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1 Introduction

It is well understood that banks can provide useful services through both the lending that they

undertake and the deposits that they offer. Yet, most banking models tend to focus only one service

or the other because tractable models that include both have proved to be illusive. In this paper,

we propose a new model that features banks that offer both services and use the model to study

alternative regulations that have been proposed since the global financial crisis.

Our model starts with the setup that was developed by Diamond and Dybvig (1983) that explains

how an intermediary (that we will call a bank) can provide liquidity services to depositors with

uncertain consumption/funding needs. We modify their model so that the bank also raises equity

funding, makes loans that are risky and can invest in safe, liquid assets. We also assume that banks

and borrowers are subject to limited liability so that each of them has incentives to take risks that

they do not fully bear the costs of. We suppose, as in Diamond (1984), that banks monitor the loans

to guarantee that they are repaid. This monitoring expands the supply of credit (relative to world

without banks). However, because the loans are risky and have an uncertain liquidation value,

depositors may opt to run on the bank.

We characterize the run decision by introducing a new type of global game that is inspired

by Goldstein and Pauzner (2005) approach to analyzing Diamond-Dybvig style models. In our

setup, depositors get signals about the value of loans if they are called early to help pay depositors.

Depositors will use a threshold rule in deciding to run that depends on the resources available to

meet a run (the combined value of liquid assets and recalled loans) relative to promised deposit

repayments. The proof that we use to confirm the uniqueness of the threshold is novel and may be

of independent interest for other applications of global games.

In our context, capital and liquidity regulations differently alter the ratio that governs the run.

This property makes the model well-suited to studying the impact of these types of regulations and

makes it easy to understand how the outcomes they deliver compare to the ones that a social planner

would prefer.

We have four main findings. First, both borrowers and banks are prone to take risks that raise

the probability of a run (relative to the allocations that a social planner would choose). This is

largely a consequence of the limited liability protection that allows them to keep the profits that

result from these choices without facing the full costs of the losses that sometimes result. Second,

the banks’ risk-taking happens on both sides of their balance sheets. They opt for a more deposit-

intensive liability mix and more lending-intensive asset mix each of which make the run risk higher

than is it socially optimal. The aggregate size of the banking sector is also unlikely to be consistent

with the scale that a planner would prefer; in our calibrated model, there is less intermediation

(and higher profits from intermediation) than a planner would pick. This is not generically true

and the private equilibrium could feature more intermediation than a planner would select. The

allocations that a planner chooses will depend on how much weight is placed on borrowers versus

savers. Third, individual regulations can be used to move the private choices closer to those that

a planner would choose. But no single regulation can deliver the planning outcomes. Finally, to
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mimic the planners preferred allocations a combination of three regulations are needed to correct

the distortions associated with the bank asset and liability mixes, and the scale of intermediation.

The asset and liability distortions can be corrected using a capital and a liquidity requirement. To

raise or lower the overall size of the banking system other regulations, such as deposit subsidies,

or funding for lending subsidies would be needed. Capital and liquidity requirement are jointly

helpful at reducing run risk, but are less effective at boosting the overall amount of intermediation

which the planner may want to do to expand lending to favor borrowers. To manage the scale of

intermediation, we show other regulations can be helpful.

Our analysis of potential runs can be contrasted to several other approaches that have been devel-

oped in the literature. For instance, a bank-run in our setup can occur because the information about

fundamentals is very bad. Thus, our analysis can be compared to the many prominent papers that

analyze information-based runs such as Chari and Jagannathan (1988), Jacklin and Bhattacharya

(1988), Allen and Gale (1998), Uhlig (2010), Angeloni and Faia (2013) and Boissay, Collard and

Smets (2016).

A bank-run can also potentially occur due to a coordination problem among depositors even if

the bank is solvent in the long-run. This type of run can be interpreted as being panic-based, and

for analyzing this kind of run, it is important to know what determines the panic. In the Diamond-

Dybvig model panics are a multiple equilibrium outcome. Cooper and Ross (1998), Peck and Shell

(2003) and Keister (2015) suppose instead that the probability of a bank-run is driven by sunspots.

In our earlier working paper, Kashyap, Tsomocos and Vardoulakis (2014), in Gertler and Kiyotaki

(2015) and in Choi, Eisenbach and Yorulmazer (2016) the probability of a run is determined by an

exogenous function of key fundamentals.

Ennis and Keister (2005) take an axiomatic approach to equilibrium selection and link the proba-

bility of a particular equilibrium being played to appropriately defined incentives of agents. Instead,

we use the global games approach developed by Morris and Shin (1998) and applied to banks runs

by Goldstein and Pauzner (2005) to derive a unique probability of run which depends on fundamen-

tals. Rochet and Vives (2004) and Vives (2014) also take a global game approach, but delegate the

withdrawal decision to a (deposit) fund manager with a simpler payoff function.

The remainder of the paper is separated into four parts. In section 2, we describe the model

and show the privately optimal choices for the bank, the savers and the entrepreneurs. In section 3

we study the efficient allocations chosen by a social planner and derive expressions for the wedges

between the private and social decisions. In section 4, we explore how regulation can be used to

correct the private inefficiencies. Section 5 concludes by summarizing the main findings, reiterating

the intuition for them, and describing a few directions for future research. All proofs as well as

additional derivations and model extensions are relegated to an online appendix.
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2 Model

The model consists of three periods, t = {1,2,3}, features a single consumption good and includes

three types of (representative) agents; an entrepreneur (E), a saver (S) and a banker (B).

The entrepreneur has access to a productive, but illiquid, risky technology and chooses how

much to borrow to invest in it. Funds invested at date 1 yield A per unit of investment at date 3 with

probability ω (which we call the "good" state of the world) and zero otherwise (the "bad" state). The

project delivers no output at date 2 but it can be liquidated. The liquidation value, ξ, is uncertain

and independent of the productivity shock (A).

The banker manages an institution, which we call a bank, that acts as an intermediary between

the entrepreneurs and savers. The bank is funded by raising equity from the banker and deposits

from the saver.1 The funds raised at date 1 are invested into either a liquid storage asset or in a

loan to the entrepreneur, which the bank can recall in the intermediate period. Moreover, the banker

decides whether to monitor the entrepreneur’s project at t = 3 or not. Monitoring is important

because the productivity shock is private information to the entrepreneur. Without monitoring, the

entrepreneur would report the bad state of the world and default.

The saver has a large endowment at date 1 that is used to fund initial consumption and savings.

The savers have uncertain future consumption needs and, as in Diamond and Dybvig (1983), after

date 1, some fraction will need to consume at t=2 and the rest can wait to consume at date 3. The

saver invests in bank deposits or holds a liquid storage asset. The deposits are demandable, which

is important to provide incentives to the banker to monitor as we describe in detail later.

A loan can be liquidated to pay deposits. Upon being recalled it yields an immediate gross return

ξ. This value is uncertain, and ξ, follows a uniform distribution U ∼
[
ξ,ξ
]

with 0≤ ξ < 1 < ξ and

∆ξ = ξ− ξ. The fact that ξ can exceed 1 will be important in what follows. When a loan is called

the entrepreneur forfeits the portion of the project that is funded by the loan.

Depending on the value of ξ and the rest of its balance sheet, the bank may not have enough

resources to serve withdrawals if all depositors decide to withdraw. Typically, aside from extremely

high or low realizations of ξ, the bank is exposed to self-fulfilling runs: a patient saver will demand

her deposits early if she believes that other patient savers will do the same. In order to address the

coordination problem and obtain a unique equilibrium, we assume that savers receive noisy signals

about the true realization of ξ at t = 2. These signals not only provide information about the fun-

damental ξ, but also about the beliefs of other savers, and so serve to coordinate the patient savers’

decisions. In particular, we show that there is a unique threshold ξ
∗, such that all patient savers

withdraw their deposits when the true realization is below that threshold and keep their deposits

1We assume that savers cannot buy equity in the bank in order to simplify the exposition of our baseline model. In
the online appendix, we present a more complicated model where where the bank raise both inside equity from bankers
and outside equity from savers. Therein, the bank shares purchased by savers are tradable in a frictionless market in the
intermediate period and, thus, also provide liquidity services. Although bank equity can also provide liquidity services,
because it can be traded in a secondary market similar to Jacklin (1987), an all-equity funding structure would not be
optimal in even in this richer setup due to the disciplinary role of runnable debt. Overall, the main results from the model
in the body of the paper continue to hold in the expanded model.
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in the bank otherwise. We will refer to ξ
∗ as the run threshold, while the probability of a run is

q = (ξ∗−ξ)/∆ξ.

The liquidation value can be justified in several ways. For instance, the incomplete project could

have a secondary use in the interim period because it can be used in conjunction with an alternative

short-term technology. Or, we could assume that it can be sold to some outside investors as in

Shleifer and Vishny (1992). In other words, ξ does not strictly represent the salvage value of the

long-term investment, as for example in Cooper and Ross (1998), but rather the liquidation/resale

value of long-term investment. ξ has to be high enough that the bank can always withstand a panic

for some realizations. Yet, ξ has to be low enough that the bank may run out of liquidity even if a

panic does not occur. We describe the importance of these bounds in section 2.4.2

The run threshold depends on the savers beliefs about what they will receive by being patient as

opposed to joining a run. More precisely, they need to form expectations over a variety of possible

outcomes that involve their own utility function, the utility function of the entrepreneur and the

production function. Essentially, to judge the risk of the period 3 deposits, the saver needs to infer

the bank’s profitability and its balance sheet, which will depend on the entrepreneurs’ loan demand.

In turn, the loan demand depends on the curvature of the entrepreneurs’ utility function and the

shape of the production function. The potential payoffs for period 3 deposits can then be contrasted

to the value of withdrawing early. This comparison will depend on the depositors’ attitudes towards

risks in period 2 versus 3. Moreover, the run risk will enter into the welfare calculation of savers

and entrepreneurs, and the planner will account for this dependence in choosing allocations.

We will make three assumptions to make these calculations as simple as possible, essentially

by making the key schedules that are relevant for these expectations and comparisons linear. The

main cost of assuming linearity is that it leaves savers and entrepreneurs at a point where they

break-even from their savings and borrowing choices. This means that intermediation generates no

surplus for them. The absence of any surplus does not distort the basic properties of the private

equilibrium, but it does have powerful implications for the nature of optimal regulation. So we

reintroduce curvature into the savers’ and entrepreneurs’ problems in other ways that make the

results less extreme without complicating either the calculations of the expectations that matter for

the run threshold or the derivations of distortions that motivate policy interventions. We will clearly

identify and explain each of the three assumptions as we describe the rest of the model, but none of

them are responsible for any of our main results.

Figure 1 presents the timeline of the model. Sections 2.1-2.4 describe the agents’ optimization

problems and the determination of the run threshold. We will see that solving for the indirect utility

2Our model can easily be adjusted to make the liquidation value depend on the expected value of the loans, i.e,
ξ ·ω(1+ rI), where rI is the loan rate and ω is the good state where the loan is repaid. Then, ξ would capture the
fraction (between 0 and 1) of the expected value that can be obtained at liquidation. The liquidation value would vary
because ξ varies. Given that the expected value of loans is higher than one, the two approaches would yield qualitatively
similar results. Alternatively, we could have assumed that ξ does not vary, but the probability distribution ω̃ varies as
in Goldstein and Pauzner (2005). Then, the liquidation value would continuously vary with the realization of the true
probability distribution ω. The upper and lower dominance regions in the incomplete information game would still be
endogenously determined in these cases. Matta and Perotti (2016) also consider runs resulting from assets liquidity risk
and study how secured debt can adversely impact the incentives to run.
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t = 1

E borrows and invests in risky project
S invest in demandable bank deposits

and potentially in the liquid asset
B raises equity and deposits and

invests in loans and liquid assets

t = 2

S learn their type
S receive noisy signals about ξ

and decide whether to withdraw
B recalls loans and pays withdrawals
If ξ < ξ

∗, a run occurs

t = 3

State of the world is determined
E privately learns the realization
B decides whether to monitor
Loans and deposits are repaid in the

good state and default in the bad

Figure 1: Model Timeline

functions of the savers and entrepreneurs facilitates much of the ensuing analysis. So those will be

two of the key objects that we derive. Section 2.5 defines and characterizes the private equilibrium.

2.1 Savers

The savers are endowed with eS at t = 1 and decide how much of their endowment to invest in bank

deposits, D, and how much to hold in the liquid storage technology, LIQS. respectively. At t = 2,

a portion of savers, δ, receive a preference shock to consume immediately, while the rest, 1− δ,

want to consume at t = 3. The preference shock is private information, i.i.d. and is not contractible

ex-ante.

Deposits are demandable, early withdrawals are serviced sequentially, and the t = 2 and t = 3

non-contingent interest rates are rD and r̄D respectively. This contract structure creates the possibil-

ity of a run, since patient savers may choose to demand their deposits early depending on their own

information and their expectations about the actions of other patient savers.

We denote all variables that are not (pre-)determined at t = 1 as functions of the liquidation

value, ξ, and the portion of savers who decide to withdraw at t = 2, λ ∈ [δ,1]. In equilibrium, either

all savers choose to withdraw, λ = 1, or only the impatient savers withdraw, λ = δ. However, the

out-of-equilibrium beliefs, which play an important role in the determination of the run probability,

depend on the conjectured portion of savers withdrawing. This conjecture can be anywhere between

δ and 1.

It is instructive to review each of the different scenarios. If there is no run, i.e., ξ ∈
[
ξ
∗,ξ
]
, only

impatient depositors withdraw and they receive the full amount of promised payment, D(1+ rD).

Patient depositors’ repayments will depend on the realization of the technology shock in the next

period. In a run, all depositors attempt to withdraw and there is probability θ(ξ,1) that any depositor

is repaid.3 Conditional on the bank surviving to t = 3 patient depositors receive their promised

payment, D(1+ r̄D), with probability ω and zero otherwise.

