qualities are closest to those in Jt, and

apply (8) as a �xed point mapping to solve for the equilibrium prices. In practice, I �nd that this procedure

always converges numerically to a unique price vector p?. Use πnt (ψt) to denote the downstream �rm n’s

variable pro�t in (7) given chipset prices ψt and D? = D (p?) to denote the derived demand for chipsets.

4.3 Nash Bargaining and Chipset Prices

The bargaining game in the �rst stage of the static game determines the equilibrium chipset prices between

Qualcomm and handset makers. I �rst write down Qualcomm’s pro�t function. Qualcomm earns pro�ts

from chipset sales:

πQt (ψ) =
∑
j∈JQt

(
ψjt − ψ

)
D?
jt,

where JQt is the set of handsets using Qualcomm chipsets and ψ is the marginal cost for Qualcomm to

manufacture a chipset.4 Qualcomm negotiates with each handset maker n separately. Denote the vector

of chipset prices speci�c to a Qualcomm-n bargaining pair as ψnt = (ψjt, j ∈ JQt ∩ Jnt). The chipset

prices are set in a bargaining equilibrium:

De�nition. (Nash-bargaining equilibrium) Chipset prices ψnt for all products in JQt ∩Jnt maximize the

Nash product corresponding with the bargaining pair of Qualcomm and handset maker n, conditional on

other chipset prices ψ−nt:

[
πQt
(
ψnt,ψ−nt

)
− π̃Qt

(
ψ−nt

)]τt
·
[
πnt
(
ψnt,ψ−nt

)
− π̃nt

(
ψ−nt

)]1−τt , (9)

where π̃ is the disagreement payo�, and τt is the bargaining weight.5

For π̃, I assume that when the negotiation breaks down, the handset maker n uses an alternative func-

tionally identical chipset at a price ψ̄ for handsets in JQt ∩ Jnt and Qualcomm loses revenues from these

handsets. Other chipset prices are held �xed and the downstream pricing equilibrium is recalculated. Real-

istically, the handset quality may also change if a non-Qualcomm chipset is used. I consider this possibility
4In reality, Qualcomm does not own any chipset manufacturing facility, and it outsources the production to dedicated fabri-

cation plants.
5Crawford and Yurukoglu (2012) shows that alternative de�nitions of a bargaining pair do not strongly a�ect their counter-

factual equilibrium price predictions.
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in a robustness check in Appendix D. Based on (9) and the de�nition of Nash bargaining equilibrium, the

vector of all Qualcomm chipset prices ψ satis�es the following �rst order condition:

ψ = ψ + Θ−1Φ, (10)

where Θ and Φ are de�ned in Appendix A.6

The assumption of linear contracts between handset makers and Qualcomm simpli�es the contract

space and keeps the computation tractable, there are several downsides. First, this assumption introduces

double marginalization, an ine�ciency that vertical integration can reduce. Based on the Qualcomm gross

margin data, I use linear contracts to approximate the variable pro�ts of Qualcomm and handset makers.

When the terms in (1) that de�ne the gross margin are close to the true economic primitives and the

ine�ciency of linear contracts is small compared with the total value of the contract, the approximated

variable pro�ts should also be close to the true variable pro�ts. I examine the robustness of the results to

potential measurement errors in the gross margin data in Appendix D, and Section 6 demonstrates that

the ine�ciency of linear contracts is indeed small.

Another concern is whether the linear contract assumption limits �rms from achieving innovation

coordination. Importantly, even an ex post e�cient contract that divides the surplus between the upstream

and downstream �rms can still lead to under-investment (Grossman and Hart (1986)). As shown in Section

6, the assumption of “ex post negotiation” is the main reason why �rms cannot coordinate innovation.

4.4 Period Pro�t

Collect the number of products, product qualities, chipset origins and carrier-time �xed e�ects in a vector

y. Using the equilibrium selection rules above, Qualcomm and handset maker pro�ts can be written as

a function of y, demand shocks and marginal cost shocks, πQt (y, ξ,κ, τ) and πnt (y, ξ,κ, τ). Note that y

does not include the state variable of Qualcomm.

In this paper, I focus on how �rms adjust quality frontiers, and assume that y is a realization from

the distribution g (Y ; s̃t, θ): the set of products is a random variable that has a stationary distribution

conditional on the state variables de�ned in Section 3,7 where s̃t is a vector of handset maker quality

frontiers and thus a subvector of the full state st in the dynamic model. The speci�cation of g (·) relies

on the empirical distribution of products and described in Appendix B. I further assume that Y , ξ, κ
6There may also be multiple bargaining equilibria. To de�ne the period pro�t for each �rm, I use (10) as a �xed point mapping

to iteratively solve for the equilibrium chipset prices, starting from 1.2ψ.
7See Fan and Yang (2016) for a study on product variety.
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and τt are distributed independently. Firms use πQ (st) ≡ πQ (s̃t) ≡ EY,ξ,κ,τ |s̃t

(
πQt (Y, ξ,κ, τ)

)
and

πn (st) ≡ πn (s̃t) ≡ EY,ξ,κ.τ |s̃t (πnt (Y, ξ,κ, τ)) to make dynamic innovation decisions. The assumptions

that (1) all �rms use the expected pro�ts when making innovation decisions and (2) demand shocks are

independent of Y justify the use of BLP-type instruments for demand estimation in the next section.

Using a static model also has another important practical advantage. The assumptions of the static

demand and pricing and the stationarity of the product set distribution allow the period pro�ts to be

computed separately from the dynamic game. The integration of πQt (Y, ξ,κ, τ) and πnt (Y, ξ,κ, τ) over

the distribution of products, demand shocks, cost shocks and bargaining weights is time-consuming but

only needs to be done once, because the random variables are distributed i.i.d. over time. No knowledge

of the innovation costs or the dynamic equilibrium is required to compute period pro�ts. The pro�ts are

then taken as inputs to the estimation and simulation of the dynamic game. In reality, smartphones are

both durable goods and network goods (e.g., Sinkinson (2014); Luo (2016)). Although the framework in

this paper does not include dynamic consumers and endogenous network e�ects, the demand function

partially captures both e�ects with κct, and the model assumes that the two e�ects are exogenous. The

static model also rules out long term contracts. Qualcomm may o�er handset makers higher discount to be

used in more phones for several periods. The innovation cost parameter γn2 in (4) captures this possibility.

When γn2 is positive, the innovation cost decreases if n uses Qualcomm chipsets on more of its handsets.

γn2 may re�ects Qualcomm’s willingness to help a more devoted handset makers to develop products in a

more cost-e�cient way, but γn2 may also represent monetary transfers to handset makers. The limitation

is that the transfer is not an endogenous outcome but taken as a structural primitive: γn2 may change under

an alternative market structure. I do not �nd counterfactual simulation results sensitive to perturbations

to the estimates.

5 Identi�cation and Estimation

In this section, I discuss the identi�cation and estimation of the bargaining model and the dynamic inno-

vation model. In the bargaining model, there are three sets of structural parameters to be estimated: the

consumer preference parameters for smartphones (β, α, θ, κ, σ) in (5), the smartphone marginal cost pa-

rameters λ in (6) and the bargaining weight τ in (9). I calibrate the price of the replacement chipset ψ̄ and

the marginal cost of manufacturing a chipset ψ. These parameters together determine the period pro�t of

Qualcomm and handset makers given a set of smartphones and the corresponding demand and marginal

cost shocks. The estimated period pro�t functions are input to the dynamic model, where I estimate the
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innovation cost parameters γ in (3) and (4). Because the estimation of the dynamic model relies on the

estimated bargaining model, I discuss the identi�cation and estimation of the bargaining model �rst.

5.1 Demand and Smartphone Marginal Cost in the Bargaining Model

5.1.1 Identi�cation

This section discusses the identi�cation of the demand model, the marginal cost function and the bar-

gaining weights. I �rst explain the identi�cation of the demand. The demand parameters (β, α, θ, κ, σ)

are identi�ed from the joint distribution of the prices, sales and observed smartphone characteristics. The

identi�cation may su�er from a sample selection problem because �rms choose their product lines. I ad-

dress this problem with the assumption in Section 4.4. The intuition is that �rms do not observe demand

and marginal cost shocks until they have made product line decisions.8 Under the assumption that product

characteristics are independent of demand shocks, the demand parameters are point-identi�ed and can be

estimated with BLP instruments.

I next discuss the identi�cation of the marginal cost parameters λ and the bargaining parameter τ .

When demand is identi�ed, the pricing equations in (8) identify the markups and hence the smartphone

marginal costs as the di�erence between observed prices and markups. A smartphone’s marginal cost is

the sum of the chipset priceψ and costs of other componentsω. Use % = ψ+ω to denote this total marginal

cost. Both ψ and ω are not directly observed. Because ω is a function of phone characteristics and λ’s are

the coe�cients, I need to �rst invert ω from %. I rely on Qualcomm average chipset markup data and a

mapping between τ and chipset markup. Intuitively, a higher τ should correspond with a higher average

chipset markup in the bargaining equilibrium. The average chipset markup thus identi�es τ . Once τ is

known, ψ can be identi�ed as the solution to the bargaining �rst order condition (10).

I now formalize this intuition. The notation here will also help to illustrate the estimation method

guided by the identi�cation strategy. I �rst restrict the bargaining parameter τ to be the same for all

Qualcomm-handset maker pairs in the months within a quarter (but could be di�erent across quarters).