Savers have quasi-linear preferences for consumption in all periods, such that they value con-

sumption linearly at t = 2 and t = 3. This is the first of the three aforementioned assumptions

that make our numerical calculations easier. This assumption greatly simplifies the patient savers’

3This probability of receiving payment when fundamental are ξ and λ savers withdraw is denoted by θ(ξ,λ) and is
determined by equation (10), derived in section 2.3. In a run all savers attempt to withdraw, λ = 1, hence the probability
of being repaid is θ(ξ,1).
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decision about whether to join a run because it means that all that must be computed is the ex-

pected payoff from the deposit in period 2 versus 3. In contrast, if the savers were risk-averse, then

finding the threshold that determines whether to run is much more complicated. The complication

arises because a patient saver needs to compute her expected utility differential between waiting

and withdrawing accounting for all possible out-of-equilibrium beliefs about the actions of other

savers. Computing the expected deposit payoffs is a lot simpler that computing the expectation of a

non-linear function of the deposit payoffs. Moreover, quasi-linearity yields a very tractable deposit

supply schedule, which substantially simplifies the normative analysis of alternative regulations.

The disadvantage of the linearity assumption is that it greatly degrades the usefulness of a de-

posit to a saver. Essentially, the deposit becomes a pure financial instrument whose only value is

that it pays more interest than the liquid asset. Put differently, the deposit essentially would be

equivalent to a bond.

To make deposits more useful, we assume that for impatient savers there is a transactional

advantage to having a deposit instead of a liquid asset in normal situations where there is no run.

For now, we suppose that this advantage is described by a concave function V that is increasing

in the amount withdrawn, D(1+ rD). This additional benefit of deposits partially offsets the stark

implications of the linearity assumption for savers’ utility while still making it simple to solve for

the run threshold. Modeling things this way leads to no qualitative changes relative to a model with

concave utility and no transactions services, but makes it substantially easier and faster to solve the

model.

The expected utility of an individual saver is given by

US =

Utility at t = 1︷ ︸︸ ︷
U (eS−D−LIQS)+

run︷ ︸︸ ︷∫
ξ
∗

ξ

[
βδ+β

2(1−δ)
]
· [θ(ξ,1) ·D(1+ rD)+LIQS]

dξ

∆ξ

+
∫

ξ

ξ
∗

βδ [D(1+ rD)+LIQS]
dξ

∆ξ︸ ︷︷ ︸
no run,impatient

+
∫

ξ

ξ
∗

β
2(1−δ) [ω ·D(1+ r̄D)+LIQS]

dξ

∆ξ︸ ︷︷ ︸
no run,patient

+
∫

ξ

ξ
∗

V (D(1+ rD))
dξ

∆ξ︸ ︷︷ ︸
transaction services

,

(1)

where U(·) is the utility function for t = 0 consumption with U ′(·)> 0 and U ′′(·)< 0; V (·) captures

the transaction services of deposits with V (0) = 0, V ′(·)> 0 and V ′′(·)< 0; and β ≤ 1 is the time-

discount factor.

Savers choose the level of deposits and their holdings of the liquid asset to maximize (1). An

individual saver takes the run threshold, ξ
∗ and the probability of being repaid in a run, θ(ξ,1) as

given. These objects depend on the aggregate bank portfolio and we suppose that the individual

saver is sufficiently small so as to not account for her impact on them. In contrast, a social planner

would internalize the effect of the choices. Finally, short-selling of deposits and the liquid asset is

not allowed, i.e., D≥ 0 and LIQS ≥ 0.
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The optimal choice of deposits by S yields the following deposit supply (DS) schedule:

U ′(eS−D−LIQS)≥
[
βδ+β

2(1−δ)
]
(1+ rD)

∫
ξ
∗

ξ

θ(ξ,1)
dξ

∆ξ

+
[
βδ(1+ rD)+β

2(1−δ)ω(1+ r̄D)+V ′ (D(1+ rD))(1+ rD)
]
(1−q), (2)

which holds with strict equality if savers choose to hold deposits in equilibrium, i.e., D > 0. Condi-

tion (2) says that savers equate the marginal utility of forgone consumption at t = 1 to the expected

marginal utility gain from holding deposits in the future. In a run, all savers withdraw; an individual

saver will receive 1+ rD per unit of deposits with probability θ(ξ,1) for each realization of ξ below

the run threshold ξ
∗. Otherwise, a run does not occur, which happens with probability 1− q, and

only impatient savers withdraw in equilibrium. In this case, an individual saver is either impatient

with probability δ and receives the period 2 deposit rate 1+ rD or is patient with probability 1− δ

and receives the period 3 deposit rate 1+ rD with probability ω. Absent a run, S also enjoys the

marginal benefit of transaction services, V ′ (D(1+ rD))(1+ rD).

Savers can choose to self-insure and hold the liquid asset. The optimal liquid holdings, LIQS,

are given by:

U ′(eS−D−LIQS)≥ βδ+β
2(1−δ), (3)

which holds with strict equality if savers choose to self-insure in equilibrium, i.e., LIQS > 0. Unless

stated otherwise, we consider cases that savers do not want to hold the liquid asset, but want to

hold deposits, i.e., (2) hold with equality, while (3) is slack. They will choose to do this when their

endowments are not excessive, when banks offer high enough deposit rates or when transaction

services are sufficiently valuable.

Substituting the deposit schedule (2) in (1) and using the definition of run probability q, we get

the following indirect utility function,

U∗S =U(es−D)+U ′(es−D)D+(1−q)
[
V (D(1+ rD))−V ′ (D(1+ rD))D(1+ rD)

]
, (4)

for the benchmark case that LIQS = 0.4 Given our assumptions about V (·), it is easy to show that

the third term in (4) is strictly positive.5 Moreover, the first two terms in (4) must be higher than

Uα
S (the utility level from saving only using liquid assets), otherwise savers could self-insure using

the liquid asset and attain that level of utility. Hence, savers are always better-off using the bank

4For completeness, if LIQS > 0 then the savers’ indirect utility is Uα
S + (1 −

q)
[
V (D(1+ rD))−V ′ (D(1+ rD))D(1+ rD)

]
, where Uα

S is the utility in autarky, where savers only use the liquid
asset to smooth intertemporal consumption. The autarkic utility is Uα

S = U(U ′−1(βδ+β
2(1− δ)))+ [βδ+β

2(1− δ)] ·
[eS −U ′−1(βδ+ β

2(1− δ))]. Alternatively, savers could attempt to directly lend to entrepreneurs assuming that they
could also monitor them. We present this case in Section B.7 the online appendix.

5Given that D > 0, the term can be written as (1− q)D[V (D)/D−V ′(D)]. Because V (0) = 0, V (D)/D is the slope
of the straight line starting at zero and passing through D. Given that V is strictly concave, its image is always above the
image of the straight line for any point x ∈ (0,D). Because V ′ is strictly decreasing, V will necessarily cross the straight
line connecting zero and D from above and, hence, the derivative of V at D is strictly smaller than the slope of the straight
line.
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compared to autarky.

Even with our simplifying assumptions, this framework produces an equilibrium and a set of

decision rules for savers that have very sensible, intuitive properties. In particular, savers use the

bank because it offers a better way to save for the future and because it facilitates transactions. The

former is captured by the gain/surplus in terms of period 1 consumption (the first two terms in (4)).

The latter is captured by the gain/surplus from the transaction services (the last term in (4)).

2.2 Entrepreneurs

Entrepreneurs have the rights to operate real projects that are in perfectly elastic supply, require a

unit of funding at t = 1, are infinitely divisible when liquidated, and mature at t = 3. For simplicity,

E does not have an endowment, but borrows I from the bank at interest rate rI to invest in the risky

technology. Moreover, E is risk-neutral and derives utility only from consumption at t = 3. Finally,

E is protected by limited liability when projects mature and loans are due.

The risk neutrality of entrepreneurs together with the absence of initial endowment is our second

simplifying assumption. Risk neutrality means that the entrepreneur cares only about the expected

profits from operating the technology. The absence of an endowment means that the decision to

default will depend only on the productivity of the technology, and not on entrepreneurs’ leverage.

More importantly, the savers also know that the entrepreneurs’ loan demand and decision to default

depend only on the expected value of profits. Otherwise, the savers run decision becomes more

intertwined with how much the entrepreneur wants to borrow and the relative risk-aversion of the

two parties will matter for how risks are shared.

The linearity of the production function for the technology is the last of our three simplifying

technical assumptions. This assumption pushes the entrepreneur to borrow as much as possible

and simplifies the derivation of the loan demand. Unfortunately, the linearity also means that the

loan rate that the bank will choose will depend only on the technology shock. Were the production

function to have any curvature, then that curvature would be an important determinant of the level

of loan demand and the interest rate on loans. However, in that case, the relative curvature of the

production function would non-trivially complicate the loan demand as well as the determination of

banking allocations even with risk-neutral savers and entrepreneurs.

This complication arises because the realized level of total production depends on the decision

of the bank to recall loans, which happens after the realization of the liquidation value of loans,

ξ. The loan demand trades off the expected revenue from borrowing to produce against the cost

of repaying the loan. And it is much easier to compute the expected profits to entrepreneurs over

the realization ξ ≥ ξ
∗ when production is linear rather than when it is a non-linear function of the

number of projects that are not recalled.

In order, to make loan demand less mechanical while still making it straightforward to solve for

expected loan demand, we introduce a cost of effort that the entrepreneur incurs upon investing. We

suppose that this cost is convex and is recognized before the payoff from the investment is known;

we could also call this cost an adjustment cost. The cost now becomes another factor that matters
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for loan demand and the interest rate charged will depend on the marginal adjustment cost that must

be paid. We assume that this cost is convex and it pertains to total investment.

The expected utility of an individual entrepreneur can be written as:

UE =
∫

ξ

ξ
∗
{ω · [A · (1− y(ξ,δ)) · I︸ ︷︷ ︸

realized output

−(1− y(ξ,δ)) · I · (1+ rI)︸ ︷︷ ︸
loan obligation

]− c(I)︸︷︷︸
cost

}dξ

∆ξ

, (5)

where y(ξ,λ) is the portion of loans that the bank recalls to serve early withdrawals, given by

equation (11) derived in section 2.3. If a run does not occur, E repays the outstanding loans in the

good state, (1− y(ξ,δ))I, as long as the per unit payoff, A, is higher than the promised gross loan

rate 1+ rI . Naturally, E defaults in the bad state when the project pays zero. In a run, all projects

funded by bank loans are liquidated, i.e., y(ξ,1) = 1 for all ξ < ξ
∗, and no production takes place.

Finally, c(I) is the effort cost with c(0) = 0, c′(·) > 0 and c′′(·) > 0.6 E needs to incur this cost in

order to produce before she learns the realization of the state of the world and after run uncertainty

has been resolved. Hence, E will choose not to exert effort and thereby avoid the cost in a run (when

all her loans are recalled). Absent a run, given that the net payoff to E is increasing in ξ, she will

choose to produce if the following incentive compatibility constraint holds:

ω [A− (1+ rI)] (1− y(ξ∗,δ))I− c(I)≥ 0. (6)

Entrepreneurs choose the level of investment and, thus, borrowing, I, to maximize (5). An in-

dividual entrepreneur takes the run threshold, ξ
∗ and the aggregate portion of loans recalled, y(ξ,δ)

as given. These objects depend on the aggregate bank portfolio and we suppose that the individual

entrepreneur is sufficiently small so as to not account for her impact on them. A social planner

would internalize the effect of the choices.

The optimal choice of I by E yields the following loan demand (LD) schedule:

∫
ξ

ξ
∗
{ω[A− (1+ rI)](1− y(ξ,δ))− c′(I)}dξ

∆ξ

= 0. (7)

Condition (7) says that E equates the expected profit margin on the remaining projects–given by

the difference between the marginal product of investment and the gross loan rate–to the marginal

effort cost over the realizations of ξ where a run does not materialize.

Substituting the loan demand schedule (7) in (5) and using the definition of the run probability,

q, we get the following indirect utility function

U∗E = (1−q)
[
c′(I)I− c(I)

]
, (8)

6As we show in Corollary 3 later on, the adjustment cost matters for policy analysis, because without it the en-
trepreneur borrowers to the point of paying out all proceeds to the bank. In this case, the entrepreneur essentially drops
out of the problem. We could also assume that the cost depends only on portion of investment not recalled, which would
complicate the analysis but would create the same motive for a planner to take account of the entrepreneurs as in the setup
we analyze.
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which is the surplus accruing to the entrepreneur when a run does not occur. Given our assumptions

about c(·), it is easy to show that (8) is always strictly positive, i.e., E is strictly better-off than in

autarky where E ′s utility is zero.7 If effort is costless, then U∗E = 0 and the loan rate is equated to

the marginal product of the project, i.e., 1+ rI = A from (7).

Despite our simplifying assumptions about entrepreneurs’ preferences and shape of the produc-

tion function, the entrepreneurs make choices that are very conventional. Their surplus from oper-

ating is increasing in the amount of investment and decreasing in the probability of a run. Hence,

entrepreneurs’ welfare in equilibrium depends critically on the risk of a run. Our assumptions allow

us to capture these relationships in a very tractable way in (8). They also allow us to cleanly identify

the distortions that any policies will aim to correct.

2.3 Bankers and Banks

The banker makes all investment and funding decisions to maximize her own utility. At t = 1, she

is endowed with eB and decides how much equity, E, to put into the bank. In addition, she decides

how many deposits to raise, D, and decides how much to invest in the liquid assets, LIQ, and illiquid

loans, I, subject to the following balance sheet (BS) constraint:

I +LIQ = D+E. (9)

The balance sheet and profits/dividends after t=2 depend on the realization of ξ and the number

of people withdrawing, λ. If a bank-run occurs, i.e., ξ < ξ
∗, then the bank is liquidated and the

proceeds are distributed according to a sequential service constraint. Thus, the probability that any

saver is served is equal to

θ(ξ,λ) =
LIQ+ξ · I

λ ·D · (1+ rD)
. (10)

If there is not a run, i.e., ξ ≥ ξ
∗, the bank will recall and liquidate a portion y(ξ,λ) of its loan

portfolio to serve the early withdrawals. The amount recalled is given by

y(ξ,λ) =
λ ·D · (1+ rD)−LIQ

ξ · I
. (11)

Our assumptions regarding the distribution of ξ imply that lending is sufficiently attractive that the

bank will opt to hold insufficient liquid assets to service all early deposit withdrawals even when

only the impatient savers withdraw. So the bank is always planning to call some loans. In principle,

the bank might also want to liquidate loans beyond the need to serve early withdrawals and carry

the proceeds forward using the storage technology. But this would only occur if the realization of

ξ is higher than the expected return from holding the loan to maturity, which we have excluded

7To show that (8) is strictly positive it suffices to show that c′(I)− c(I)/I > 0 given that I > 0; otherwise E is in
autarky (short-selling of projects is not allowed). Because c(0) = 0, c(I)/I is the slope of the straight line starting at zero
and passing through I. Given that c is strictly convex, its image is always below the image of the straight line for any
point x ∈ (0, I). Because c′ is strictly increasing, c will necessarily cross the straight line connecting zero and I from
below and, hence, the derivative of c at I is strictly higher than the slope of the straight line.
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by assumption. As a result, y(ξ,λ) will take interior values between zero and one, and it will be

decreasing in ξ and increasing in λ.