This restriction is necessary because I only observe the average Qualcomm markup aggregated across all

handset makers in each quarter.9 Suppose that demand is identi�ed and
(
ψ, ψ̄

)
are known. I next make

three uniqueness assumptions that lead to the identi�cation.

First, I assume that the bargaining parameter and non-chipset component costs map uniquely to equi-
8A number of papers in the endogenous product characteristics literature (e.g., Eizenberg (2014); Wollmann (2016); Fan and

Yang (2016)) use this assumption to facilitate demand estimation.
9Other papers in the empirical bargaining literature such as Crawford and Yurukoglu (2012) use bargaining-pair speci�c

intermediate prices to estimate pair speci�c bargaining weights.
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librium handset prices and chipset prices via the bargaining equilibrium and the Nash-Bertrand equilib-

rium:

Assumption 1. For every (τ, ω), there exists a unique (p, ψ) that satis�es (8) and (10).

Use H (τ, ω) = (p, ψ) to denote this mapping. If the solutions to (8) and (10) for every τ and ω are

unique, H is given by this solution. In the case of multiple bargaining or Nash-Bertrand equilibria, the

assumption also holds when there is a deterministic equilibrium selection rule known to the researcher,

and (p, ψ) is the particular solution to (8) and (10) selected by this rule.10

The next assumption links the observed (p, %) with unobserved (τ, ω):

Assumption 2. Every (%, p, τ) corresponds with a unique ψ such that

H (τ, %− ψ) = (p, ψ) (11)

Such a ψ would be consistent with the observed downstream prices, total smartphone marginal costs

and the equilibrium conditions of the bargaining model. This assumption implies that there is a mapping

H̃ such that H̃ (τ, %, p) = ψ. Therefore �xing % and p, a value of the bargaining parameter τ corresponds

with a unique vector of ψ for each market via H̃. I use H̃ and data on chipset markup to invert out

ω. Speci�cally, I solve for τ such that the theoretical average Qualcomm chipset markup in the quarter

starting in month t0 ∑2
t=0

(
H̃ (τ, %t+t0 , pt+t0)− ψ

)′
·Dt+t0∑2

t=0 H̃ (τ, %t+t0 , pt+t0)′ ·Dt+t0

(12)

matches the observed quarterly Qualcomm chipset gross margin (described in Section 2).

The last assumption says this τ is unique:

Assumption 3. (12) is monotonic in τ .

By �nding such a τt0 , I also �nd the corresponding ψt = H̃ (τt0 , %t, pt) for t = t0, t0 +1, t0 +2. %t−ψt
identi�es ωt. Regressing ωt on the corresponding product characteristics gives λ.

5.1.2 Estimation

I estimate demand using BLP instruments constructed with handset characteristics on the full sample from

January 2009 to March 2013. Each month is treated as an independent market. The estimates of the demand
10The selection rule assumed here is based on the iterative solution to the �xed point problem as in Section 4.2. Similar to Lee

and Pakes (2009) and Wollmann (2016), this selection rule is assumed to be part of the model structure. Such iterative solution
methods do not guarantee the existence of a solution, but I do not encounter non-existence problems in practice.
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model are presented in Table 4. The characteristics xj used to construct the quality index include the

screen size,11 chipset generation, camera resolution, weight and the talking time on full battery. The screen

size coe�cient is normalized to be 1. The chipset generation �xed e�ects correspond with Qualcomm’s

Snapdragon S1 through S4 and comparable products. The omitted generation is for phones that do not

use chipsets or use chipsets older than Snapdragon S1. The brand �xed e�ects of Apple, Samsung and

BlackBerry are also included. The demand estimates are reasonably intuitive, with higher generation,

camera resolution, lower weights and longer battery talk time contributing positively to the index. A one-

hour increase in battery talk time is equivalent to a price decrease of 6.5 dollars for an average consumer.

Similarly, a one-megapixel increase in camera resolution is equivalent to a price decrease of 10.9 dollars,

while an increase in the screen size by 0.1 inches is equivalent to a price decrease of 11.7 dollars. The

estimated standard deviation of consumers’ taste for quality is about 40% of the average taste, suggesting

that consumers are heterogeneous in their willingness-to-pay for quality. In our estimation, we include

Apple, BlackBerry and Samsung dummies and group all other brands as a baseline brand in the utility

function. The Apple brand �xed e�ect in the demand function is large, worth over $400 to consumers.

Additional details of the demand estimation are documented in Fan and Yang (2016).

I now discuss how to estimate the marginal cost function (6). Given the estimated demand function and

observed prices, the full marginal cost ω+ψ can be inverted using the �rst order condition (8). Extra steps

are needed to invert out the bargaining parameters τt and chipset prices ψt, and estimate ω as a function

of handset characteristics. I �x Qualcomm’s marginal cost of manufacturing a chipset to be ψ = $20, and

the cost of non-Qualcomm chipsets at the disagreement point to be ψ̄ = $60. I base the calibrated value

of ψ on conversations with fabrication plant engineers and analysts. ψ̄ could be directly estimated if I

observe in the data that a handset maker uses di�erent chipsets on the same handset. I do not observe

such variations during my sample period. I choose a relatively large ψ̄ of $6012 to take into account not

only the direct cost of buying the alternative chipset, but also potentially the additional cost of equipping a

phone with a chipset the phone was not designed to use. I show in robustness checks that further allowing

the handset quality to decrease does not change the conclusion very much. The results later will show that

even with a large ψ̄, which is disadvantageous for handset makers, the potential harm of raising rivals’

costs is still limited in the counterfactual vertical integration. To estimate the coe�cients in (6), I need to

break out the chipset prices ψ. To impute ψ, I rely on the average Qualcomm markup data in its quarterly

�nancial reports and the mapping H̃ de�ned in Section 5.1.1. To calculate H̃, I solve for a vector of chipset
11The screen size is measured as the diagonal length of the phone, as is standard in this industry, and the unit is inch.
12According to Woyke (2014), most chipset prices are between $16 and $40.
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prices ψ consistent with the observed retail prices by iterating (11) for every value of (τ, %t, pt). To ensure

uniqueness, I always start the iteration fromψ = 1.2ψ. The gross margin data are quarterly, and I compute

a τ for every quarter by matching (12) with the gross margin in the corresponding quarter.13 The value of τ

in a quarter enables me to invert out ψ for every month in that quarter. ψ for phones not using Qualcomm

is set to 0. After τ and ψ are inverted out, I regress ω on handset qualities, carrier/year FE, quarter FE and

brand �xed e�ects and whether the handset is designed to use Qualcomm chipsets.

Table 5 shows the supply side estimates. The non-chipset components’ costs increase with the quality

of the smartphone. Using a Qualcomm chipset saves $22 in the marginal cost for the non-chipset part of

the phone. An alternative interpretation is that if a handset is designed to use a non-Qualcomm chipset,

its chipset costs about $22. I also present the range of inverted τ and ψ in Table 5. There are 17 τ ’s, and

each τ corresponds with a quarter in the sample. The median Qualcomm chipset price is about $36.

There may be several concerns with this approach. One may be concerned that these supply side pa-

rameters are not “structural”: in a counterfactual vertical integration between Qualcomm and a handset

maker, entry into the chipset industry might be expected. First, the foreclosure e�ect may prompt handset

makers to seek alternative suppliers. Secondly, because a handset maker may have to reveal proprietary

phone designs to Qualcomm during a negotiation, an integrated Qualcomm would have an incentive to ex-

ploit this information for its own downstream subsidiary (Allain et al. (2011)). Therefore additional chipset

makers may enter to meet the increased demand for Qualcomm alternatives. One may also be concerned

with measurement errors in the gross margin data discussed in Section 2. In Appendix D, I consider a

robustness test where handset makers face a smaller ψ̄ in the counterfactual of vertical integration. I also

consider re-estimating the model using perturbed gross margin data.

5.2 Sunk Cost of Innovation in the Dynamic Model

The goal is to estimate parameters in (3) and (4). I �rst use demand estimates to construct handset quality

frontiers and the pro�t functions πQ (st) , π
n (st) de�ned in Section 4.4 as inputs to the dynamic game.

The quality index of a product is constructed as qj = xjβ. I construct the quality frontier of a handset

maker in period t as the highest quality of products by n in t: qnt = maxj qj , j ∈ Jnt. By the de�nition in

Section 4.4, πQ (st) ≡ πQ (s̃t) and πn (st) ≡ πn (s̃t) can be simulated with demand estimates.

However, I do not directly observe the quality of Qualcomm chipsets or Qualcomm frontiers. I only

observe the latest generation of Qualcomm chipsets according to the announcement dates. The chipset
13I use a minimization algorithm to match the model predicted markup with data. I run the algorithm from 10 di�erent starting

points and always �nd a unique solution.
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generation �xed e�ects in the quality index are not the qualities of Qualcomm chipsets. The Qualcomm

quality frontier of generation g should be interpreted as the highest quality phone that a handset maker can

produce with Qualcomm’s generation g chipset. I argue that with appropriate assumptions on the bounds

of Qualcomm qualities, one can still make inferences about the underlying cost primitives. First, handset

qualities are informative about Qualcomm qualities. Other than vertically integrated Apple, Qualcomm

quality is at least as high as the frontiers of other handset makers. Therefore the maximum of non-Apple

handset maker frontiers, maxn6=Apple q
n
t forms the lower bound of the Qualcomm quality frontier in t. To

bound the Qualcomm quality frontier from above, I make the following assumption:

Assumption 4. When Qualcomm’s latest chipset generation is g in period t, Qualcomm quality qQt is less

than the quality of the �rst non-Apple handset using generation g + 1 Qualcomm chipset.

For example, Qualcomm’s latest generation is S3 in November 2011, and in my data set, the �rst phone

that uses the next generation S4 chipsets is One S by HTC (available in March 2012) with quality index

6.88. Therefore under the assumption above, Qualcomm quality in November 2011 is less than 6.88, and no

non-Apple handset maker can produce a phone with quality higher than 6.88 until S4 becomes available.

In the data, Qualcomm added new varieties of chipsets to the Snapdragon S3 product line over time. Some

of the new additions enabled some handset makers to produce phones whose qualities are higher than 6.88,

but Qualcomm only added these chipsets after the launch of Snapdragon S4 and the assumption above is

still valid.

5.2.1 Identi�cation

I use the estimated period pro�t functions, handset maker quality frontiers qnt , proportions of a handset

maker’s models using Qualcomm chipsets ηnt and Qualcomm’s upper bounds given by Assumption 4 to

identify the innovation costs. Like Igami (2015), I obtain the period pro�ts as functions of quality frontiers

completely outside the dynamic estimation framework. These static estimates combined with variations

in qnt+1 − qnt and ηnt would identify the innovation cost parameters for handset maker n in (4). (γn0 , γ
n
1 )

increases n’s innovation cost and reduce its frequency and size of quality improvements. γn2 reduces n’s

innovation costs, and n would innovate faster when ηnt is higher. The skewness of quality improvements

and the normality assumption on εn identify σn: high σn implies that n’s month-to-month quality im-

provements are either 0 or very large.

Although Qualcomm’s quality is observed up to a range, the observed handset maker quality improve-

ments and Assumption 4 can still provide meaningful bounds on Qualcomm’s innovation cost parame-
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ters. Assumption 4 bounds
(
γQ0 , γ

Q
1

)
from below: if

(
γQ0 , γ

Q
1

)
is too small, Qualcomm’s innovation cost

would be low and its quality frontier would increase too quickly, violating the bounds in Assumption 4.

The observed non-Apple handset maker quality frontiers bound
(
γQ0 , γ

Q
1

)
from above:

(
γQ0 , γ

Q
1

)
reduces

Qualcomm’s innovation, and because non-Apple handset makers cannot innovate above Qualcomm’s fron-

tier, these handset maker innovation rates would be low if
(
γQ0 , γ

Q
1

)
is too large. Assumption 4 and the

normality assumption on εQ also place an upper bound on σQ. High σQ causes Qualcomm to take large

innovation jumps whenever εQ is negative (50% probability). Qualcomm’s innovation rate then would be

too high and violate the bounds in Assumption 4.

5.2.2 Estimation

I use a Simulated Minimum Distance estimator with one inequality constraint to recover a con�dence set

for the innovation cost parameters. For any vector of innovation cost parameters, I am able to solve for

the unique Perfect Bayesian Equilibrium at a discount rate of 0.99. To limit the computational burden,

I estimate a dynamic game of Qualcomm and the top three handset makers from 2010 to 2013: Apple,

Samsung and HTC. In Section 7, I include BlackBerry, Motorola and LG but assume that their quality

frontiers are exogenous conditional on HTC and Samsung’s quality frontiers. When solving the dynamic

game, I assume that the order of moves is Qualcomm, Apple, Samsung and HTC. Appendix D considers

the case where the order of handset maker moves is reversed. Consistent with data, Apple is assumed to

always use non-Qualcomm chipsets
(
ηA = 0

)
and is not constrained by the Qualcomm quality frontier;

HTC innovation is constrained by Qualcomm, and always chooses ηHTC = 1: the chipsets of all HTC

phones are supplied by Qualcomm and their prices are determined in the bargaining equilibrium; Samsung

innovation is also constrained by Qualcomm, but can adjust the proportion of Qualcomm chipsets used

on Samsung handsets. To guard against the e�ect of the �nite horizon assumption, the model is solved by

backward induction from six months after the last period of the data, September 2013. In Appendix D, I

further check the sensitivity of the �nite horizon assumptions by solving the game from March 2014. The

carrier-time �xed e�ects of April 2013 to March 2014 are extrapolated from demand estimates in earlier

periods. To accommodate the potential heterogeneity in the sunk cost functions (3) and (4), I estimate a �rm

speci�c γ0 and γ1. I restrict σhandset ≡ σApple = σSamsung = σHTC and estimate a di�erent σQualcomm,

giving me a total of 11 parameters to estimate. There are a total of 51 months of data. I �x the qualities in

month 1 and use quality choices of the next T = 50 periods for estimation. I use a computationally simple

estimator in Shi and Shum (2015) to �nd the 95% con�dence set of the identi�ed set. Denote the equality
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moments as ge and inequality moments as gie ≤ 0. The con�dence set is de�ned as

CST =
{
θ ∈ Θ : gie ≤ 0, ge′Wge ≤ χ2

d (0.95) /T
}
, (13)

where W is the weighting matrix and χ2
d (0.95) is the 95% quantile of χ2 distribution of d degrees of

freedom. d is the number of equality constraints in ge. Like Goettler and Gordon (2011), I match the

following stationary equality moments in simulation and data:

1. mean innovation rates, de�ned as (q51 − q1) /T for Apple, Samsung and HTC;

2. mean proportion of Qualcomm chipsets on Samsung products,
∑51

t=2 ηt/T .

Denote the upper bound of Qualcomm quality observed in each period t as ρt. Use q(·)
t,r and R to denote

the quality in simulation r and the total number of simulations. Assumption 4 implies qQt < ρt. To create

a stationary inequality moment, I subtract the the highest non-Apple smartphone quality from Qualcomm

quality and consider the restriction

qQt −max
(
qSamt , qHTCt

)
< ρt −max

(
qSamt , qHTCt

)
.

The actual inequality constraint used in estimation is

R∑
r=1

51∑
t=2

(
qQt,r −max

(
qSamt,r , qHTCt,r

))
/RT ≤

51∑
t=2

(
ρt −max

(
qSamt , qHTCt

))
/T. (14)

I detail the model solution, estimation and simulation procedure in Appendix C.

There are 5 moments for 11 parameters. I leave the model under-identi�ed for several reasons. First,

these moments are closely related to the identi�cation of the mean innovation costs. For example, high γ0

or γ1 for the handset makers will imply slow innovation and cause deviations in the �rst set of equality

moments. High Qualcomm γ0 or γ1 will also imply slow Qualcomm innovation, which also slows down

Samsung and HTC innovation. If Qualcomm γ0 or γ1 are low, Qualcomm innovates more quickly and

will violate the inequality constraint. The remaining Qualcomm usage parameter γn2 is identi�ed by the

second equality moment. Secondly, the functional form restriction and the dynamic equilibrium strategies

imply a tight relationship between the four �rms’ innovation rates as well as a tight relationship between

the innovation rates and other features of the innovation paths, such as the variance of the innovation

rates. Adding additional moments rejects the current model, while a more �exible functional form of

the innovation cost function would add to the high computational cost of a simulation-based estimator.
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Moment inequality methods that allow for model mis-speci�cation (Chernozhukov et al. (2007)) and other

alternatives (e.g., Andrews and Soares (2010); Romano et al. (2014)) involve a bootstrap step to compute

the con�dence set and are not computationally feasible. Balancing the computational feasibility and model

�exibility, I choose the former, focusing on matching the moments most important to the research question

and taking advantage of the computationally simple set estimator in Shi and Shum (2015).

The estimated 95% con�dence set consists of a set of vectors of parameters that satisfy (13). I report

the minimum and maximum of each parameter in the con�dence set in Table 6. Because the cost functions

are speci�ed as an exponential function of a linear combination of innovation actions, we can interpret the

parameter estimates as a “semi-elasticity”. For example, increasing quality by 0.1 unit increases the inno-

vation cost by 1.6 to 1.7 times for Apple. Using Qualcomm chipsets for all handsets reduces the innovation

sunk costs for Samsung. The magnitude of the handset maker private shock is large. In Figure 2, I plot

the brand-�xed e�ect adjusted quality frontiers (qnt +
θn
β̄0

) in data and simulation. The simulated quality

frontier is the average of 960 simulated paths based on a random draw of parameters in the con�dence set.

I use simulation to interpret the estimates in terms of the levels of innovation costs. I use a procedure

described in Appendix C to sample a representative set of points from the con�dence set to simulate the dy-

namic model. The model is simulated at these parameter values for 960 times for the sample period. Table

7 reports the range of the simulated total investment expenditures of Apple, Samsung, HTC and Qual-

comm across sampled points in the con�dence set. The reported range approximates the 95% con�dence

interval of the model prediction. To examine whether these �gures are sensible, I sum up the operating

expenses (R&D, selling, general and administrative costs but not manufacturing costs of the goods sold, in

the accounting sense) in HTC’s �nancial reports, discounted by an annual rate of 0.9912 = 0.89. Apple,

Samsung and Qualcomm have major operations outside the application chipset and smartphone indus-

tries, and their accounting costs are less relevant. The discounted HTC operating expenses are 6.83 billion

dollars during the period. According to HTC’s annual reports, 51% of HTC revenues come from North

America. Under the assumptions that the US market accounts for a constant share of the world market

and the US market accounts for the majority of HTC’s North American revenues, the total simulated HTC

investment scaled to the global level will be at least as high as the range of 6.14 to 9.50 billion dollars. The

simulated investment level matches HTC accounting �gures in scale.