The dividends the banker receives in the good state of the world at t = 3 are equal to the re-

payment on the remaining loans minus the payment on the remaining deposits. In the bad state,

B defaults, so the dividends zero. The banker needs to incur a monitoring cost, X , to learn the

true state of the world. Alternatively, the banker can forgo the monitoring, in which case the en-

trepreneur will report that productivity was zero and default, even if the good state of the world

materialized. Hence, there is a moral hazard problem in which the banker will choose to monitor

only if the expected dividends are higher than the monitoring cost.8

Given a level for the liquidation value ξ and the number of withdrawals λ, the banker will choose

to monitor if the following incentive compatibility constraint is satisfied:

ω [(1− y(ξ,λ))I(1+ rI)− (1−λ)D(1+ r̄D)]−X ≥ 0. (12)

The first term in (12) is the expected payoff to the banker if she monitors. It is multiplied by ω

because the banker has to decide whether to monitor before she learns the true state of the world

and so she takes an expectation. The second term, X , is the monitoring cost.

Using (11) and the fact that (12) is decreasing in λ, we can derive a threshold λ̂(ξ), such that the

banker chooses to monitor for λ≤ λ̂:

λ̂(ξ) =
(ξ · I +LIQ)(1+ rI)−ξ(D(1+ r̄D)+X/ω)

D[(1+ rD)(1+ rI)−ξ(1+ r̄D)]
. (13)

Note that this threshold is consistent with all out-of-equilibrium beliefs of savers that govern their

decision to withdraw or keep their deposits in the bank, which we describe in section 2.4. In equi-

librium, only impatient depositors will withdraw when ξ ≥ ξ
∗. In turn, consistency requires that

the bank always chooses to monitor when a run does not occur. Indeed, from the determination of

the run threshold in (20) below, we obtain that δ < λ̂(ξ∗), i.e., banker’s monitoring incentives are

consistent with the equilibrium behavior of savers.9

Overall, the banker’s expected utility is given by:

UB =W (eB−E)+
∫

ξ

ξ
∗
{ω · [(1− y(ξ,δ)) · I︸ ︷︷ ︸

outstanding loans

·(1+ rI)︸ ︷︷ ︸
loan rate

− (1−δ) ·D︸ ︷︷ ︸
patient deposits

· (1+ r̄D)︸ ︷︷ ︸
deposit rate

]− X︸︷︷︸
monit.
cost

}dξ

∆ξ

, (14)

where W (·) is B′s utility function for t = 0, with W ′(·)> 0 and W ′′(·), which may differ from U(·)
of the savers. The banker has also quasi-linear preferences, but unlike the saver, never needs to

8The productivity level is common across projects. Therefore, as in Diamond (1984), monitoring costs are conserved
by having a bank monitor all borrowers, relative to having individual lenders monitor individual borrowers. Thus, the
bank monitoring expands the supply of credit.

9In equilibrium, monitoring requires that ω [(1− y(ξ,δ))I(1+ rI)− (1−δ)D(1+ r̄D)]−X ≥ 0 for all ξ ≥ ξ
∗. How-

ever, it suffices that the constraint only holds for ξ
∗, because dividends are increasing in ξ. In turn, this is guaranteed by

the fact that δ < λ̂(ξ∗).
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consume in the interim period.

2.4 Global Game and Bank-run Threshold

Having described the choices facing all of the agents in the economy, we can now determine when

individual patient savers will want to withdraw her deposits at t = 2. The decision depends not

only on the saver’s belief about the bank’s financial health, but also on their beliefs about how other

savers’ will behave. The source of fundamental uncertainty in our model is the liquidation value ξ.

Apart from really high or low realization of ξ, multiple equilbria arise when savers have complete

information about the realization of ξ. The outcomes for the extremely low and high realizations

are known as the lower and upper dominance regions, and their existence is critical for obtaining a

run threshold (see Lemma 1 for formal derivations).

The lower dominance region is defined by a threshold ξ
ld for fundamentals such that every

individual patient saver will withdraw her deposits when ξ < ξ
ld , irrespective of what other patient

savers do. This region occurs naturally if signal about liquidation value is sufficiently bad, because

if depositors believe the recalled loans have very little value then they may conclude that even the

impatient depositors cannot be fully paid. In that case, the bank is going to fail so attempting to

withdraw is the dominant strategy.

The upper dominance region is defined by a threshold ξ
ud for fundamentals such that every indi-

vidual patient saver will not withdraw her deposits when ξ > ξ
ud , irrespective of what other patient

savers do. Intuitively, this occurs when the liquidation value is so high that even if everyone were

to run, the bank would be able to pay them. In that case, running makes no sense. Allowing the

liquidation value of loan to vary, enables us to obtain endogenously a well-defined upper dominance

threshold. In Goldstein-Paunzer, the upper dominance is exogenously assumed because the liqui-

dation value is not allowed to vary. However, our modification complicates the proof of uniqueness

for the run threshold, and a new argument is needed, which we present below.

Aside from the two extreme cases, for intermediate values of fundamentals, the bank cannot

serve all early withdrawals, and a patient saver may decide to withdraw her deposits if she believes

that other patient savers will withdraw as well. In order to resolve this coordination problem, we

assume that at t = 2, each patient saver i receives a private signal xi = ξ+εi, where εi are small error

terms that are independently and uniformly distributed over [−ε,ε]. These signals not only provide

information about ξ, but also about other savers’ signals, so that inference about their actions is

possible. The higher the signal is, the higher is the posterior belief about ξ and the smaller is

the likelihood that other savers receive bad enough signals so that they will opt to withdraw. Both

effects reduce the incentive to withdraw. As a result, the incomplete information leads patient savers

to coordinate their actions so that they withdraw if fundamentals are below a threshold. These

incomplete information games are known in the literature as global games (see also Carlsson and

van Damme, 1993).

We seek a symmetric equilibrium characterized by two thresholds (x∗,ξ∗) such that: an individ-

ual patient saver will withdraw her deposits if her private signal realization xi is lower than x∗ and
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the bank will experience a run at t = 2, and be liquidated, if the realization of ξ is below ξ
∗.

Under such a threshold strategy, the number of savers that withdraw at a given level of funda-

mentals ξ is

λ(ξ,x∗) =


1 if ξ < x∗− ε

δ+(1−δ)Prob(xi ≤ x∗) if x∗− ε≤ ξ≤ x∗+ ε

δ if ξ > x∗+ ε

. (15)

If the fundamental value ξ is lower than x∗− ε, then all savers receive signals xi < x∗. Hence, all

patient savers withdraw and λ(ξ,x∗) = 1. The opposite is true for ξ > x∗+ ε. In this case, all

patient savers receive signals xi > x∗ and keep their deposits in the bank and only the impatient ones

withdraw, λ(ξ,x∗) = δ. Finally, if fundamentals are close to x∗, i.e., ξ ∈ [x∗−ε,x∗+ε], some patient

savers will receive signals that are lower than x∗ and, thus, will withdraw their deposits; and others

will receive a signal higher than x∗ and, thus, will keep their deposits in the bank. Because εi, the

noise in the private signals, is independently and identically distributed, the law of large numbers

holds. This means the number of savers withdrawing for a given level of ξ in the intermediate region

is λ(ξ,x∗) = δ+(1−δ)Prob(xi ≤ x∗) = δ+(1−δ)(x∗−ξ+ ε)/2ε.

The signal and fundamentals thresholds are derived in two steps as follows. First, given the

threshold strategy x∗, we can derive the threshold for fundamentals, ξ
∗, which determines whether

the bank is fully liquidated at t = 2 or survives to t = 3. Because the number of savers withdrawing

is decreasing in ξ from (15), the bank is fully liquidated only if ξ < ξ
∗. That is, ξ

∗ as a function of

x∗ is the solution to θ
(
ξ
∗,λ
(
ξ
∗,x∗

))
= 1, which from (10) gives:

ξ
∗ =

ε [(1+δ)D(1+ rD)−2 ·LIQ]+ x∗(1−δ)D(1+ rD)

2εI +(1−δ)D(1+ rD)
. (16)

In other words, for threshold strategy x∗, if ξ is lower than ξ
∗, then the numbers of savers withdraw-

ing are owed more than the bank can pay even by liquidating all of its assets. Alternatively, if ξ is

higher than ξ
∗, fewer savers withdraw, allowing the bank to liquidate fewer assets and survive to

t = 3.

Next, given the fundamentals threshold ξ
∗, an individual saver can compute the signal threshold

x∗, below which is it optimal to withdraw conditional on its expectation over the number of savers

withdrawing and the private signal she receives. The threshold x∗ depends on the utility differential

between keeping the deposits in the bank and withdrawing. We denote this differential by ν(ξ,λ)

and report in (17) the value it takes for different levels of withdrawals λ when fundamentals are ξ:

ν(ξ,λ) =


ωD(1+ r̄D)−D(1+ rD) if λ̂(ξ)≥ λ≥ δ

−D(1+ rD) if θ(ξ,1)≥ λ > λ̂(ξ)

−(LIQ+ξ · I)/λ if 1≥ λ > θ(ξ,1)

. (17)

Consider the first two cases, where there are fewer withdrawals than the maximum that the bank

14



can repay in full, i.e., λ≤ θ(ξ,1). If λ≤ λ̂(ξ), the banker chooses to monitor, and S expects to get

ωD(1+ r̄D) if she waits, or D(1+ rD) if she withdraws her deposits. Hence, the utility differential

is ωD(1+ r̄D)−D(1+ rD). We call this region of λ
′s a partial run with monitoring. On the other

hand, if λ > λ̂(ξ), then the banker will not monitor and S get nothing if she chooses to wait. Thus,

the utility differential is −D(1+ rD). We call this region of λ
′s a partial run without monitoring.

Finally, if λ > θ(ξ,1), the bank cannot fully repay all savers that withdraw and it is liquidated. S

get zero if she waits and is repaid with probability θ(ξ,λ), yielding, in expectation, a payoff of

θ(ξ,λ)D(1+ rD) = (LIQ+ξ · I)/λ. Hence, the utility differential between waiting and withdrawing

is equal to −(LIQ+ξ · I)/λ. We call this region of λ
′s a full run. The following Lemma examines

in which of these three regions ν may lie for different levels of ξ.

Lemma 1. Consider X < X, where X � 0 is an upper threshold for the monitoring cost. For ξ < ξ̂

only the full run region is non-empty, i.e., λ̂(ξ)< δ and θ(ξ,1)< δ; ξ̂ is the solution to θ(ξ̂,1) = δ.

For ξ ∈ [ξ̂,ξld), only the partial run without monitoring and full run regions are non-empty, i.e.,

λ̂(ξ) < δ < θ(ξ,1) < 1; ξ
ld is the solution to λ̂(ξld) = δ. For ξ ∈ [ξld ,

ˆ̂
ξ), all three regions are

non-empty, i.e., δ ≤ λ̂(ξ) < θ(ξ,1) < 1; ˆ̂
ξ is the solution to θ(

ˆ̂
ξ,1) = 1. For ξ ∈ [

ˆ̂
ξ,ξud), only the

partial run with and without monitoring regions are non-empty, i.e., δ < λ̂(ξud) < 1 ≤ θ(ξ,1); ξ
ud

is the solution to λ̂(ξud) = 1. For ξ > ξ
ud , only the partial run with monitoring region in non-empty,

i.e., λ̂(ξ)> 1 and θ(ξ,1)> 1.

Lemma 1 says that when fundamentals are very bad, an individual saver’s beliefs are only con-

sistent with aggregate withdrawal behavior in a full run. As fundamentals improve, her beliefs are

consistent with other run regions as well, while when fundamentals are very good, beliefs are only

consistent with the partial run with monitoring occurring. In particular, a patient saver will withdraw

for ξ < ξ
ld , and will wait for ξ > ξ

ud , irrespective of the actions of other savers.

To understand the decision to withdraw, consider an individual patient saver who receives signal

xi. The saver will use the signal to update her beliefs about the realization of ξ. Given that both

ξ and εi are uniformly distributed, the posterior distribution of ξ given xi is ξ |xi ∼U [xi− ε,xi + ε] .

This implies that the utility differential between waiting and withdrawing for a patient saver who

receives signal xi as a function of the cutoff value for running is

∆(xi,x∗) =
1
2ε

∫ xi+ε

xi−ε

ν(ξ,λ(ξ,x∗))dξ. (18)

In a threshold equilibrium, a patient saver prefers to withdraw, i.e., ∆(xi,x∗)<0, for all xi < x∗,

and prefers to roll over, i.e., ∆(xi,x∗) > 0, for all xi > x∗. ∆(xi,x∗) is continuous in xi, because

a change in the signal only changes the limits of integration [xi− ε,xi + ε] and the integrand is

bounded. Hence, a patient saver that receives signal xi = x∗ is indifferent between waiting and

withdrawing if

∆(x∗,x∗) =
1
2ε

∫ x∗+ε

x∗−ε

ν(ξ,λ(ξ,x∗))dξ = 0. (19)

Equations (16) and (19) jointly determine the fundamentals’ threshold, ξ
∗, and the threshold
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strategy, x∗. We need to show that these thresholds exist and that they are unique. In the body of

the paper, we provide the intuition underlying the proof and we provide the details in the online

appendix.

Solving for x∗(ξ∗) from (16) and substituting it in (19), we obtain a single equilibrium condition

in terms of fundamentals’ threshold ξ
∗, i.e., ∆̄(ξ∗,ξ∗) = ∆(x∗(ξ∗),x∗(ξ∗)) = 0. We need to show

that such a ξ
∗ is unique and that it is indeed a threshold equilibrium. The typical approach in the

global games literature considers cases characterized by global strategic complementarities and state

monotonicity (see Morris and Shin, 2003, for details). The first property requires that v(ξ,λ) is de-

creasing in λ, i.e., the relative payoff from withdrawing is higher when there are more withdrawals.

The second property requires that v(ξ,λ) is non-decreasing in ξ and strictly increasing for some ξ,

i.e., the relative payoff from waiting is higher when fundamentals are stronger. We these properties

obtain, the proof goes as follows: From the existence of lower and upper dominance regions, ∆̄

is negative for low values and positive for high values of ξ, and, thus, there exists a solution ξ
∗

due to monotonicity. Moreover, from the strict monotonicity property, ∆̂ is strictly increasing and,

thus, the candidate solution ξ
∗ is unique. This in turn implies a unique strategy threshold x∗(ξ∗).

This candidate solution is indeed a threshold equilibrium if (18) is higher than (19) for xi > x∗(ξ∗)

and lower for xi < x∗(ξ∗), i.e., a patient saver that receives a signal that is higher (lower) than the

threshold chooses to wait (withdraw). With global strategic complementarities, these conditions are

automatically satisfied because a higher signal means that fundamentals are higher and, thus, from

(17) there are fewer withdrawals resulting in higher utility differential from waiting.

In our environment, neither of these typical properties hold. First, the model does not exhibit

global strategic complementarities because v is increasing in λ in the full run region. As Goldstein-

Pauzner argue, this is a typical property of bank-run models and is due to the fact that the marginal

gain from running is lower as more people opt to run because more people are competing for the

same liquid resources. Goldstein-Pauzner shows that one-sided strategic complementarities are

adequate to recover the threshold equilibrium under the stricter assumption that noise in private

signals in uniformly distributed, which we maintain in our model.

On top of this complication, our model also exhibits what we call perverse state monotonicity

because v is decreasing in the state ξ in the full run region. Intuitively, this property means that

savers have higher incentives to run on a stronger than a weaker bank, conditional on a run occurring,

because the chances of getting paid are higher. This occurs because the signals provide information

about liquidation value of loans. Presuming that the signals pertain to liquidation values allowed

us to endogenously derive the upper dominance region. But, it restricts us from using the usual

argument to establish uniqueness.

Because of the perverse state monotonicity, we need to need to use a new proof that covers

three possible cases that are depicted in Figure 2. A first possibility is similar to what is studied in

the literature where ν is always (weakly) increasing in the state irrespective of whether the model

exhibits global strategic complementarities (Rochet and Vives, 2004) or one-sided strategic comple-

mentarities (Goldstein and Pauzner, 2005). If this happens to be true, the threshold solving ∆̄ will
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Figure 2: Perverse state monotonicity

be unique as depicted in the left panel in Figure 2.

However, v may not be increasing in the state. Instead, it could be the case that a situation as in

the middle panel, where there are multiple solutions, or in a situation in the right panel, where there

is a unique solution, despite the fact that ∆̄ is not increasing in ξ everywhere in the domain.

To establish uniqueness in the presence of perverse state monotonicity, we observe that to rule

out the problematic middle case, ∆̄ does not need to be increasing for all ξ (as is typically required),

but instead only needs to be strictly increasing at candidate solutions that solve ∆̄(ξ∗,ξ∗) = 0. We

know that such points exist because of continuity and the existence of the extreme regions estab-

lished in Lemma 1. This weaker requirement is graphically depicted in Figure 3. In the left panel,

where there are multiple solutions, ∆̄ will necessarily cross the x-axis both from below and from

above because of continuity and the existence of the lower and upper dominance thresholds. This

means that the derivative of ∆̄ at the candidate solutions, which are depicted by the dots on the x-

axis, can be either positive or negative. On the contrary, in the unique solution in the right panel, the

derivative at the candidate solution is strictly positive. Hence, the strategy to establish uniqueness

comprises of showing that there do not exist solutions such that the derivative of ∆̄ at these solution

is strictly negative, i.e., the set to {∆̄(ξ∗,ξ∗) = 0∩∂∆̄/∂ξ|ξ = ξ
∗ < 0} is empty.

Figure 3: Graphical representation of uniqueness argument

Proposition 1. Given equilibrium allocations that satisfy the regions in Lemma 1, there exists a

unique threshold, x∗, such that patient savers keep their deposits in the bank if xi > x∗, and withdraw

if xi < x∗. Moreover, there exists a unique threshold ξ
∗, such that the bank does not experience a

run if ξ≥ ξ
∗, and is fully liquidated if ξ < ξ

∗.
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Proposition 1 establishes the uniqueness of the run threshold provided that there exist equilib-

rium allocations that satisfy the conditions in Lemma 1. We verify that these conditions hold in the

equilibria we examine.

Hereafter, we focus on the case that the noise becomes arbitrarily close to zero. Note that taking

the limit ε→ 0 implies that x∗→ ξ
∗ from (16). The posterior distribution of λ(ξ,x∗) for a patient

saver who receives signal x∗ is uniform over [δ,1].10 As ξ decreases from xi+ε to xi−ε, λ increases

from δ to 1. Changing variables in (19) provides the indifference condition, GG =
∫ 1

0
v(ξ∗,λ)dλ =

0, that determines the unique ξ
∗:

∫
λ
∗

δ

[ωD(1+ r̄D)−D(1+ rD)]dλ−
∫

θ
∗

λ
∗

D(1+ rD)dλ−
∫ 1

θ
∗

LIQ+ξ
∗I

λ
dλ = 0, (20)

where λ
∗ ≡ λ̂(ξ∗) and θ

∗ ≡ θ(ξ∗,1).11 We will use (20) to help demonstrate that the conditions we

need to obtain do in fact hold. Define GG(ξ) the value of GG for general ξ. Then, we obtain the

following derivative
∂GG
∂ξ

= ωD(1+ r̄D)
∂λ̂

∂ξ
−

∫ 1

θ

I
λ

dλ, (21)

which we cannot unambiguously sign for arbitrary values of ξ. The first term strengthens the in-

centives to wait because the monitoring threshold λ̂ is increasing in ξ. The second term strengthens

the incentives to withdraw because of the perverse state monotonicity. Thus, (21) cannot be used by

itself to establish that the solution ξ
∗ in (20) is unique. Instead, we evaluate (21) only at candidate

solutions for ξ
∗. Combining (20) and (21) we get

∂GG∗

∂ξ
=

1
ξ
∗

[∫ 1

θ
∗

LIQ
λ

dλ+
∫

θ
∗

δ

D(1+ rD)dλ

]
+ωD(1+ r̄D)

[
∂λ
∗

∂ξ
− λ

∗−δ

ξ
∗

]
> 0, (22)

where ∂GG∗/∂ξ ≡ ∂GG/∂ξ|ξ=ξ
∗ and ∂λ

∗/∂ξ ≡ ∂λ̂/∂ξ|ξ=ξ
∗ . The first two terms are necessarily

positive. The last term can be written as ωD(1+ r̄D)[(λ
∗−δ)ξ∗D(1+rD

3 )+(δD(1+rD)−LIQ)(1+

rI)]/[ξ
∗D((1+ rD)(1+ rI)−ξ

∗(1+ r̄D))] and is greater than zero from Lemma 1. Hence, ∂GG∗/∂ξ

in (B.47) is strictly positive and the ξ
∗ solving (20) is unique.

Because ξ
∗ will be a critical factor in the welfare analysis, we prove the following corollary that

provides some useful information about its characteristics.

Corollary 1. The run threshold ξ
∗ is decreasing in the loan rate and investment, while it is increas-

ing in deposits and the period 2 deposit rate. The effects of the liquid asset holdings and of the

period 3 deposit rate on ξ
∗ are ambiguous.

The overall effect of the banking variables on the run threshold combines the indirect effect on

the incentives of the bank to monitor and the direct effect on the payoff differential in (17). Because

10This is true because Prob(λ(ξ,x∗)≤ N|xi = x∗) = 1−Prob(ξ≤ x∗+ ε− (N−δ)/(1−δ)2ε|xi = x∗) = 1−(x∗+ε−
(N−δ)/(1−δ)2ε− x∗+ ε)/(2ε) = (N−δ)/(1−δ), hence λ(ξ,x∗)∼U [δ,1].

11Equation (20) is sufficient to guarantee that a patient saver will not withdraw if a run does not occur, i.e., ωD(1+
r̄D)−D(1+ rD)> 0. Thus, only impatient savers withdraw in equilibrium.
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of one-sided strategic complementarities, higher I or LIQ increase the payoff from withdrawing in

the full run region, which pushes ξ
∗ up, but also strengthen the incentives to monitor, i.e., increases

λ
∗ which pushes ξ

∗ down. For investment, the first effect is mitigated because of the discounted

liquidation value in a full run, ξ
∗I, and we are able to show that increasing I decreases ξ

∗ other

things equal. For liquidity, the first effect is relative stronger than for investment, and we cannot

unambiguously show which effect dominates. However, Proposition 4 below establishes conditions

under which liquidity reduces ξ
∗ and these conditions are easily satisfied in the examples we con-

sider. More deposits reduce the incentives to monitor, which at the same time increase the payoff

from waiting. But the first effect dominates and ξ
∗ goes up (other things equal). Moreover, higher

loan rates increase bank profits and, thus, the incentive to monitor, which pushes ξ
∗ down.

Finally, the effect of the period 3 deposit rate is ambiguous. On the one hand, it reduces the

incentives to monitor as bank profits go down. On the other hand, it increases the payoff from

waiting in the partial run region with monitoring. Our ability to analyze this case highlights the

benefit from explicitly modeling the actual payoffs in the incomplete information game. In our

examples, we find that increasing r̄D pushes ξ
∗ down and, thus, reduces the probability of a run

other things equal.

The conclusion would be completely reversed if we had considered a reduced-form incomplete

information game à la Rochet and Vives (2004) (or in models with ad hoc run probability functions).

In their framework, depositors delegate the decision to withdraw to fund managers who have a very

different payoff function than the one described in (17). In particular, they assume that managers

receive an exogenous payoff A > 0 if the run does not occur or the bank does not default, and suffer

a negative payoff B < 0 otherwise. In terms of our model, this formulation would imply that the

indifference condition (20), which determines ξ
∗, becomes

∫
λ
∗

δ
Adλ+

∫ 1
λ
∗ Bdλ = 0. As a result, r̄D

affects ξ
∗ only via the monitoring threshold λ

∗. In particular, if a planner wants to reduce the run

probability, then she would have to implement a lower r̄D to increase bank profits and, thus, the

out-of-equilibrium monitoring incentives. This would not be beneficial for depositors. In contrast,

because the run threshold also depends on the actual payoffs in our model, the planner can reduce

the run probability by setting a higher r̄D, without hurting the depositors. A higher deposit rate could

encourage a higher supply of deposits and more intermediation, which could mitigate any negative

effect of more capital and liquidity on credit extension.

2.5 Private Equilibrium

The banker will choose both sides of the balance sheet to maximize her own profits as shown in

(14). The choices of loans, liquidity, deposits and equity, need to satisfy the global game constraint

(20), which determines the run threshold, the deposit supply schedule (2), which determines the

deposit rates, and the loan demand schedule (7), which determines the loan rate. The balance

sheet identity also holds so only three of the four variables can be freely chosen. The banker will

internalize the effect of her actions on the run threshold, on deposit supply and on loan demand.

As a result, conditions (20), (2) and (7) not only need to be satisfied in equilibrium, but will be

19



explicit constraints in the banker’s optimization problem, the solution to which defines the private

equilibrium (PE). Essentially, this means that the banker also chooses directly the level of the run

threshold as well as the deposit and loan rate, rather than letting them being determined implicitly

in equilibrium. Finally, the banker will never choose allocations that result in lower welfare than

her outside option. The bank can either invest in the storage technology or lend to entrepreneurs

without accepting savers’ deposits. Thus, the banker’s outside option is UB = max [Uα
B,Un

B], where

Uα
B is the utility in autarky (where the bank holds only liquid assets) and Un

B is the utility when the

banker does not take deposits and lends to E using only her own capital.12

Definition 1. The private equilibrium is defined as the set of banking assets, {I,LIQ}, banking

liabilities, {D,E}, the run threshold, ξ
∗, deposit rates, {rD, r̄D}, and the loan rate, rI , that maximize

banker’s utility, UB, defined in (14) subject to the balance sheet (BS) constraint (9), the global game

(GG) constraint (20), the deposit supply (DS) schedule (2), and the loan demand (LD) schedule (7).

Each first-order condition in the private equilibrium takes the form

∂UB

∂C
+∑

Y
ψY

∂Y
∂C

= 0, (23)

where C ∈ {I,LIQ,D,E,ξ∗,rD, r̄D,rI}, ψY are the shadow values on constraints Y ∈ {BS,GG,

DS,LD} and ∂Y /∂C the partial derivatives capturing the effect of choice C on these constraints.

Take for example the lending choice, i.e., C = I. Then (23) says that the optimal level of lending is

determined by having the banker trade off the marginal return accruing to her, ∂UB/∂I, against the

shadow cost of funds, ψBS, and the way it affects the run threshold determination, the deposit supply

and the loan demand. The optimality condition for the other variables can be similarly interpreted

and we report the detailed expressions for the partial derivatives in the online appendix.

The optimality condition with respect to E, which is ψBS =W ′(eB−E), deserves special atten-

tion because it highlights another way in which our model differs from others in the literature. This

condition says that injecting more equity requires the banker to give up consumption in the initial

period in exchange for increasing the funds of the bank.13 Thus, the shadow cost of funds, ψBS, is

inversely related to the amount of equity the banker puts in the bank. In banking models without

endogenous credit and run risk, the higher funding costs of injecting more equity would feed in

higher loan rates and lower investment. In our model, this does not need to be true if equity changes

12The utility in autarky is Uα
B = W (eB−α)+α, where a > 0 is the storage investment satisfying W ′(eB−α) = 1.

Note that if W ′(eB) > 1, then α = 0. If the banker lends to entrepreneurs using only her own capital, her utility is
Un

B = W (eB− n)+ω(1+ rn)n−X , where rn is the interest rate determined by the loan demand 1+ rn = A− c′(n)/ω.
Because B internalizes how the choice of n affects the loan rate that entrepreneurs are willing to accept, the optimal n > 0
is the solution to −W ′(eB−n)+ωA− c′(n)− c′′(n)n = 0.