One may also view the comparison as evidence for a model of incomplete contracts. As discussed

in Section 3, to allow for cooperative strategies, I can specify HTC period pro�t as ςπQ + πHTC and

estimate ς . Investment data can be informative about ς . If cooperation increases innovation and hence

total investment, then innovation rates and investment levels are higher when ς = 1 than when ς = 0. If
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the quality choice data are generated by a model of ς = 1, my estimates under the assumption that ς = 0

would incorrectly attribute the high levels of innovation to low innovation costs instead of cooperation,

and the simulated HTC innovation costs would be lower than the actual investment. In the above, the 95%

con�dence interval of the simulated investment levels (6.14 to 9.6 billion dollars) is not below the observed

investment level of 6.83 billion dollars, therefore I do not reject the hypothesis that ς = 0. If higher quality

�rm speci�c investment data were available, I could formally estimate ς .

6 Counterfactual Simulation

I investigate the e�ects of a Qualcomm-HTC merger. HTC is a natural choice for this counterfactual

because of its high dependence on Qualcomm chipsets. Moreover, Apple, the unconstrained handset maker,

and Samsung, which can �exibly adjust the proportion of its handsets using Qualcomm, resemble typical

downstream competitors to a vertically integrated �rm. Samsung may decrease the use of Qualcomm

chipsets because of the raising rivals’ cost e�ect, but could also increase the use of Qualcomm chipsets to

reduce innovation costs. I simulate the e�ects of vertical integration and decompose the e�ects into the

investment e�ects and price e�ects. I simulate every counterfactual scenario 240 times for the period of

January 2009 to December 2011 at points sampled from the con�dence set as described in Appendix C. I

only simulate the �rst 36 periods because �rms are less forward looking as time moves closer to the last

period of the theoretical model. All dollar �gures are discounted to January 2009.

Vertical integration has two e�ects. First, the integrated �rms invest to maximize the joint value func-

tion, internalizing the marginal e�ect of HTC innovation on Qualcomm and vice versa. Secondly, the inte-

grated �rms also jointly set prices, reducing double marginalization but potentially raising rivals’ costs. In

all simulations, �rms still move sequentially: the “Qualcomm division” of the merged �rm still is the �rst

�rm to observe its private shock and move, followed by Apple, Samsung and the “HTC division” of the

merged �rm. I do so to keep the information structure intact so that the simulations under various market

structures are comparable. Alternatively, one could allow HTC to observe its shock and move earlier be-

cause of the merger. However, the simulated counterfactual e�ect under this scenario would contain both

the e�ect of the market structure change as well as the change in the sequence of the move. Because the

sequential move assumption is purely a device to simplify the model, I keep the same move sequence in

estimation and counterfactual simulation to focus on the e�ect of the market structure change. The new
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dynamic programming problems for the Qualcomm and HTC divisions of the merged �rm thus become

maxaQ
{
−CQ

(
aQ, εQ

)
+ βE

(
V V I
t+1 (st+1)

∣∣aQ, st )}
maxaHTC

{
−CHTC

(
aHTC , εHTC

)
+ βE

(
V V I
t+1 (st+1)

∣∣aQ, aN (HTC), st
)}
,

(15)

and the Bellman equation for the joint �rm is

V V I
t (st) = π̃V I + E

(
−CQ

(
aQ?, εQ

)
− CHTC

(
aHTC?, εHTC

)
+ βV V I

t+1 (st+1) |st
)
, (16)

where the expectation is taken over
(
εQ, εHTC

)
, the corresponding strategies of Qualcomm and HTC,

and the action probabilities of their rivals. π̃V I is the sum of π̃Q and π̃HTC , the joint equilibrium pro�t

under vertical integration. The �rst order conditions that de�ne the new equilibrium prices in the static

pricing game are outlined in Appendix A.

I conduct three sets of simulations: no vertical integration, investment coordination only and full VI

with both investment and price e�ects. The purpose of the second simulation is to parse out the investment

e�ect. Speci�cally, I simulate the outcomes where Qualcomm and HTC price their products as if they

were still separate, but the two �rms pool their pro�ts when making dynamic investment decisions: i.e.

the investment decisions of Qualcomm and HTC are solutions to (15), but I replace π̃V I = π̃Q + π̃HTC

with πQ + πHTC in (16). The di�erence between this simulation and the “no VI” simulation shows the

net investment e�ects, whereas the di�erence between the “investment coordination” and the “full VI”

simulations shows the additional price e�ects. The equivalent of “investment coordination” in reality

is a research consortium, where product development is jointly conducted between �rms but pricing is

independent.

Table 8 reports the simulation results. The end points of the intervals are the maximum and minimum

of the simulation outcomes across points sampled from the con�dence set according to the procedure in

Appendix C. The column “No VI” reports the range of simulation results at the observed market structure,

and the column “Investment Coordination” reports the results where Qualcomm and HTC coordinate

innovation but not pricing. The column “Full VI” reports the results where Qualcomm and HTC coordinate

both investment and pricing. The numbers under “Di�erence %” represent the changes in outcomes under

di�erent market structures but at the same vector of parameters. I calculate the percentage changes for all

parameters in the sampled set of parameters and report the minimum and maximum.

I �rst summarize the main �ndings:

1. Vertical integration increases the innovation of both upstream and downstream �rms; the changes
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in Apple’s innovation rates are comparatively much smaller.

2. Consumer surplus and total surplus increase.

3. The investment e�ects on the innovation rates of Qualcomm, HTC and Samsung and the surpluses

are larger than the price e�ects.

4. Price e�ects decrease HTC’s retail prices and increase the prices of Qualcomm chipsets sold to Sam-

sung.

Next, I discuss the intuition behind these observations in Table 8. The increase in Qualcomm and HTC in-

novation is intuitive, because they internalize the marginal value of innovation on each other. To visualize

the magnitude of the e�ect, I examine the �rst order di�erence of value functions, V n
(
qn + 0.25, qn

′
)
−

V n
(
qn, qn

′
)

, where n, n′ ∈ {Qualcomm, HTC}. The di�erence represents the dynamic marginal value

of innovation. I plot these di�erences in Fig. 3 for the month of January 2011, where Apple and Samsung

quality levels (brand �xed e�ect adjusted) are �xed at 8.2 (iPhone 3GS) and 6.7 (Galaxy S II). The axis

named “distance to Qualcomm” denotes qQualcomm − qHTC . The value functions are computed based on

a randomly selected point in the 95% con�dence set. Per unit increase of Qualcomm or HTC quality, HTC

value function would increase in the range of 0.4 to 1.2 billion dollars. Per unit increase of HTC quality

increases Qualcomm value function by 0.05 to over 0.15 billion dollars, and the e�ect of Qualcomm’s own

quality change is slightly larger.

Samsung also innovates faster and is less constrained by Qualcomm. Although the average number of

months that qSamsung = qQ is only reduced from 4.78 months to 4.50 months, I argue that the harm of

being constrained by Qualcomm is signi�cantly lessened. I illustrate this point by examining the second

order di�erence of Samsung’s value function. Suppose that Samsung is constrained and cannot innovate,

but would otherwise �nd it pro�table to innovate if it were not constrained, then by allowing Samsung to

innovate, Qualcomm innovation should have a large and positive impact on the marginal value of Samsung

innovation, which means that

V Samsung
(
qSamsung + 0.25, qQualcomm + 0.25

)
− V Samsung

(
qSamsung, qQualcomm + 0.25

)
−
(
V Samsung

(
qSamsung + 0.25, qQualcomm

)
− V Samsung

(
qSamsung, qQualcomm

))
should be large and positive when qSamsung = qQualcomm. A larger value implies greater harm from

the constraint, because Samsung has to delay a pro�table innovation. In Fig. 4, I plot this second order

di�erence for Samsung when Apple and HTC qualities (brand �xed e�ect adjusted) are �xed at 9 and 6.
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In the “No VI” scenario, the second order derivative is indeed positive and large when the distance to

Qualcomm frontier (qQualcomm − qSamsung) increases from 0, suggesting that Samsung is likely to miss

pro�table innovation opportunities when constrained. The value of the innovation that Samsung fails to

capture because of the constraint is economically large: the spike in the left �gure accounts for 20% to

40% of the corresponding marginal value of Samsung innovation. In the VI counterfactual, the magnitude

of the second order di�erence is smaller. The results show that the overall investment e�ect of vertical

integration on Samsung, which includes the e�ect from the lessened constraint and the competitive e�ect,

is positive. Samsung also uses more Qualcomm chipsets, reducing the innovation costs.

Furthermore, vertical integration increases consumer and producer surplus. Most of the increase come

from the faster innovation, but the decrease in HTC prices also helps to increase consumer surplus. In

particular, while higher quality products may be priced higher, eliminating double marginalization reduces

HTC retail prices by about 6% even when price e�ects increase HTC innovation. Qualcomm also increases

the prices of the chipsets sold to Samsung, but the overall welfare e�ect is positive.

7 Robustness Analysis

I consider two main robustness checks in this section. The �rst check considers Qualcomm’s royalty

income. The second check considers the e�ect of additional handset makers Ñ={BlackBerry, Motorola,

LG}. More robustness checks are available in Appendix D.

In the �rst robustness check, I allow Qualcomm to collect patent royalties from handset makers. To

model the e�ect of royalty fees, I �rst construct a measure of wholesale prices. I collect additional data on

the average service prices consumers pay to carriers. Consumers during the sample period are typically

on two-year contracts, and I use the retail phone price pj plus the discounted sum of consumer service

payments vt as the total carrier revenue per customer. The average of vt in my calculation is 855 dollars.