13Note that the condition does not include term for the effect of additional equity on constraints GG, DS and LD. This
is true because, E does not appear directly in (20), (2) or (7), but this does not mean that equity is irrelevant for their
determination. On the contrary, equity issuance can affect the run probability, the deposit supply and the loan demand
through its joint determination with other equilibrium variables.
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the overall level of risk: higher equity can improve the safety of deposits, which can be compatible

with lower loan rates and more investment.

We restrict deposit rates to be positive, which can be particularly important for the choice of rD.

Hence, (23) will be strictly less than zero when rD hits the non-negativity constraint. Absent this

constraint, the banker may want to offer a period 2 deposit rate that is negative, since this would

allow her to reduce the probability of a run. Such run-preventing deposit contracts have been studied

for example in Cooper and Ross (1998). In our model, however, runnable deposits are important to

discipline the banker and there are limits to how low the early deposit rate can be set both because

of the disciplinary role and because savers can stop using the bank if the rates become too low.

In the numerical examples we present, rD hits the non-negativity constraint both in the private and

planning equilibria, but we have also solved for cases where it is allowed it to take negative values.

The implications of our model for the distortions between the private and planning equilibria as well

as the effects and desirability of regulation continue to hold under a negative deposit rate for early

withdrawals. We present these results in Section B.9 in the online appendix.14

While the banker is free to choose any three of the quantities on her balance sheet, to explain

how the model works, it is helpful to summarize the choices in terms three different combinations

of the quantities. In particular, we will summarize the private equilibrium in terms of the asset allo-

cation choice, the capital structure choice and the scale of intermediation. The three intermediation

margins can be easily interpreted (see Section B.1 in the online appendix for detailed expressions).

The asset allocation margin is

AAMPE =

(
dUB

dLIQ
− dUB

dI

)
+

dUB

dξ
∗

(
dξ
∗

dLIQ
− dξ

∗

dI

)
. (24)

Hence, AAMPE captures the decision to shift a unit of risky loans into liquid asset holdings, which

consists of the effect on B’s utility via bank profitability (the first term) and the effect via the run

probability (the second term).

Similarly, the capital structure margin is

CSMPE =

(
dUB

dE
− dUB

dD

)
− dUB

dξ
∗

dξ
∗

dD
, (25)

and captures the decision to replace a unit of deposits with equity.

Lastly, the scale of intermediation margin is

SIMPE =

(
dUB

dI
+

dUB

dD

)
+

dUB

dξ
∗

(
dξ
∗

dI
+

dξ
∗

dD

)
, (26)

and captures the decision to raise a unit of deposits in order to expand credit extension. This mar-

14See also Keister (2015) for a model with flexible deposit contracts, i.e., the payment that a depositor receives is
determined by the bank as a best response to realized withdrawals in the intermediate period. Runs in his framework are
partial in the sense that the bank can alter payments to stop withdrawals by patient depositors and avoid liquidation once
the run state is revealed.
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gin is a proxy for the intermediation spread between rI and r̄D (see equation (B.18) in the online

appendix). Intuitively, increasing both I and D pushes rI down and r̄D up given that ∂rI/∂I < 0

and ∂r̄D/∂D > 0. Instead, if higher I is funded with equity or higher D is used to buy liquid assets,

the spread will not necessarily shrink. Thus, the spread can proxy for our notion of intermediation,

which is the amount of deposits channeled to loans, or equivalently the amount of loans funded by

deposits.15

To understand how these margins determine the structure of the bank’s balance sheet start in

reverse order. Given a level of D and LIQ, the SIMPE determines the level of lending by fixing the

intermediation spread; higher I requires a lower spread other things equal and vice versa. Then,

AAMPE and CSMPE simultaneously fix LIQ and D, or equivalently, the liquidity ratio `= LIQ/(I+

LIQ) and the leverage ratio k = E/(E +D), given that E = I + LIQ−D from the balance sheet

identity.

Corollary 2. The liquidity ratio, `, the leverage ratio, k, and the intermediation spread, rI− r̄D, are

sufficient to characterize banking allocations.16

Before we compare the private equilibrium and the social one, we briefly discuss the assump-

tions about the banker’s behavior that give rise to the private equilibrium. First, the possibility of a

run disciplines the banker, who internalizes how her lending and funding choices affect the probabil-

ity of a run, and hence the probability that she will make profits. These considerations are captured

by the terms multiplied by the shadow value on the global game constraint, ψGG, in (23).

Second, the banker internalizes how all of her choices affect the deposit rate demanded by

savers. We suppose this is possible because the debt is demandable and the depositors can fully

observe the bank’s balance sheet. So at the moment of entering into a deposit contract, depositors

observe the balance sheet and can rationally compute the underlying risks. Hence, if the banker

alters the balance sheet, savers can request new deposit contract terms, so that their optimal supply of

deposits reflects the new risks. The banker anticipates this behavior and, thus, internalizes, initially,

the impact of all of her choices on the deposit supply. These considerations are captured by the

terms multiplied by the shadow value on the deposit supply schedule, ψDS, in (23).

15Our model is not scale invariant, or in other words, the equilibrium conditions cannot all be normalized by the
balance sheet size I+LIQ. There are four reasons that equilibrium allocations depend on size. First, the concave utilities
for savers initial consumption and transaction services of deposits depend on the levels of these variables. Second, the
convex effort cost by the entrepreneurs depends on the level of investment. Third, the banker’s initial consumption level
of consumption determines utility in the initial period and and, lastly, the level of the monitoring cost is a constant. If
we relax these assumptions, then the equilibrium will be scale invariant and could be characterized by only the asset
allocation and capital structure intermediation margins. We elaborate on this special case later in conjunction with the
social efficiency of private allocations.

16The statistics in Corollary 2 are not exclusive. For example, one could combine (23) with respect to LIQ and D on the
one hand, and with respect to E and I on the other, to obtain alternative intermediation margins to AAM and CSM. These
margins would be proxied by a reverse ratio, LIQ/D, and a risk-weighted capital ratio, CR = E/I, respectively. We focus
on the intermediation margins described above as they provide an intutive way to describe banking allocation. However,
in Section 4 we examine the effect of many alternative regulatory tools beyond liquidity and leverage requirements, such
as risk-weighted capital requirements, liquidity coverage ratio and net stable ratio requirements. These regulations will
impact the three intermediation margins in different ways; some will be complements, while others will be substitutes.
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Alternatively, one could assume instead that deposit contracts are incomplete and that not all

banking choices are perfectly observed. In that case, after collecting deposits could take more

lending risk than the depositors would prefer. This would result in a commitment problem for

the banker (see, also, Matutes and Vives, 2000; Martinez-Miera and Repullo, 2017). Under these

assumptions, the banker realizes that taking more risk increases the cost of raising deposits, and

would ideally want to promise depositors that it will behave prudently. But, after the deposit contract

has been signed, the bank has an incentive to deviate towards lending more, holding fewer liquid

assets and raising less equity – and the depositors could not do anything about that. Consequently,

the banker would only internalize the terms that are specified in the deposit contract, which would,

at minimum, be the amount of deposits and the deposit rates. As a result, only the first-order

conditions in (23) with respect to {D,rD, r̄D} would include the terms multiplied by ψDS. As we

discuss in Section 3, this lack of commitment generates additional distortions, which would be

present even in the absence of run-risk. Thus, abstracting from it, allows us to isolate the impact

of regulation on distortions induced only by runs. See Section B.3 in the online appendix for a

characterization of equilibria under deposit contract incompleteness and lack of commitment by the

banker.

Third, the banker internalizes how all of her choices affect the loan rate that entrepreneurs are

willing to accept. These considerations are captured by the terms multiplied by the shadow value

on the loan demand schedule, ψLD, in (23). Alternatively, we could have assumed that the banker

is a price-taker with respect to the loan rate, which could be the case in anonymous competitive

lending markets. This assumption would imply that ψLD = 0 in (23). Apart from being at odds

with the monitoring function of the bank, the price-taking assumption would introduce additional

reason why private and social outcomes may diverge as a planner would internalize the impact of

banking choice on the loan demand. In order to focus on distortions induced by runs and simplify the

analysis, we relegate the characterization of equilibria under price-taking behavior in loan markets

in Section B.4 in the online appendix.

3 Efficient Allocations

Our banks offer socially useful services, but face the risk of a run. One of the main points of our

analysis is that private banking choice generate run externalities, which adversely affect the welfare

of savers and borrowers. Run risk is harmful for all agents in the economy; banks, savers and

borrowers. But the effects on their respective welfare differ. Banks would benefit from low run risk,

but not at the expense of substantially lower profits. Savers would prefer lower run risk and more

deposit services, while borrowers would benefit from higher investment accompanied by lower run

risk.

The private choices that the agents make work as follows. Bankers fully internalize how their

lending and capital decisions change the probability of a run, the deposit rates and the loan rate.

However, bankers exploit their limited liability and act to maximize their own utility, disregarding
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the direct effect of their actions on the welfare of savers and entrepreneurs. In turn, savers and

entrepreneurs are too small to internalize how their own decisions matter for aggregate bank allo-

cations (and hence on the probability of a run). In order to examine how these externalities distort

outcomes, we consider a social planner who internalizes the effects of lending and capital structure

decisions on all agents, but still is constrained by the market structure of the economy. We will

show the externalities operate via all three intermediation margins derived in Section 2.5 and create

three independent distortions, which the planner would like to address. Section 3.1 sets up the plan-

ner’s problem and identifies the sources of difference between the private and social optimization

margins. Section 3.2 presents a numerical solution to the model and describes how the private and

social planner’s allocations differ.

3.1 Social Planner

The social planner will choose all endogenous variables to maximize the following social welfare

function:

USP = UB +wSUS +wEUE , (27)

where wS ≥ 0, wS ≥ 0 are the weights assigned to S and E—we have normalized the weight on B

to one to facilitate the comparison of the planner’s and the private optimality conditions (other nor-

malizations are also possible; for example, assign weights to all agents adding up to one). Agents’

utilities are given by (1), (5) and (14). The planner is constrained by the market structure of the

economy, i.e., she cannot use lump-sum transfers to allocate resources across agents or complete

any missing markets.17 Moreover, the planner respects the run determination given by (20) as well

as the deposit supply and loan demand schedules (2) and (7).18 Give that the latter two hold with

equality in the planner’s problem, we can substitute the indirect utilities (4) and (8) in (27) to get

the following social welfare function:

U∗SP = UB +wSU∗S +wEU∗E . (28)

Using (28) instead of (27) adds a lot of tractability in the optimizing conditions and, as we show

below, allows us to pinpoint the sources of distortions in the private equilibrium that a planner would

like to address. In particular, U∗S only depends on D and ξ
∗ with ∂U∗S/∂D = −U ′′(eS−D)− (1−

17Given the absence of lump-sum transfers, we cannot unambiguously construct a welfare criterium to maximize the
total surplus. Thus, we assign weights for different agents in a social welfare function and study different constellations of
these weights. Although we remain agnostic about the origin of such weights, we discuss the potential political economy
considerations of regulation.

18In principle, the planner may want to divert from the privately optimal deposit supply and loan demand schedules,
which means that (2) and (7) do not need to hold with equality in the planner solution. For example, the planner could
choose deposit or loan rates that do not necessarily satisfy all these conditions with equality and implement the resulting
allocations by choosing instruments, such as Pigouvian taxes on interest income/expenses, that distorts (2) or (7). Farhi
and Werning, 2016, and Bianchi and Mendoza, forthcoming, consider such taxes to implement the constrained efficient
allocations. Note that the taxes can also take negative values, in which case they are interpreted as subsidies. If these
conditions do not hold with equality, then the Lagrange multipliers associated with them are zero. Given that our focus is
on banking regulation, we abstract in our baseline analysis from such tools and examine their implications in Section B.8
in the online appendix.
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q)V ′′(D(1+ rD))D(1+ rD)
2 > 0 and ∂U∗S/∂ξ

∗ =−[V (D(1+ rD))−V ′(D(1+ rD))D(1+ rD)]/∆ξ <

0. Therefore, a planner that cares about S would like to increase the level of deposits and reduce the

probability of a run. Similarly, U∗E only depends on I and ξ
∗ with ∂U∗E/∂I = (1−q)c′′(I)I > 0 and

∂U∗E/∂ξ
∗ =−[c′(I)I− c(I)]/∆ξ < 0. Hence, a planner that cares about E would like to increase the

level of investment and reduce the probability of a run.

Definition 2. The social planner’s equilibrium is defined as the set of banking assets, {I,LIQ},
banking liabilities, {D,E}, the run threshold, ξ

∗, deposit rates, {rD, r̄D}, and the loan rate, rI , that

maximize social welfare, U∗SP, defined in (28) subject to the balance sheet (BS) constraint (9), the

global game (GG) constraint (20), the deposit supply (DS) schedule (2), and the loan demand (LD)

schedule (7).

Each first-order condition in the planner’s equilibrium takes the form

∂UB

∂C
+wS

∂U∗S
∂C

+wE
∂U∗E
∂C

+∑
Y

ζY
∂Y
∂C

= 0, (29)

where ζY are the shadow values on constraints Y ∈ {BS,GG, DS,LD} and are different than ψY in

the private equilibrium. The planner’s optimality conditions differ from the private ones, because

the planner explicitly accounts for how her choices affect S and E, and thus will assign different

shadow values, ζY , on the same constraints Y faced by the banker. Following the same steps as

for the private equilibrium, we can derive the same three intermediation margins for the planner’s

problem (see Section B.2 in the online appendix for detailed expressions).

The asset allocation margin for the planner can be written at AAMSP =AAMPE +AAMWD, where

AAMPE is given by (24) and AAMWD is a wedge, which captures the additional distortions that the

planner takes into account and will try to correct, given by:

AAMWD =

(
wS

∂U∗S
∂ξ
∗ +wE

∂U∗E
∂ξ
∗

)
·
(

∂ξ
∗

∂LIQ
− ∂ξ

∗

∂I

)
︸ ︷︷ ︸

Run externality from asset allocation

− wE(1−q)c′′(I)I︸ ︷︷ ︸
Surplus to E from additional I

. (30)

The first term in (30) captures the externality from run risk due to the choice of the asset allocation

between liquid assets and loans. If shifting a unit of loans to liquid assets reduces the run probability,

i.e., dξ
∗/dLIQ− dξ

∗/dI detailed in (B.13) is negative, then a planner that cares about S and E

would want a more liquid asset mix than in the private equilibrium. The last term in (30) captures

the surplus created for the entrepreneur from an additional unit of investment and this consideration

leads the planner to increase the level of investment to favor E. Note that, in principle, a more liquid

asset mix and more investment are not incompatible if they are accompanied by a bigger balance

sheet.