A wireless carrier whose main businesses are wireless and data services (like T-Mobile) typically has a

gross margin of 50% according to their �nancial reports. Assuming that the wholesale prices of the phones

are the only marginal costs carriers face, I measure the wholesale price as wjt =
1

2
(pjt + vt). Given the

royalty rate zn for handset maker n, the handset maker pro�t function becomes

max
pjt,j∈Jnt

∑
j∈Jnt

(
(1− zn) · 1

2
(pj + vt)− ψjt − ωjt

)
Djt,

and the Qualcomm pro�t function is modi�ed to include the additional revenues from royalties. At the
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disagreement point in the bargaining game, Qualcomm continues to earn royalties from the handset maker

even if the handset maker switches to an alternative chipset. I assume that Apple’s royalty rate is 2%,

Samsung 3% and HTC 5% (Arghire (2009); Clark (2009)).

In the second robustness check, I add in products by �rms in Ñ . To maintain computational tractability,

I assume that quality frontiers of �rms in Ñ are exogenous conditional on the maximum of HTC and

Samsung frontiers. Given s̃t =
(
qApplet , qSamsungt , qHTCt

)
, I compute a �rm’s pro�t function as

E
(
πt

(
s̃t,
(
qkt (s̃t)

)
k∈Ñ

))
, (17)

where the frontier of k ∈ Ñ is a function of s̃t, and the associated set of products is a random variable to be

integrated out. The procedure is described in Appendix B. One complication is that the number of products

by �rms in Ñ changes drastically over time in data. LG has one product at the start of the sample and

over 10 at the end, whereas BlackBerry’s product line exhibits the opposite trend. Because the goal of this

exercise is to check whether the dynamic implication of a vertical merger is sensitive to additional static

competition in the product space, the sampling procedure in Appendix B ignores this non-stationarity and

on average includes more and higher quality products from Ñ than observed in data.

The estimates of the two robustness checks are reported in Table 9. The simulation results are reported

in Tables 10 and 11. The estimated γ1 for Qualcomm in the �rst robustness check is much larger than

in Table 8. The estimates of the second robustness check are similar to the main speci�cation. In the

counterfactual simulations, the qualitative patterns of both speci�cations are broadly consistent with the

main speci�cation. The counterfactual innovation rates increase less in the second robustness check. The

producer surplus for this robustness check includes the variable pro�ts of �rms in Ñ .

Qualcomm chipsets are bundled with modems, but Qualcomm also sells standalone modems to handset

makers, including Apple. Qualcomm thus internalizes the value of Apple innovations more than what the

model captures. However, it is important to recognize that the modem sales a�ect Qualcomm innovations

in a way similar to Qualcomm royalty revenues, and in some instances, Qualcomm only collects royalties

from some clients and sells them modems for free (Mock (2005)). Because no detailed data are available on

the modem manufacturers for phones in my sample, I did not conduct analysis regarding modem sales.

8 Discussion and Conclusion

This paper estimates a new model that combines bilateral bargaining with dynamic innovation to analyze

the impact of vertical integration on innovation, pricing and welfare in the chipset and smartphone in-
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dustries. Using the estimated model, I simulate the counterfactual experiment of a vertical merger, and

�nd that vertical integration increases innovation primarily through the investment e�ects. The results

suggest that the dynamic e�ect of vertical integration may be large and positive, providing support for

giving more weight to this factor in a vertical merger review.

Several simplifying assumptions underlie the model. First, I do not consider vertical integration’s

e�ects on the cost primitives. Cost reduction in the case of a successful merger could further increase ef-

�ciency. Secondly, I model the pricing game without considering the strategic roles of carriers. This mod-

eling choice is largely motivated by the need to simplify the computation of period pro�ts. The approach

is similar to Goettler and Gordon (2011) and Nosko (2014), which focused on the innovation in the CPU

industry and abstracted from the role of downstream computer assemblers. An alternative handset-carrier

pricing model (e.g. Sinkinson (2014); Luo (2016); Fan and Yang (2016)) would imply di�erent estimates

of �rm pro�ts, but I do not expect the bias to reverse the result: the investment e�ects are an order of

magnitude larger than the price e�ects. Thirdly, I do not consider serially correlated unobserved cost vari-

ables, which may be a concern given that the data frequency is monthly. Omitting these variables would

bias the estimates of the innovation costs. However, including such a cost component does not change

any of the economic argument why innovation increases with a vertical merger. Fourthly, I assume that

Qualcomm and handset makers use linear contracts. Linear contracts introduce ine�ciency because of

double marginalization, but these e�ects are small compared with the investment e�ects.
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Appendix (For Online Publication)

A First Order Conditions in the Static Pricing Game

I omit the time subscript. Qualcomm and handset maker n bargain over ψ. Handset maker n’s pro�t at

the point of disagreement is

π̃n =
∑

j∈Jn∩JQ

(
p̃j − ωj − ψ̄

)
D̃j +

∑
j∈Jn\JQ

(p̃j − ωj) D̃j ,

and Qualcomm’s disagreement pro�t is

π̃Q =
∑

j∈Jn\JQ

(
ψj − ψ

)
D̃j ,

where ·̃ denotes the recalculated equilibrium quantities at the point of disagreement.

The �rst order condition of the bargaining game is

ψ = ψ + Θ−1Φ,

where Θ and Φ are given by the following:

Θ = dΠ + dΓ,

Φ = − (sQ + dΩ) ,

where in vector and matrix notation,

dΠ = ∇Dp∇pψ ∗ LQ,

where LQ is a binary matrix such that LQi,j = 1 if i, j both use Qualcomm chipsets, and 0 otherwise, and

dΓ =


∂πn=1

∂ψn=1

. . .
∂πn=N

∂ψcn=N




|JQ ∩ Jn=1| replications

{
DQ − D̃Q (n = 1) · ın=1

πn=1 − π̃n=1

...

|JQ ∩ Jn=N | replications
{
DQ − D̃Q (n = N) · ın=N

πn=N − π̃n=N

 ,

where ∂πn
∂ψn

is a block of diagonal matrix, the derivative of handset maker n’s pro�t with respect to the
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price of each of its Qualcomm chipset:

∂πn
∂ψi

=
∑
j∈Jnt

∂pj
∂ψi

Dj −Di +
∑
j∈Jnt

(pj − ωj − ψj)
∑
k

∂Dj

∂pk

∂pk
∂ψi

.

and D̃Q (n) corresponds with the vector of demand for Qualcomm chipsets at the disagreement point in

the Qualcomm-n bargaining pair. ın is a row vector of binaries corresponding with each product, and

equal to 0 if corresponding with �rm n’s products.

When Qualcomm is integrated with n̆, the FOC’s of the bargaining equilibrium becomes

ψ = ψ + Θ−1Φ̆

where Φ̆ = − (DQ + dΛ + dΩ), and

dΛ = D′n̆
∂pn̆
∂ψ

+ [pn̆ − ωn̆ −ψn̆]∇Dp∇pψ,

dΩ =


∂πn=1

∂ψn=1

. . .
∂πn=N

∂ψn=N

 ·

|JQ ∩ Jn=1| replications

{
πn̆ − π̃n̆ (n = 1)

πn=1 − π̃n=1

...

|JQ ∩ Jn=N | replications
{
πn̆ − π̃n̆ (n = N)

πn=N − π̃n=N

 ,

where π̃n̆ (n) corresponds with n̆’s pro�t at the disagreement point of Qualcomm-n pair. In addition, the

integrated Qualcomm would only negotiate chipset prices with non-integrated downstream rivals.

B Product Set Simulation

In the speci�cation that includes just Apple, HTC and Samsung, I sample from the empirical distribution

of product sets in data to compute the expected pro�ts. I illustrate how I compute the period pro�ts under

the state of handset makers
(
qApple, qHTC , qSam, ηSam

)
in period t. I start with Apple. I �rst uniformly

sample t̂A, from 1 . . . 51. I adjust the quality of products in JA,t̂A by

qjt̂A − max
k∈JA,t̂A

qk + qApple.

Call this new set ĴA. I repeat this process, by sampling t̂H for HTC, adjust qualities similarly and denote

the resulting set of products as ĴH . Given Samsung frontier qSam and ηSam ∈ {0.3, 0.5, 0.7}, I �rst collect
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all periods where the proportion of Samsung handsets using Qualcomm chipsets is closest to ηSam.Denote

the set as TηSam . I then sample one period t̂S from TηSam and construct ĴS . I pair the set ĴA∪ ĴH∪ ĴS with

appropriate time �xed e�ects in t and sample from the empirical distribution of demand and marginal cost

shocks and bargaining weights to calculate period pro�ts for Qualcomm and downstream handset makers.

I use the average of pro�ts from 50 draws of product sets and shocks as the period pro�ts in the dynamic

game.

In the speci�cation that includes Ñ = {BlackBerry, Motorla, LG}, I sample from the empirical distri-

bution of product sets of n ∈ Ñ conditional on HTC and Samsung frontier. Speci�cally, in every period t

in data, denote the HTC and Samsung frontiers, as de�ned in the main text, as q̄t = max
{
qHTCt , qSamt

}
and the frontier of n’s products as q̄nt . I �rst compute the average distance ∆qn =

∑
t (q̄t − q̄nt) /T . To

calculate the period pro�t corresponding with the state
(
qApple, qHTC , qSam, ηSam

)
in a period, I �rst

sample Apple, HTC and Samsung’s product sets as described above. I then randomly sample a period t̂. I

adjust the quality qjt̂ of j in Jnt̂ to

qjt̂ − max
k∈Jnt̂

qk + max
{
qHTC , qSam

}
−∆qn

and obtain Ĵn. I repeat this process for every n ∈ Ñ and calculate period pro�ts for all upstream and

downstream �rms based on ĴA∪ ĴH ∪ ĴS ∪n∈Ñ Ĵn, a draw of shocks and a draw of the bargaining weight.

The expected pro�t is calculated as the average of period pro�ts based on 50 draws.

C Solving, Estimating and Simulating the Dynamic Model

I set the quality increment for Qualcomm to be ∆ = 0.25, and aQ ∈ {0, ∆, 2∆, . . . , 6∆}. The handset

makers’ quality increment is δ = 0.25, with anq ∈ {0, δ, 2δ, 3δ} and aSamsungη ∈ {30%, 50%, 70%}.

The speci�cation matches most of the actions observed in data. Because of the constraint that Samsung

and HTC qualities do not exceed Qualcomm’s quality, I track the di�erence between Qualcomm and the

maximum of HTC and Samsung’s quality frontiers, δQ = qQ − max
{
qSamsung, qHTC

}
≥ 0, instead

of Qualcomm quality frontier directly, in addition to handset makers’ quality frontiers and Samsung’s

proportion of handsets using Qualcomm chipsets. The value function is parameterized as a third degree

complete polynomial of Apple, Samsung and HTC’s quality levels. To precisely calculate the value function

given δQ, η and t, I compute a di�erent set of polynomial coe�cients speci�c to each combination of{
t, η, δQ

}
, where t = 1, . . . , T , η ∈ {30%, 50%, 70%}, and δQ ∈ {0, δ, . . . , 10δ}. I solve the value

functions at the zeros of the Chebyshev polynomials and interpolate the value functions at other states.
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The choice probabilities of each �rm are simulated with 200 draws of investment cost shocks.

In the formulation of Shi and Shum (2015), data do not directly enter the inequality constraint. Instead,

the inequality constraint (14) is converted into an equality constraint by introducing a slackness parameter

and adding an inequality constraint that the slackness parameter is positive.

To construct the con�dence set in (13), I use a genetic algorithm that searches through an 12-dimensional

space with a wide initial range. Each generation of the genetic algorithm iteration has 32 seeds, and I it-

erate over 96 generations. The intermediate functional values are saved and included in the con�dence

set if the corresponding ge′Wge is below the critical value. I eventually obtain 300 to 600 points in the

con�dence set for every speci�cation.

Because the moments I choose are stationary, I use bootstrap to calculate the weighting matrix from

data. I block bootstrap consecutive 12-month periods and compute the co-variance matrix of the equality

moments. W is the inverse of this co-variance matrix.

Qualcomm quality is an unobserved state variable. To deal with the initial value problem, I calibrate

the starting value of Qualcomm state and conduct robustness checks. The main speci�cation starts the

simulation that Qualcomm is 0.25 below the bound in period 1. The robustness checks in Appendix D

considers two di�erent starting states for Qualcomm.

Because Qualcomm bounds are based on the quality of handsets using the next generation’s chipsets,

and the last generation is S4 in data, there is also a “terminal value problem” that there are no quality

measures in data to bound Qualcomm quality when it is in generation S4. The �rst handset using the

next generation Qualcomm chipset Snapdragon 600 is Galaxy S4. To construct the quality index for such

a phone, I need to calibrate the chipset generation �xed e�ect. I choose 2.474 for the chipset e�ect, which

is 0.8 larger than the S4 chipset generation e�ect in demand estimates. The incremental increase in the

chipset e�ect in previous generations is less than 0.63. In choosing a large chipset �xed e�ect and hence a

high upper bound for Qualcomm, I err on the side of understating the bene�t of vertical integration.

I stratify points in the con�dence set and sample points from each stratum to conduct counterfac-

tual simulations. In principle, I can approximate the con�dence set of the counterfactual predictions by

using every point in the con�dence set to simulate counterfactual scenarios, but this is computationally

infeasible. The purpose of the strati�ed sampling is to obtain a representative set of parameters from the

con�dence set. Speci�cally, I �rst �nd the centroid of the con�dence set given the distance measure ‖·‖1.

Next, I classify all points in the con�dence set into 5 groups based on the point’s distance to the centroid.

Denote the longest distance as `, group n consists of points whose distance to the centroid is between
n− 1

5
` and n

5
`, inclusive of n

5
`. I then randomly sample 2 points from each group and simulate each
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counterfactual analysis with a total of 10 points in the con�dence set. In Section 6, every sampled point is

used to simulate each scenario 240 times. Increasing the number of strata to 6 and the number of sampled

points to 24 do not signi�cantly change the result.

D Additional Robustness Checks

I conduct three types of robustness checks in this section. First, I re-estimate the static and/or the dy-

namic model and compute counterfactuals for 7 di�erent deviations to the assumptions in the main text.

Secondly, I examine to what extent the model can rationalize the data when the dynamic incentives are

signi�cantly weakened, by estimating the dynamic model when the discount rate is set to be 0.5. Lastly, I

increase the attractiveness of the alternative chipset by decreasing ψ̄ and compute the vertical integration

counterfactual.

The 7 deviations to the assumptions in the main text are listed below. Robustness check 1 examines

whether the results are sensitive to the modeling choice of the disagreement payo� in the bargaining

model. Check 2-3 examine whether the results are sensitive to the potential measurement errors in the

markup data (Qualcomm chipset division gross margins in its quarterly �nancial reports). Check 4 exam-

ines whether the results are robust to the assumption of the �nite horizon assumption. Check 5 examines

the sequential move assumption. Check 6 and 7 examine whether the results are robust to the initial

condition assumptions discussed in Appendix C.

1. Potential quality change at the disagreement point. I further allow the handset quality to decrease

by 0.3 at the disagreement point.

2. The gross margin may overstate the actual Qualcomm chipset markup. I use 0.9×observed margin

to estimate the chipset pricing model.

3. The gross margin may understate the actual Qualcomm chipset markup. I use 1.1×observed margin

to estimate the chipset pricing model.

4. The assumption of the �nite horizon. I extend the game to end 12 months after the end of the sample.

The time �xed e�ects in the demand function from T+1 to T+12 are extrapolated from the demand

estimates in earlier periods.

5. The assumption of the sequential move. I assume that the �rms move in the alternative order of

Qualcomm, HTC, Samsung and Apple.
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6. The initial state value of Qualcomm. I assume that the initial Qualcomm quality is 0.75 quality unit

below its bound.

7. The initial state value of Qualcomm. I assume that the initial Qualcomm quality is 0.50 quality unit

below its bound.

Table 12 reports the estimates in the robustness checks above, in addition to the estimates when the dis-

count factor is set to 0.5. The estimates of the �rst seven checks are similar to Table 6. Tables 13 through

(19) report the counterfactual results. All but one are consistent with the summary in Section 6. In the

third exercise, the range of Samsung and Qualcomm innovation rates based on the sampled points are not

all greater than 0, and neither is the (unreported) consumer and overall welfare measure. The increase in

HTC innovation is still robust.

When the discount rate is lowered in the last column of Table 12, I obtain the implausible result that

increasing Qualcomm quality actually decreases innovation costs. The exercises suggests that dynamic

incentives are important in rationalizing the data.

I also consider the possibility that additional chipset producers may enter and compete with Qualcomm,

if Qualcomm is integrated with HTC. I model this possibility as a decrease in ψ̄. Table 20 reports the results

when ψ̄ is decreased by 10%. The pattern of increased innovation in the event of VI is robust.
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Table 1: Chipset Origin, % of Quantity, 2009 to 1st Quarter 2013

Qualcomm Samsung TI NVIDIA Other
Samsung 47.55 48.96 2.63 0.61 0.25

HTC 98.30 0.00 1.48 0.08 0.14
BlackBerry 48.15 0.00 0.00 0.00 51.85
Motorola 20.81 0.00 64.98 9.85 4.36

LG 92.67 0.00 5.37 1.96 0.00

Table 2: Chipset Announcement and Adoption

Qualcomm Applea Samsung HTC
Qualcomm S1 or equivalent -4 6 6 7
Qualcomm S2 or equivalent 14 18 19 22
Qualcomm S3 or equivalent 20 34 33 30
Qualcomm S4 or equivalent 35 45 43 40
Month 1: Jan 2009
a: Apple uses its own chipsets and the adoption corresponds with the release of new Apple products.