Similarly, the capital structure margin for the planner is CSMSP = CSMPE +CSMWD, where
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CSMPE is given by (25) and the wedge CSMWD is given by:

CSMWD =−
(

wS
∂U∗S
∂ξ
∗ +wE

∂U∗E
∂ξ
∗

)
∂ξ
∗

∂D︸ ︷︷ ︸
Run externality from liabilities mix

−wS[U ′′(eS−D)D+(1−q)V ′′(D(1+ rD))D(1+ rD)
2]︸ ︷︷ ︸

Surplus to S from additional D

.

(31)

Shifting funding from deposits to equity mitigates the run externality and helps S and E, but reduces

the surplus to S.

Finally, the scale of intermediation margin for the planner is SIMSP = SIMPE +SIMWD, where

SIMPE is given by (26) and the wedge SIMWD is given by:

SIMWD =

Run externality from intermediation scale︷ ︸︸ ︷(
wS

∂U∗S
∂ξ
∗ +wE

∂U∗E
∂ξ
∗

)
·
(

∂ξ
∗

∂I
+

∂ξ
∗

∂D

)
+wS[U ′′(eS−D)D+(1−q)V ′′(D(1+ rD))D(1+ rD)

2]+wE(1−q)c′′(I)I︸ ︷︷ ︸
Surplus to S and E from higher intermediation scale

. (32)

The planner will want less intermediation, if raising an additional unit of deposits to fund investment

increases the probability of a run, i.e., ∂ξ
∗/∂I+∂ξ

∗/∂D > 0. Yet, the run externality considerations

are countered by the fact that more intermediation increases the surplus to both S and E.

All three wedges feature a component driven by run externalities, which B, S and E do not

internalize, and a component that captures the surplus to S and E. The planner trades off reducing

run risk in order to tackle the run externalities and improving the surplus accruing to S and/or E

when the run does not occur. In doing so, she chooses a different asset allocation, capital structure

and scale of intermediation, which have a direct impact on the surplus and an indirect impact on run

risk. The following Proposition establishes the inefficiency of the private equilibrium.

Proposition 2. The private equilibrium is generically inefficient and there are three independent

distortions in intermediation margins given in (30), (31) and (32).

Correcting some of these distortions involve tradeoffs because the interventions skew allocations

that favor borrowers over savers (or vice versa). For instance, if the bank holds more safe assets and

makes fewer loans, that switch marginally helps the savers because it makes their deposits safer.

Conversely, the opposite choice of more loans and fewer safe assets creates more opportunities for

the borrowers but reduces the buffer that helps mitigate the riskiness of deposits. In the next section

we present a numerical example of the private and planning equilibria and discuss how the alloca-

tions differ in reference to the aforementioned intermediation margins and associated distortions.

Before turning to that, we show in the following Corollary the conditions under which the private

equilibrium is constrained efficient, or in other words all wedges are zero.

Corollary 3. The private and social planner’s equilibria coincide if all of the following conditions

hold: (i) c′′(·) = 0; (ii) V ′′(·) = 0; and (iii) U ′′(·) = 0 or eS ≥ eS such that LIQS > 0.
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The Corollary 3 essentially says that if S and E are not benefiting from bank intermediation,

then there is nothing a planner, who respects the market structure, can do to improve outcomes.

The reason is that savers’ and entrepreneurs’ welfare is constant at the autarkic level and the banker

already internalizes everything that matters to her. Additional inefficiencies could be introduced to

the model to justify a role for policy. For example, the liquidation value ξ could be a function of the

amount of loan recalled, y, and determined in a fire-sale, which the banker would not internalize.19

Alternatively, one could assume that the run induces a deadweight loss, which S and E do not

internalize and B neglects because she is protected by limited liability.

Even with these alternatives, the distortions would manifest themselves through the three inter-

mediation margins we have described. As long as the asset allocation, capital structure and scale of

intermediation (I, LIQ and D) load on the fire sale price or deadweight loss, then the market failure

will operate through all three margins to distort outcomes. Conversely, the number of distortions is

determined by the number of intermediation margins that are misaligned and not by the number of

market failures in the model. If we added externalities from fire-sales and deadweight losses to the

other frictions in our baseline model, we would still have distortions in the asset allocation, capital

structure and scale of intermediation margins, but the wedges would include additional terms.

3.2 Numerical example

The full set of parameters we used to solve the model is shown in Table 1. The parameterization

should be taken more as an illustrative example to highlight the mechanisms in the model, rather

than as a realistic calibration of the economy that would be suitable for making quantitative state-

ments about the absolute optimal level of banking regulations. We have experimented with various

other parameter choices and the findings that we emphasize are quite robust.

Our model would require some obvious modifications to use it for quantitative policy analysis.

For example, all liabilities in our model are unsecured, while in practice certain types of deposits are

insured. Deposit insurance, even partial, would reduce the market discipline exerted by depositors

and hence the credit risk premia in deposit rates bringing them closer to what is observed in reality.

Moreover, it is not clear whether the various capital regulations in practice (Basel requirements,

stress tests, restrictions on dividend payouts) are indeed binding and whether one should be cali-

brating to match a regulated economy rather than an unregulated private equilibrium. Finally, the

quasi-linearity of preferences, which simplifies the computation of the run threshold and derivation

of policy significantly, as well as the finite horizon of the model make depositors willing to accept

a higher probability of a run than if they were risk-averse or if there was a continuation value for

the bank. One could add convex bankruptcy costs to mimic a higher degree of risk-aversion as well

as model the continuation value, but we have not done so because it is not important to make our

fundamental analytic points.

With these caveats in mind, let us call attention to some of the considerations that we took into
19See Carletti, Goldstein and Leonello (2019) for a model where fire-sales externalities interact with run risk yielding

inefficient private outcomes.
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account while choosing the model parameters. First, the bank is profitable enough, and the initial

equity of the banker and her preference for current consumption are such that she voluntarily uses

some of her endowment to buy more equity in the bank. So the banker finds intermediation to

be profitable. Second, the deposit services provided by the bank lead savers not to self-insure by

directly holding the liquid asset. If savers were opting to self-insure, then the banking sector is

under-performing as a provider of liquidity and, hence, intermediation, and regulations that make

banks more stable would have an additional positive effect. Third, we have chosen the parameters

so that the bank makes loans and invests in liquid assets, but also plans to liquidate some loans to

serve early withdrawals. The key parameters that are responsible for this outcome are the size of the

liquidity preference shock, the distribution of the liquidation values for recalled loans and riskiness

of investment opportunity. Fourth, we have chosen logarithmic utility for period 1 consumption

for both the savers and the banker, but we have assumed that the banker values future consumption

more than the savers do. In particular, U(x) = log(x) and W (x) = γ · log(x), where γ < 1.20 Finally,

we set V (x) = cD · log(1+ x) and c(x) = cI · xφI , with φI > 1, which satisfy the general properties

required for the transaction services’ and effort cost functions.

Tables 2 shows the private equilibrium and planning outcomes for small perturbation of the

welfare weights away from the private equilibrium.21 We focus the analysis around the three inter-

mediation margins derived in section 3.1.

Before turning to the details, it is helpful to recall three things we already know about the nature

of the distortions that the planner is trying to correct. First, the banker is already internalizing

everything that matters for her own welfare. The problem is that she is ignoring the consequences

of her choices on the saver and the borrower. Therefore, anything the planner does to take this into

account will make the banker worse off. So the planner will be constrained on this front by the

need to make sure that the banker will still find it profitable enough to monitor loans. The saver

generally wants safer deposits. This can be accomplished by reducing the riskiness of the asset

mix or by raising more equity from the banker. The banker will only contribute more equity if the

expected dividend yield is high enough. Finally, the borrower would like to get more loans but has

a downward sloping demand curve. So more lending will only occur at lower interest rates.

First, consider the case where the planner favors E and S equally; for example wE = wS = 0.1

in Table 2. The planner would like to increase liquid holdings in the asset mix to address the run

externality because ∂ξ
∗/∂LIQ−∂ξ

∗/∂I < 0 in (30). Similarly, the planner would like to increase the

amount of equity in the liabilities mix because ∂ξ
∗/∂D > 0 in (31). However, to benefit E and S the

planner needs to pay attention to the level of loans and deposits to make sure that they do not drop.

20Assigning to the banker the same utility function requires high enough eB or low enough γ such that she would be
willing to invest enough of her own wealth in equity to provide liquidity benefits to savers. We do the second because we
want the banker endowment to represent only a small part of the total endowment in the economy, with the vast majority
accruing to the savers. For γ= 1/β

2, such that savers and the banker discount the future the same way, and for logarithmic
utility, we can obtain the same equilibrium for banker’s wealth ĕB = E+(eB−E)/(β2

γ), where E is the equilibrium value
of contributed equity.

21Given period 1 allocations the run threshold is unique, but it may be the case that there are more that one private
equilibria each characterized by a unique run threshold. In order to guarantee that the planning equilibria we report
correspond to the stated PE we first so the results for a small perturbation of weights and then move to larger perturbations.
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The way to achieve these various goals is to grow the overall size of the of the bank’s balance sheet

while making assets more liquidity intensive and liabilities more equity intensive. The reduction

in run risk mitigates the upward pressure on the deposit rate and the volume of lending has to be

enough higher so that, even though the loan rate will be lower, expected dividends grow by enough

to induce the banker to supply more equity.

One way to think about what is happening in this experiment is to recognize in the private

equilibrium, the banker is restricting lending to prop up loan rates and limiting deposits to suppress

the cost of deposits. The planning allocations correct these problems. In doing so, the banker is

made slightly worse off, but the other two agents are much better off. Overall, social welfare rises.

Second, consider the case that the planner wants to favor S, but cares little about E; for example

wE = 0 and wS = 0.2. Similar to the first case, the planner would like to improve the liquidity of the

asset mix to address the run externality. But, the planner is now less concerned about the surplus

accruing to E and can more easily shift some of the investment towards the liquid asset. At the

same time, the planner would like to increase equity in the liabilities mix in order to address the run

externality, but without cutting deposits which is what matters for the surplus accruing to S. The

planner can increase both liquidity and deposits, and at the same time guarantee that B will inject

more equity in the bank, by cutting the level of lending. This results in a sufficiently large increase

in the loan rate to compensate for higher deposit rate, so that bank profitability jumps and the banker

is willing to to invest in more equity. The overall size of the balance sheet goes up, but the scale of

intermediation, measured by the amount of deposits channeled to investment(I-E), goes down.

Finally, consider the third case where that the planner wants to favor E, but cares little about

S; for example wE = 0.2 and wS = 0. The planner would like to increase lending and, thus, the

surplus accruing to E. As a result, the planner shifts liquidity to loans, which makes deposits

more expensive. The planner could then substitute away from deposits to equity to fund the higher

investment, but this would only be possible if such a shift did not worsen the intermediation spread

and, thus, the incentives of B to provide equity. Given the optimality of private allocations from

B’s perspective such a shift from deposits to equity—with a shift from liquidity to loans at the

same time—would not be profitable for the banker. However, because the planner is not concerned

with helping S, it is possible to reduces deposit taking, which lowers the deposit rate and also

the necessary amount of liquidity that is needed to be carried for early withdrawals. So the planner

shifts allocations so that more deposits are being used to support lending; the scale of intermediation

increase despite the fact that the bank operates with a smaller balance sheet.

The private equilibrium may exhibit over- or under-investment compared to the planner’s out-

comes depending on the weights on E and S. Lending decreases and liquid asset holdings increase as

the more weight is on placed S. Both factors contribute to a higher liquidity ratio `≡ LIQ/(LIQ+I).

Lower lending is accompanied by a higher loan rate and induce the banker to provide more equity.

The leverage ratio k≡E/(E+D) improves as a result. Even though this also helps deposits increase

somewhat, the amount of deppsits going to support lending is falling and the spread between the

loan rate and period 3 deposit rate rises. The opposite is true when the planner places more weight
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on E. In this case, investment jumps but deposits fall.

Naturally, the run probability is lower when more weight is placed on S. But, lower run risk

accompanied by higher ` and k can still be consistent with higher investment. This can happen when

the bank has a bigger balance sheet and uses more deposit financing to support lending. Notice that

this is what happens when the planner cares equally about depositor and savers.

The enhanced stability of both the asset portfolio and the capital structure of the bank is benefi-

cial to S especially because, as discussed above, it can be accompanied by a higher level of deposit

services. Lower run risk is also beneficial to E, but may come at the cost of lower investment and,

hence, lower surplus from production. Indeed, when investment falls below its level in the private

equilibrium the entrepreneur will be worse off. As more weight is placed on E the level of invest-

ment increases pushing up the run probability and reducing the surplus from deposit services. S’s

welfare goes down and after a point she is worse-off compared to the private equilibrium. In this

example, both S and E can be made better-off when the planner cares about them equally. B is

always worse-off, because she already internalized what mattered for her and any deviation from

the private equilibrium reduces her welfare.22 Note that the planner not only increases social wel-

fare Usp = UB +wSU∗S +wEU∗E , which depends on the weights, but also the overall surplus in the

economy, Ssp =UB+U∗S +U∗E . Thus, the planner could improve the welfare of all agents if she had

access to a re-distributive, non-distortionary (lump-sum), tax system to transfer resources across

agents.

We should note that neither the banker nor the planner opt to hold excess liquidity. Hold-

ing excess liquidity could be desirable in order to eliminate the probability of a run altogether. If

the liquidation value of the bank for the lowest possible realization of ξ was higher than the to-

tal runnable deposit obligations, i.e., LIQ+ξ · I ≥ D(1+ rD), then only impatient depositors would

withdraw. The excess liquidity carried over to period 3 would then be LIQex = LIQ−δ ·D(1+rD)≥
(1−δ)D(1+ rD)−ξ · I. Such run-proof equilibria may not be desirable when the lowest liquidation

value of long-term investment is small or when savers are not very risk-averse. A large literature

has focused on run-proof equilibria, which naturally restricts credit intermediation (see Cooper and

Ross, 1998, Ennis and Keister, 2006, Diamond and Kashyap. 2016). Run-proof contracts require

certain assumptions to be optimal and our work has, instead, focused on optimal policy in the pres-

ence of both run risk and credit risk.

4 Regulation

We now explore how the planner’s solution can be decentralized via various regulatory interven-

tions. We group tools into two categories. The first category includes tools that target the capital

structure and intend to inject more equity in the bank. The second category includes tools that aim

to make the asset mix more liquid. Sections 4.1 and 4.2 discuss the effects when the tools are used

22This is not the case under incomplete deposit contracts discussed in section B.3. Then, the planner can also improve
B’s welfare by forcing her to internalize how her actions matter for the supply of deposits.
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in isolation. Section 4.3 discusses how the regulations can be optimally combined to implement the

planner’s solution as a private equilibrium.

4.1 Tools targeting capital

We examine two tools that can be used to increase the amount of equity in the bank. The first one

is a requirement k̄ on the leverage ratio, where here it is helpful to use the balance sheet identity

to write it k = E/(I +LIQ) ≥ k̄. The second one is a requirement CR for the risk-weighted capital

ratio, i.e, CR = E/I ≥CR, where we have assumed a risk-weight of one for loans and zero for liquid

assets.

The direct effect of both tools would be to increase the level of equity in the bank’s liabilities,

which should intuitively push the probability of a run down and help with the run externalities. Both

k and CR will affect the probability of a run directly by changing allocations in (20), and indirectly

by influencing loan and deposit rates.

It is helpful to keep in mind that the banker will only invest in additional equity if the bank

profits rise. Profitability depends on the spread between the loan and period 3 deposit rate, so rising

profitability requires either higher loan rates or lower deposit rates. Hence, either lending will have

to fall, so the loan rate can rise, or deposits have to be made safer so that the deposit rate can fall.

The following Proposition establishes that the direct effect of higher k or CR, i.e., keeping

interest rates and other allocations constant, is to reduce run risk.23

Proposition 3. Set X = 0. The partial equilibrium effect of higher requirement k̄ or CR on q is

negative.

The above proposition establishes that if one fixes the liquidity ratio, `, as well interest rates,

then tightening k̄ or CR reduces run risk in exactly the same way, because k =CR(1− `). Hence, in

a partial equilibrium setting, one would conclude that these two regulations are equivalent.24

However, the general equilibrium effects of the two regulations on the incentive of bankers to

hold liquidity and on the deposit supply and loan demand will differ. These differences stem from

the way that two regulations impact the three intermediation margins. Recall k = E/(I + LIQ)

and CR = E/I. The intermediation margins under leverage regulation become AAMk = AAMPE ,

CSMk =CSMPE +ψk, and SIMk = SIMPE −ψkk̄, where ψk is the Lagrange multiplier on the lever-

age requirement k ≥ k̄. The intermediation margins under risk-weighted capital regulation become

AAMk = AAMPE +ψCRCR, CSMk =CSMPE +ψCR, and SIMk = SIMPE −ψCRCR, where ψk is the

Lagrange multiplier on the risk-weighted capital requirement CR≥CR.

The leverage regulation allows banks to costlessly switch from liquid assets to loans. So that

substitution will necessitate lowering the lending rate. Hence, to boost profitability deposit rates

23We set the monitoring cost equal to zero purely because it simplifies the proof, but nothing qualitatively changes if
instead we fix the cost to be a small positive value.

24In the online appendix, we further characterize how the two regulations change the boundaries between the three run
regions and affect the payoffs for depositors in each of them.
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must fall. In contrast, the risk-weighted capital requirement lowers lending and hence will be asso-

ciated with a higher loan rate. The higher loan rate means that the bank can take on more deposits

(than if lending had risen).

Table 3 reports the results for individually tightening k̄ and CR. The change in the two re-

quirements from their private equilibrium level satisfies the aforementioned relationship, i.e., ∆k =

∆CR(1− `), where ` is the liquidity ratio in PE. We will consider two cases: both requirements

increases by a little and both requirements increase by a lot.

The direct beneficial effect on run risk continues to dominate when general equilibrium effects

are accounted for and q decreases under both regulations. However, the magnitude of the decrease

differs and so do the effects on other components of the bank balance sheets.

First, consider the case where k̄ and CR are marginally tightened. To compare the effects notice

how the AAM is differentially impacted. Loans decreases much more under CR than k, which

improves bank’s asset liquidity. Thus, run risk goes down even further than what would expect by

just increasing capital. The lower run risk makes deposits cheaper and the bank increases its deposit

taking. S gains, while both E and B lose.

The situation is similar for k, but the effects are much less pronounced because the bank can

shift some liquidity to lending and still satisfy the regulation. Because of the additional lending, the

bank does not boost liquidity by as much, so the scope to increase deposits is reduced. The gain for

S is smaller and the losses for E are too.

Considering a much larger increase in capital, we obtain the same, but stronger, effects for

CR. However, for k, the substitution towards lending becomes much more pronounced. The bank

actually increases lending relative to the private equilibrium and substantially reduces its holding

of liquid assets.25 Given those changes, the cost of deposits must fall in order to make the bank

profitable enough to support the higher level of capital. This drop occurs because the total deposits

fall and so S is made worse off from this change. The higher level of lending makes E better off.

4.2 Tools targeting liquidity

We examine three tools that can be used to increase the amount of liquidity in the bank. The first

one is a requirement ¯̀ on the fraction of assets that are liquid, ` = LIQ/(I + LIQ) ≥ ¯̀. We will

refer to this regulation as the liquidity ratio. The second one is a requirement LCR on the liquidity

coverage ratio, which takes the (lowest) liquidation value of the bank’s portfolio in a run relative

to runnable liability, i.e., LCR = (LIQ+ ξ · I)/(D(1+ rD)) ≥ LCR. The third one is a requirement

NSFR on the net stable funding ratio, which is computed as the fraction of illiquid assets funded by

relatively stable sources, i.e., NSFR = (E +(1−δ)D)/I ≥ NSFR.

Proposition 4. Set X=0. The partial equilibrium effect of higher requirements ¯̀, LCR, or NSFR on

q is negative if δ > e−1 or ` > ˆ̀.

25This is in contrast to models where the bank cannot raise additional equity, where stricter capital/leverage require-
ments (mechanically) result in a drop in credit extension (see, for example, Corbae and D’Erasmo, 2014, Clerc et al. 2015
and the references therein).
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This proposition establishes that if one fixes the leverage ratio, k, as well interest rates, then

tightening ¯̀, LCR, or NSFR reduces run risk in exactly the same way, because LCR = ((1− ξ)`+

ξ)/((1− k)(1+ rD)) and NSFR = (k + (1− δ)(1− k))/(1− `). Hence, in a partial equilibrium

setting, one would conclude that these three regulations are equivalent.

These regulations have the unintended consequence that extra liquidity raises patient savers’

incentives to join the full run. This has been noted by others in models with one-sided strategic

complementarities (see also Carletti et al. 2019). We show that these perverse incentives do not

dominate when the fraction of patient depositors is small enough or when the liquidity ratio in the

private equilibrium is above a threshold. In the private equilibrium we examine, ˆ̀< 0 because the

run risk is big enough to limit the strength of this channel, so the partial equilibrium effect of higher

` on q is negative.

But, as was the case for capital regulations, the general equilibrium effects of liquidity regu-

lations may differ as the three regulations alter the intermediation margins in different ways. The

intermediation margins under regulation on ` become AAM` = AAMPE +ψ`, CSM` =CSMPE , and

SIM` = SIMPE −ψ`
¯̀, where ψ` is the Lagrange multiplier on the liquidity requirement ` ≥ ¯̀. The

intermediation margins under LCR regulation become AAM` = AAMPE +ψLCR(1− ξ), CSMLCR =

CSMPE +ψLCRLCR(1+rD), and SIMLCR = SIMPE−ψLCR(LCR(1+rD)−ξ), where ψLCR is the La-

grange multiplier on the liquidity requirement LCR≥ LCR. Finally, the intermediation margins un-

der NSFR regulation become AAMNSFR = AAMPE −ψNSFRNSFR, CSMNSFR = CSMPE +ψNSFRδ,

and SIMNSFR = SIMPE −ψNSFRNSFR, where ψNSFR is the Lagrange multiplier on the liquidity

requirement NSFR≥ NSFR.

Table 4 reports the results for individually tightening ¯̀, LCR, or NSFR. The change in the

requirements from their private equilibrium level satisfy the aforementioned relationships, i.e.,

∆LCR = ∆`(1− ξ)/((1− k)(1+ rD)) and ∆NSFR = ∆` ·NSFR/(1− `), where k, NSFR and ` are

the leverage, net stable funding and liquidity ratios in PE.

First, focus on requirements ¯̀ and LCR, which are very similar. Mandating that the bank holds

more liquidity changes the trade-off between investing in risky loans and liquid assets as can be

seen by the way these regulation alter the AAM. The higher liquid asset holdings allow the bank to

raise more deposits without increasing run risk. Although the amount of deposits raised increases,

the portion that is channeled to loans falls. At the same time, the amount of equity loans goes up.

Why does requiring them to hold more liquidity induce the banks to both raise more deposits

and more equity? Banks can raise more deposits and invest them in the liquid asset to satisfy the

regulation. This is preferable to raising equity in order to invest in the liquid asset, because equity is

more expensive. Despite the fact that run risk decreases, the increased demand for deposits pushes

up the deposit rate and, thus, makes loans less profitable. Banks will reduce lending to secure higher

loan rates to raise profitability. For a large enough fall in lending, the intermediation spread widens

so much that it becomes desirable to increase the amount of equity.

The NSFR regulation operates via the same channels, but the effects are less pronounced. The

reason is that this regulation also partially resembles a risk-weighted capital requirement. In partic-
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ular, notice that the NSFR can be re-written as 1+CR+ `+1/(1−CR) so that it operates through

affecting both capital and liquidity. Relative to the other liquidity regulations, the NSFR has a more

muted effect on deposits. S is better-off, while E and B are worse-off under all liquidity regulations.

4.3 Combined Regulation and Optimal Regulatory Mix

Finally, we examine whether and how regulation can be combined to implement the social plan-

ner’s solution as a private equilibrium. The social planner solves for allocations without taking into

consideration how the optimal behavior of the bank will change, or in other words the first-order

conditions of the banker (adjusted for regulatory interventions) are not taken as additional con-

straints in Definition 2. Hence, the planner’s allocations are computed without tying the planner to

specific tools. We have seen that the difference between privately and socially optimal choices can

be summarized characterized by the wedges in (30), (31) and (32). The rest of the section shows

how the regulatory tools studied above can be combined to mimic the allocations preferred by a

social planner.

To do this it is instructive to set-up an augmented planner who is endowed with certain tools.

Let T = {k,CR, `,LCR,NSFR,τD} be this set of potential tools. These options are the capital and

liquidity tools discussed in sections 4.1 and 4.2 as well as a tax on deposit interest expenses, τD that

we describe below. The details of the implementation are spelled out in section B.5. Herein, we

discuss the results using our numerical example.

Table 5 reports the outcomes of combining regulatory tools and compares them to the planner’s

solution for a case where the planner favors the saver more than the borrower. Given that three

margins are distorted, we would expect that three tools will be needed to implement the planner’s

solution. We need one tool that operates on the asset side and fixes the asset allocation margin,

another that operates on the liability side and fixes the capital structure margin, and a third tool that

targets the scale of intermediation. In other words, we will need to combine one capital regulation

and one liquidity regulation with a tool that can push the bank towards the socially optimal level of

intermediation. There are several potential candidates for the third type of tool, but we will consider

a tax (or subsidy) on deposit interest expenses. This tool can indirectly control the intermediation

spread, which, as discussed in Corollary 2, is a sufficient statistic for the SIM (provided that the

AAM and CSM have been fixed by a capital and a liquidity tool).26

As discussed, tightening the risk-weighted capital requirement to target the CSM increases the

amount of equity in the bank. Raising the capital requirement reduces run-risk and results in lower

26The planner cannot use two liquidity or capital tools at the same time because they will not be jointly binding. This
result is consistent with the analysis in Checchetti and Kashyap (2016), who show that LCR and NSFR regulations almost
surely will never bind at the same time. However, the collinearity of the CR and k regulations may be specific to our model
and may not even hold for high k (see discussion in section 4.1). If the bank that could choose between more types of
assets with different levels of risk, or to hold off-balance sheet assets, this result may not obtain – though this would not
likely deliver the planner’s allocations. Although we can only speculate at this point, we believe that such modifications
are important avenues for future research. Other papers that study the use of capital and liquidity requirements include
Walther (2016) and Kara and Ozsoy (2016) in the presence of fire sale externalities, Boissay and Collard (2016) when
the interbank market cannot efficiently allocate resources, and Van den Heuvel (2017) who quantifies the welfare costs of
capital and liquidity requirements in a neoclassical growth model.
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loan extension. If, in addition, we impose a stricter liquidity requirement, we can get closer to

the planner in terms of the asset and capital structure margins. But, the scale of intermediation, as

proxied by either the loan-deposit rate spread or the amount of deposit funding investment, moves

in the opposite direction of what the planner seeks. A subsidy of τD = −6.46% can be levied to

induce the bank to increase the scale of intermediation to the level that the planner prefers.27 The

combination of the three tools can implement the planner’s solution as a private equilibrium. More

generally, using two tools that are not redundant would also typically improve welfare relative any

single regulation. However, to mimic the planner we find that three regulations are required.

One might expect that capital and liquidity requirement are not useful when the planner would

like to increase the lending in the economy (as would be the case when the planner puts high weights

on E). Table 6 shows partial and full implementation of the planner’s solution for this kind of case.

To mimic the planner’s outcome we need to use deposit and lending subsidies. The complication

arises because, as we see from Table 2, the planner wants higher lending but much less liquidity for

this set of weights. So raising liquidity requirements will mean that the planner’s allocations cannot

be achieved. A capital requirement can be helpful, but it will have to be combined with lending or

deposit subsidies. The second column in the table shows what happens when a capital requirement

and a deposit subsidy τD are combined. These two regulations are sufficient to boost lending all

the way to where the planner prefers. Hence we consider how a lending subsidy can be part of

regulatory mix.