Figure 1: Product Attribute Trends
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Table 3: Total Quantity (Million) and Retail Revenues ($ Billion)

Quantity Retail Revenue
All Generations Generation S1-S4 All Generations Generation S1-S4

Apple 101.35 94.79 14.18 13.57
Samsung 38.97 37.83 4.60 4.51

HTC 30.58 24.67 3.98 3.26
BlackBerry 31.03 3.15 3.43 0.34
Motorola 23.28 20.55 3.34 3.09

LG 13.68 12.83 0.92 0.87
Jan 2009 to Mar 2013 on AT&T, Sprint, T-Mobile and Verizon in US

Table 4: Demand Side Estimates

Est Se

β

Screen Size (inch) 1 -
Chipset Generation S1 0.460 0.113
Chipset Generation S2 0.718 0.147
Chipset Generation S3 1.055 0.200
Chipset Generation S4 1.674 0.280

Camera Resolution (megapixel) 0.093 0.036
Weight (gram) -0.002 0.001

Battery Talk Time (hours) 0.056 0.013
σ Std, Quality 0.300 0.079
β̄0 Mean, Quality 0.779 0.128
α Price ($) 0.007 0.002
θn Apple 2.779 0.094
Carrier year FE, Quarter FE, Samsung, BlackBerry FE

Table 5: Supply Side Estimates

Est Se

λq exp (quality/10) ($) 359.251 3.641
λQ Use Qualcomm? ($) -21.858 0.301
Carrier year FE, Quarter FE, Apple, Samsung, BlackBerry FE

Range Median
τt Bargaining weight [0.28, 0.78] 0.47
ψt Chipset prices ($) [28.71, 51.29] 35.91
Values inverted from the bargaining FOC (10)
τ : across 17 quarters; ψt: all Qualcomm-powered products, 51 months.
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Table 6: Estimates of Innovation Costs

95% Con�dence Set

γ0

Apple [0.36, 0.84]
Samsung [-0.83, 1.05]

HTC [-0.36, 0.61]
Qualcomm [-4.86, -4.64]

γ1

Apple [16.02, 17.52]
Samsung [8.08, 13.18]

HTC [8.38, 10.40]
Qualcomm [6.03, 7.17]

γ2 Samsung [4.10, 5.12]

σ
Handset [4.13, 5.08]

Qualcomm [0.34, 0.61]
I report the min and max of each parameter in
the con�dence set. The con�dence set consists
of a set of vectors of parameters that satisfy (13)
and is not a Cartesian product of the intervals above.

Figure 2: Quality Frontier Evolution
Data
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I plot the brand-�xed e�ect adjusted quality frontiers qnt +
θn

β̄0
in data and simulation. The simulated quality frontier is the average of 960

simulated paths based on a random draw of parameters in the con�dence set. The vertical axis is in the unit of quality indices constructed from
the demand estimates.

Table 7: Simulated Investment Range ($ Billion), Jan 2009 to March 2013

Investment
Apple [6.72, 7.74]

Samsung [1.84, 3.31]
HTC [3.07, 4.75]

Qualcomm [0.61, 0.86]
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Figure 3: Marginal E�ects of Qualities on HTC and Qualcomm Value Functions
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Figure 4: Marginal E�ect of Qualcomm Quality on the Marginal Value of Samsung Innovation
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Table 8: Counterfactual Results: Main Speci�cation, Jan 2009 to Dec 2011
No VI Investment Coordination Full VI

Apple [0.0403, 0.0444] [0.0414, 0.0456] [0.0414, 0.0454]
Samsung [0.1073, 0.1176] [0.1282, 0.1305] [0.1294, 0.1318]

HTC [0.0783, 0.0828] [0.0933, 0.0951] [0.0939, 0.0955]
Innovation Rate: Qualcomm [0.0731, 0.0863] [0.0972, 0.0986] [0.0979, 0.0999]
(q36 − q1) /35 Di�erence %

Apple [1.65%, 2.73%] [-0.38%, 0.00%]
Samsung [9.00%, 21.60%] [0.47%, 1.00%]

HTC [14.13%, 19.27%] [0.12%, 0.71%]
Qualcomm [12.68%, 34.93%] [0.68%, 1.35%]

Consumer Surplus [22.8098, 23.5128] [24.3182, 24.6586] [24.6426, 24.9367]
($ Billion) Di�erence %

[3.52%, 6.61%] [1.02%, 1.33%]

CS+PS [47.3067, 48.5485] [49.8703, 50.5868] [50.2159, 50.8546]
($ Billion) Di�erence %

[2.99%, 5.42%] [0.44%, 0.69%]

Apple [5.0010, 5.7514] [5.4768, 6.1684] [5.4438, 6.1684]
Samsung [1.9861, 2.5103] [2.3619, 2.8610] [2.3818, 2.8867]

HTC [2.8243, 3.3867] [5.0169, 5.1862] [5.1319, 5.2378]
Investment Qualcomm [0.5649, 0.6458] [0.8673, 0.9249] [0.8757, 0.9370]
($ Billion) Di�erence %

Apple [4.90%, 10.64%] [-1.42%, 0.00%]
Samsung [13.97%, 20.24%] [0.30%, 0.90%]

HTC [52.52%, 77.80%] [0.33%, 2.29%]
Qualcomm [36.16%, 63.73%] [0.96%, 1.33%]

Apple [16.2596, 16.7123] [16.0346, 16.5620] [15.9860, 16.4977]
Samsung [5.3042, 5.5648] [5.7950, 6.1004] [5.8327, 6.1299]

Producer Surplus HTC+Qualcomm [2.8294, 2.9857] [3.3428, 3.4171] [3.3946, 3.4574]
($ Billion) Di�erence %

Apple [-1.38%, -0.14%] [-0.41%, -0.25%]
Samsung [4.14%, 15.01%] [-0.19%, 0.68%]

HTC+Qualcomm [13.99%, 18.38%] [0.86%, 1.55%]

Apple [160.2546, 164.0366] [160.0248, 164.2321] [159.8585, 163.9179]
Samsung [224.9629, 231.3038] [239.6018, 245.4518] [241.4173, 247.1854]

HTC [198.1648, 202.4500] [212.1613, 213.7752] [199.4719, 200.7462]
Retail Price ($) Di�erence %

Apple [-0.26%, 0.39%] [-0.19%, -0.09%]
Samsung [3.59%, 9.11%] [0.31%, 0.76%]

HTC [5.43%, 7.22%] [-6.24%, -5.98%]

Samsung [31.3554, 31.3706] [31.4121, 31.4150] [32.4944, 32.5180]
HTC [31.3886, 31.3990] [31.4238, 31.4278] -

Chipset Price ($) Di�erence %
Samsung [0.14%, 0.19%] [3.44%, 3.51%]

HTC [0.09%, 0.11%] -

Proportion of Samsung [0.4473, 0.4895] [0.5651, 0.5889] [0.5679, 0.5908]
Using Qualcomm Di�erence %

[20.30%, 28.24%] [-0.10%, 0.71%]



Table 9: Estimates of Innovation Costs

95% Con�dence Set
With Royalties Additional Handset Makers

γ0

Apple [-0.34, 0.65] [0.06, 0.14]
Samsung [-2.54, 0.01] [1.33, 1.52]

HTC [-0.61, 0.14] [-0.12, 0.07]
Qualcomm [-4.89, -3.58] [-4.15, -3.07]

γ1

Apple [21.65, 25.71] [20.46, 20.96]
Samsung [7.32, 13.08] [3.49, 4.49]

HTC [10.61, 15.87] [10.03, 10.03]
Qualcomm [14.57, 20.20] [4.27, 7.80]

γ2 Samsung [4.86, 5.76] [4.52, 4.71]

σ
Handset [5.39, 6.92] [5.09, 5.77]

Qualcomm [0.97, 3.08] [1.84, 2.52]
I report the min and max of each parameter in the con�dence set.
The con�dence set consists of a set of vectors of parameters
that satisfy (13) and is not a Cartesian product of the intervals above.

Table 10: Counterfactual Results: Royalty Fees, Jan 2009 to Dec 2011

No VI Investment Coordination Full VI

Apple [0.0359, 0.0420] [0.0372, 0.0435] [0.0370, 0.0434]
Samsung [0.0975, 0.1159] [0.1144, 0.1364] [0.1155, 0.1384]

HTC [0.0712, 0.0910] [0.0898, 0.1059] [0.0909, 0.1064]
Innovation Rate: Qualcomm [0.0597, 0.0792] [0.0778, 0.1014] [0.0789, 0.1034]
(q36 − q1) /35 Di�erence %

Apple [2.02%, 3.87%] [-0.81%, -0.27%]
Samsung [15.02%, 21.73%] [0.62%, 1.48%]

HTC [15.05%, 26.08%] [0.24%, 1.22%]
Qualcomm [25.64%, 36.83%] [0.88%, 1.94%]

Consumer Surplus [22.1926, 24.1541] [23.6418, 25.8975] [24.4723, 26.8162]
($ Billion) Di�erence %

[6.35%, 8.06%] [3.44%, 3.72%]

CS+PS [52.1515, 56.1937] [55.1097, 59.5594] [56.1202, 60.6983]
($ Billion) Di�erence %

[5.29%, 6.71%] [1.82%, 1.91%]
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Table 12: Estimates of Innovation Costs : 95% Con�dence Set

(1) (2) (3) (4) (5) (6) (7) β = 0.5

γ0

Apple [-0.25, 0.16] [-0.34, 0.92] [-0.23, 0.53] [-0.43, -0.11] [-0.50, -0.41] [0.53, 0.71] [-0.07, 1.25] [-0.67, 0.98]

Samsung [-0.10, 0.67] [0.94, 1.19] [0.14, 0.89] [0.22, 1.52] [0.32, 1.83] [0.11, 1.95] [0.02, 0.55] [-0.43, -0.18]

HTC [-1.06, -0.06] [-0.94, 0.31] [-0.59, 0.19] [-2.01, 0.39] [-0.13, 0.50] [-0.29, 0.89] [0.18, 1.85] [-0.38, -0.01]

Qualcomm [-3.95, -2.95] [-4.10, -3.80] [-4.21, -3.85] [-3.76, -2.31] [-3.97, -3.72] [-3.91, -3.15] [-3.94, -3.66] [-2.89, -2.89]

γ1

Apple [20.13, 22.11] [19.04, 22.84] [19.88, 23.17] [19.24, 20.25] [25.27, 26.74] [27.88, 29.13] [21.92, 27.68] [29.92, 34.11]

Samsung [10.47, 11.44] [8.01, 12.01] [8.70, 11.19] [6.28, 8.27] [10.60, 11.21] [10.18, 15.87] [10.71, 15.71] [15.07, 15.07]

HTC [10.69, 13.00] [9.59, 13.59] [10.08, 12.87] [9.61, 12.27] [11.63, 12.51] [11.10, 12.10] [9.40, 12.83] [14.44, 15.32]

Qualcomm [5.42, 6.57] [10.19, 12.09] [4.28, 4.90] [10.10, 23.03] [4.41, 4.76] [4.41, 4.84] [4.42, 6.80] [-5.65, -5.03]

γ2 Samsung [4.56, 5.63] [5.28, 6.84] [4.67, 5.42] [4.94, 7.71] [4.52, 5.42] [5.27, 5.69] [4.71, 7.60] [2.95, 3.52]

σ
Handset [4.70, 5.33] [5.08, 5.76] [5.09, 5.88] [4.80, 5.44] [5.74, 6.30] [7.13, 7.54] [6.36, 7.21] [10.80, 10.80]

Qualcomm [0.56, 1.92] [2.25, 3.71] [0.59, 0.73] [3.03, 8.78] [0.80, 0.98] [0.78, 1.71] [1.71, 2.19] [2.07, 2.66]

I report the min and max of each parameter in the con�dence set. The con�dence set consists of a set of vectors of parameters that satisfy (13) and is not a

Cartesian product of the intervals above.

Table 11: Counterfactual Results: Additional Handset Makers, Jan 2009 to Dec 2011

No VI Investment Coordination Full VI

Apple [0.0359, 0.0372] [0.0364, 0.0375] [0.0363, 0.0374]
Samsung [0.0979, 0.1064] [0.1072, 0.1147] [0.1076, 0.1152]

HTC [0.0666, 0.0674] [0.0685, 0.0704] [0.0686, 0.0705]
Innovation Rate: Qualcomm [0.0638, 0.0737] [0.0742, 0.0828] [0.0747, 0.0831]
(q36 − q1) /35 Di�erence %

Apple [0.78%, 1.37%] [-0.32%, -0.08%]
Samsung [7.80%, 9.55%] [0.35%, 0.51%]

HTC [2.06%, 5.69%] [0.00%, 0.16%]
Qualcomm [12.33%, 16.23%] [0.42%, 0.76%]

Consumer Surplus [29.1741, 29.8368] [29.7669, 30.4251] [29.9440, 30.6030]
($ Billion) Di�erence %

[1.97%, 2.31%] [0.58%, 0.62%]

CS+PS [56.5889, 57.5216] [57.4451, 58.3713] [57.5912, 58.5211]
($ Billion) Di�erence %

[1.48%, 1.76%] [0.25%, 0.27%]

49



Table 13: Counterfactual Result, Robustness Check 1

No VI Investment Coordination Full VI

Apple [0.0417, 0.0422] [0.0430, 0.0433] [0.0429, 0.0432]
Samsung [0.1023, 0.1198] [0.1130, 0.1206] [0.1146, 0.1221]

HTC [0.0831, 0.0884] [0.0936, 0.0951] [0.0950, 0.0960]
Innovation Rate: Qualcomm [0.0666, 0.0863] [0.0785, 0.0868] [0.0803, 0.0885]
(q36 − q1) /35 Di�erence %

Apple [2.54%, 3.40%] [-0.47%, -0.20%]
Samsung [-0.65%, 12.41%] [0.86%, 1.49%]

HTC [7.36%, 13.26%] [0.83%, 1.45%]
Qualcomm [-1.64%, 22.39%] [1.35%, 2.28%]

Table 14: Counterfactual Result, Robustness Check 2

No VI Investment Coordination Full VI

Apple [0.0406, 0.0427] [0.0417, 0.0436] [0.0416, 0.0436]
Samsung [0.1037, 0.1125] [0.1454, 0.1479] [0.1458, 0.1488]

HTC [0.0833, 0.0888] [0.0974, 0.0986] [0.0976, 0.0986]
Innovation Rate: Qualcomm [0.0681, 0.0779] [0.1138, 0.1177] [0.1143, 0.1186]
(q36 − q1) /35 Di�erence %

Apple [2.17%, 2.78%] [-0.28%, 0.00%]
Samsung [31.16%, 40.23%] [0.28%, 0.61%]

HTC [10.98%, 16.95%] [0.03%, 0.18%]
Qualcomm [51.06%, 67.08%] [0.43%, 0.79%]

Table 15: Counterfactual Result, Robustness Check 3

No VI Investment Coordination Full VI

Apple [0.0371, 0.0464] [0.0386, 0.0472] [0.0385, 0.0472]
Samsung [0.1042, 0.1153] [0.1067, 0.1082] [0.1070, 0.1085]

HTC [0.0834, 0.0889] [0.0937, 0.0947] [0.0939, 0.0951]
Innovation Rate: Qualcomm [0.0692, 0.0838] [0.0732, 0.0743] [0.0737, 0.0749]
(q36 − q1) /35 Di�erence %

Apple [1.32%, 4.06%] [-0.26%, -0.06%]
Samsung [-7.53%, 3.30%] [0.24%, 0.43%]

HTC [6.09%, 12.69%] [0.12%, 0.43%]
Qualcomm [-11.67%, 6.73%] [0.59%, 0.91%]
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Table 16: Counterfactual Result, Robustness Check 4

No VI Investment Coordination Full VI

Apple [0.0394, 0.0495] [0.0400, 0.0502] [0.0399, 0.0501]
Samsung [0.0928, 0.1091] [0.1290, 0.1587] [0.1297, 0.1594]

HTC [0.0647, 0.0940] [0.0858, 0.1193] [0.0865, 0.1195]
Innovation Rate: Qualcomm [0.0569, 0.0737] [0.0989, 0.1271] [0.0994, 0.1277]
(q36 − q1) /35 Di�erence %

Apple [0.74%, 1.97%] [-0.23%, 0.00%]
Samsung [18.16%, 49.86%] [0.41%, 0.78%]

HTC [18.86%, 32.56%] [0.22%, 0.81%]
Qualcomm [34.18%, 82.60%] [0.45%, 1.14%]

Table 17: Counterfactual Result, Robustness Check 5

No VI Investment Coordination Full VI

Apple [0.0405, 0.0407] [0.0410, 0.0412] [0.0410, 0.0411]
Samsung [0.1030, 0.1070] [0.1149, 0.1178] [0.1155, 0.1180]

HTC [0.0745, 0.0854] [0.0905, 0.0967] [0.0909, 0.0969]
Innovation Rate: Qualcomm [0.0677, 0.0736] [0.0824, 0.0851] [0.0831, 0.0859]
(q36 − q1) /35 Di�erence %

Apple [1.14%, 1.28%] [-0.21%, 0.00%]
Samsung [9.57%, 14.29%] [0.22%, 0.54%]

HTC [13.28%, 21.40%] [0.15%, 0.51%]
Qualcomm [15.65%, 24.21%] [0.55%, 0.88%]
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Table 18: Counterfactual Result, Robustness Check 6

No VI Investment Coordination Full VI

Apple [0.0380, 0.0443] [0.0386, 0.0442] [0.0385, 0.0442]
Samsung [0.0877, 0.1054] [0.1352, 0.1436] [0.1359, 0.1441]

HTC [0.0771, 0.0971] [0.1067, 0.1307] [0.1068, 0.1309]
Innovation Rate: Qualcomm [0.0752, 0.0910] [0.1299, 0.1358] [0.1308, 0.1367]
(q36 − q1) /35 Di�erence %

Apple [-0.34%, 1.68%] [-0.45%, 0.00%]
Samsung [36.28%, 55.74%] [0.30%, 0.53%]

HTC [34.61%, 41.07%] [0.14%, 0.62%]
Qualcomm [46.73%, 74.50%] [0.37%, 0.70%]

Table 19: Counterfactual Result, Robustness Check 7

No VI Investment Coordination Full VI

Apple [0.0401, 0.0477] [0.0404, 0.0476] [0.0404, 0.0475]
Samsung [0.0895, 0.1054] [0.1188, 0.1474] [0.1198, 0.1481]

HTC [0.0566, 0.0778] [0.0667, 0.1062] [0.0667, 0.1066]
Innovation Rate: Qualcomm [0.0906, 0.1067] [0.1200, 0.1510] [0.1209, 0.1518]
(q36 − q1) /35 Di�erence %

Apple [-0.36%, 0.85%] [-0.07%, 0.00%]
Samsung [27.74%, 58.66%] [0.43%, 0.83%]

HTC [17.73%, 42.44%] [0.04%, 0.30%]
Qualcomm [26.20%, 61.58%] [0.51%, 0.78%]
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Table 20: Vertical Integration with Potential Entry. Innovation Rate: (q36 − q1) /35

No VI VI
ψ̄ 0.9ψ̄

Apple [0.0359, 0.0372] [0.0414, 0.0454]
Samsung [0.0979, 0.1064] [0.1314, 0.1288]

HTC [0.0666, 0.0674] [0.0939, 0.0953]
Qualcomm [0.0638, 0.0737] [0.0979, 0.0993]
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