The last column in the table shows that a lending subsidy, τI = 3.54%, can be combined with

k̄ = 0.042 and τD =−2.74% to replicate the planner’s allocation (column 5).28 In this case, capital

regulation is needed because the bank is tempted to maximize its leverage to reap the benefits of the

subsidies. This helps a bit with respect to run risk compared to the case that only the two subsidies

are in place (column 4), but unlike a liquidity regulation, capital regulation does not restrict lending

materially, which is the primary objective of the planner for this set of weights.

To conclude, our findings suggest that capital is very useful as part of the optimal regulatory

mix irrespective of which agent the planner favors, while liquidity requirements are more useful for

savers. Indeed, we further verify this in section B.6 where we set cI = 0, so that the entrepreneurs

drop out of the planner’s objective (see Corollary 3).

5 Conclusions

Banks perform important services for the real economy using both sides of their balance sheet.

However, the private banking equilibria may not be socially optimal and regulating banking activi-

ties can improve social welfare. We have examined how many regulations that are often discussed in

27The tax/subsidy τD increases/decreases the interest expense on patient deposits, which becomes (1−δ)D(1+ r̄D)(1+
τD)—τD > 0 implies a tax. We assume that the planner returns/collects the proceeds from the tax/subsidy to/from the
bank in a lump-sum fashion in order to eliminate any income effects and focus on the ability of τD to target the SIM.
Hence, the lump-sum transfer is equal to (1−δ)D(1+ r̄D)τD.

28The easiest way to model this subsidy is to reward banks τI per unit of I extended and then tax them lump-sum an
equal amount τII.
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policy discussions perform in a relatively familiar model of banking. We started from the Diamond

and Dybvig (1983) benchmark precisely because it is so thoroughly studied. The modifications

that we made trade-off tractability to keep the model relatively simple, against our preference for

additional realistics forces that the baseline model excludes.

Our modifications generate endogenous credit risk in banks’ portfolios as well as the risk of an

endogenous funding run. This simple pair of features interact in interesting and unexpected ways.

We draw several general lessons from the model that we believe will carry over to many other

models.

First, we identify three general intermediation margins that are distorted: the relative amounts

of liquid and illiquid assets, the mix of deposits and equity, and the spread between loan and de-

posit rates. The way that banks privately set these margins diverges from what a social planner

would choose, because bankers do not fully internalize the effects of their choices on savers and

entrepreneurs. Provided the social planner cares sufficiently about savers, the planner chooses rela-

tively more liquidity and equity than the banker and would reduce bank profits by boosting deposit

rates and lowering loan rates. As a result, the planner reduces run risk, improves the provision of

liquidity, guarantees a more stable extension of credit and real production, and delivers more overall

intermediation compared to the private equilibrium. Capital regulation if still desirable even when

the planner cares little about savers, but liquidity regulation needs to be replaced with tools that

encourage further credit extension and, hence, actually create more risk.

Second, the wedges between the private and social choices are not collinear. Thus, more that

one regulatory tool is needed to implement the socially optimal allocations. Optimal policy in

models without all of these distortions can be misleading. For example, if the liability structure

is constrained, say because deposit levels are exogenously determined and equity is fixed, studying

asset allocations and distortions becomes much easier. But, regulation, if any is needed, will amount

to fixing liquidity ratios. Similarly, shuting down the liquidity demand and liquidity risk makes it

easier to focus on the optimal capital structure and level of investment. But, regulation, if again

any is needed, would amount to fixing capital ratios. Instead, when both sides of the bank’s balance

sheet are endogenously determined the distortions from each side interact and a combination of both

capital and liquidity requirements emerge in the optimal regulatory mix.

Third, the political economy aspects of regulation deserve attention. Our bankers internalize

how their decisions matter for run risk, funding structure and the level of intermediation to maximize

their own welfare. Their distorted choices, from a social point of view, have real macroeconomic

consequences. Regulation improves aggregate welfare, but reduces the rents accruing to bankers. If

possible, therefore, banks’ incentives to engage in regulatory arbitrage would be strong. The lack

of regulatory arbitrage in the model we have studied is one of its main shortcomings.

There are other interesting avenues to extend our model, some of which we have already been

mentioned and are analyzed in the online appendix. One further direction would be to allow banks to

issue long-term debt together with demandable deposits and equity. Including loss-absorbing debt

instruments in the regulatory mix could introduce additional ways to tackle with run risk and credit
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risk. But it would not constitute a full remedy by itself due to the disciplinary role that demandable

liabilities play. Moreover, our model is flexible enough to incorporate fire-sale dynamics by endo-

genizing the liquidation value of long-term investment. Although this would introduce pecuniary

externalities as an additional reason why private allocations are inefficient, it would not qualitatil-

vely overturn our main conclusions; the asset and liability side distortions would be similar. Finally,

one could enrich the set of risky investments from which a banker could choose and, thus, increase

the scope for asset substitution. Setting the (relative) risk-weights in capital requirements to capture

social risks would be, then, highly important.
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Tables and Figures

eS = 2.50 eB = 0.10 A = 4.50 ω = 80% cD = 0.27
cI = 0.1 φI = 3 X = 0.10 γ = 0.15 δ = 0.50
β = 0.70 ξ = 2.20 ξ = 0.01

Table 1: Parameterization.

PE SP for weights (wE ,wS)

(0.00,0.20) (0.05,0.15) (0.10,0.10) (0.15,0.05) (0.20,0.00)

I 0.862 0.785 0.841 0.873 0.899 0.906
LIQ 0.052 0.221 0.119 0.060 0.012 0.000
D 0.875 0.962 0.919 0.894 0.873 0.867
E 0.038 0.044 0.041 0.039 0.038 0.038
rI 3.097 3.198 3.131 3.089 3.051 3.042
r̄D 0.717 0.804 0.778 0.767 0.761 0.758
q 0.407 0.386 0.398 0.403 0.407 0.408
q f 0.200 0.147 0.180 0.198 0.211 0.214
` 0.057 0.219 0.124 0.065 0.013 0.000
k 0.042 0.044 0.043 0.042 0.042 0.042
rI− (1−δ)r̄D 2.739 2.796 2.742 2.705 2.670 2.663
I +LIQ 0.914 1.006 0.960 0.933 0.911 0.906
I−E 0.824 0.741 0.800 0.834 0.861 0.867
E(Div) 0.745 0.755 0.750 0.747 0.743 0.743
∆UE - -1.66% -0.44% 0.33% 1.02% 1.19%
∆US - 3.63% 1.74% 0.71% -0.10% -0.30%
∆UB - -0.44% -0.13% -0.05% -0.08% -0.09%
∆Usp - 0.29% 0.11% 0.05% 0.07% 0.14%
∆Ssp - 1.53% 1.18% 0.99% 0.84% 0.79%

Table 2: Privately versus Socially Optimal Solutions. The welfare changes are computed over the level of
welfare in the private equilibrium, which is normalized to one for each agent.
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Milder increase in Bigger increase in
PE CR k CR k

I 0.862 0.856 0.862 0.770 0.880
LIQ 0.052 0.064 0.055 0.224 0.019
D 0.875 0.880 0.876 0.940 0.841
E 0.038 0.040 0.040 0.053 0.058
rI 3.097 3.106 3.099 3.213 3.077
r̄D 0.717 0.713 0.711 0.703 0.605
q 0.407 0.405 0.406 0.387 0.405
q f 0.200 0.196 0.199 0.142 0.204
` 0.057 0.069 0.060 0.225 0.021
k 0.042 0.044 0.044 0.053 0.065
CR 0.045 0.047 0.047 0.069 0.066
rI− (1−δ)r̄D 2.739 2.749 2.743 2.862 2.774
I +LIQ 0.914 0.920 0.916 0.993 0.899
I−E 0.824 0.816 0.821 0.717 0.821
E(Div) 0.745 0.749 0.749 0.779 0.791
∆UE - -0.13% -0.01% -2.01% 0.51%
∆US - 0.17% 0.02% 2.68% -1.23%
∆UB - -0.01% -0.01% -0.61% -1.24%
∆Ssp - 0.03% 0.01% 0.05% -1.96%

Table 3: Single capital regulations. The welfare changes are computed over the level of welfare in the private
equilibrium, which is normalized to one for each agent.
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PE ` LCR NSFR

I 0.862 0.746 0.747 0.770
LIQ 0.052 0.258 0.257 0.217
D 0.875 0.959 0.959 0.942
E 0.038 0.045 0.045 0.044
rI 3.097 3.236 3.236 3.211
r̄D 0.717 0.746 0.745 0.736
q 0.407 0.385 0.385 0.390
q f 0.200 0.131 0.131 0.146
` 0.057 0.257 0.256 0.220
k 0.042 0.045 0.045 0.045
LCR 0.069 0.277 0.276 0.238
NSFR 0.552 0.703 0.702 0.670
rI− (1−δ)r̄D 2.739 2.863 2.863 2.843
I +LIQ 0.914 1.004 1.004 0.987
I−E 0.824 0.701 0.701 0.726
E(Div) 0.745 0.756 0.757 0.756
∆UE - -2.50% -2.49% -2.04%
∆US - 3.50% 3.48% 2.75%
∆UB - -0.51% -0.51% -0.35%
∆Ssp - 0.49% 0.49% 0.36%

Table 4: Single liquidity regulations. The welfare changes are computed over the level of welfare in the
private equilibrium, which is normalized to one for each agent.
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PE CR CR & ` CR, ` & τD

I 0.862 0.852 0.828 0.841
LIQ 0.052 0.073 0.113 0.119
D 0.875 0.883 0.901 0.919
E 0.038 0.042 0.040 0.041
rI 3.097 3.112 3.142 3.131
r̄D 0.717 0.710 0.723 0.778
q 0.407 0.404 0.401 0.398
q f 0.200 0.193 0.181 0.180
` 0.057 0.078 0.120 0.124
k 0.042 0.045 0.043 0.043
rI− (1−δ)r̄D 2.739 2.757 2.780 2.742
I +LIQ 0.914 0.925 0.941 0.960
I−E 0.824 0.811 0.788 0.800
E(Div) 0.745 0.752 0.749 0.750
∆UE - -0.23% -0.80% -0.44%
∆US - 0.30% 1.00% 1.74%
∆UB - -0.02% -0.06% -0.13%
∆Ssp - 0.04% 0.14% 1.18%

Table 5: Implementation of the planner’s solution for wE = 0.05 and wS = 0.15. The welfare changes are
computed over the level of welfare in the private equilibrium, which is normalized to one for each agent.
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PE k & τD τD & τI k, τD & τI

I 0.862 0.859 0.900 0.899
LIQ 0.052 0.070 0.010 0.012
D 0.875 0.890 0.873 0.873
E 0.038 0.039 0.037 0.038
rI 3.097 3.104 3.050 3.051
r̄D 0.717 0.742 0.764 0.761
q 0.407 0.404 0.408 0.407
q f 0.200 0.195 0.212 0.211
` 0.057 0.075 0.011 0.013
k 0.042 0.042 0.041 0.042
rI− (1−δ)r̄D 2.739 2.733 2.668 2.670
I +LIQ 0.914 0.929 0.910 0.911
I−E 0.824 0.820 0.862 0.861
E(Div) 0.745 0.746 0.742 0.743
∆UE - -0.05% 1.02% 1.02%
∆US - 0.55% -0.11% -0.10%
∆UB - -0.02% -0.08% -0.08%
∆Ssp - 0.49% 0.84% 0.84%

Table 6: Implementation of the planner’s solution for wE = 0.15 and wS = 0.05. The welfare changes are
computed over the level of welfare in the private equilibrium, which is normalized to one for each agent.

44



Optimal Bank Regulation
In the Presence of Credit and Run Risk

Anil K Kashyap Dimitrios P. Tsomocos Alexandros P. Vardoulakis

Online Appendix

Appendix A reports the proofs to propositions, lemmas and corollaries in the paper, while ap-

pendix B reports additional derivations and extensions.

A Proofs

A.1 Proof of Lemma 1

First, consider that ξ < ξ̂ ≡ (δD(1+ rD)− LIQ)/I. Then, θ(ξ,1) = (LIQ+ ξ · I)/(D(1+ rD)) <

(LIQ+ ξ̂I)/(D(1+ rD)) < δ. Also, λ̂(ξ) in (13) can be written as [θ(1+ rD)(1+ rI)−ξ(1+ r̄D)−
ξ ·X/(ωD)]/((1+ rD)(1+ rI)− ξ(1+ r̄D)), which is smaller than θ(ξ,1) as long as θ(ξ,1) < 1+

X/[ωD(1+ r̄D)((1+ rD)(1+ rI)− ξ(1+ r̄D))]. So, λ̂(ξ) < δ as well, and only the full run region

is possible. Next, define ξ
ld as the solution to λ̂(ξld) = δ; ˆ̂

ξ as the solution to θ(
ˆ̂
ξ,1) = 1, yielding

ˆ̂
ξ = (D(1+ rD)−LIQ)/I; and ξ

ud as the solution to λ̂(ξud) = 1, yielding ξ
ud =

ˆ̂
ξ/(1−X/(ωI(1+

rI))) >
ˆ̂
ξ. Moreover, λ̂(

ˆ̂
ξ) > δ and ∂λ̂(ξ)/∂ξ > 0, so ξ

ld <
ˆ̂
ξ < ξ

ud . Finally, ξ
ud < ξ, because

X <X ≡ωI(1+rI)(1− ˆ̂
ξ/ξ). Using these observations, it is easy to establish the non-empty regions

for the remaining ξ ∈ [ξ̂,ξ) in the Lemma.

A.2 Proof of Proposition 1

To Be Completed.

A.3 Proof of Corollary 1

Totally differentiating (19) we get that ∂ξ
∗/∂z=−(∂GG∗/∂z)/(∂GG∗/∂ξ

∗), where z can be any of I,

LIQ, D, rI , rD, or r̄D. Recall that ∂GG∗/∂ξ > 0 from (B.47). Then, ∂ξ
∗/∂I < 0, because ∂GG∗/∂I =

ωD(1+ r̄D)∂λ
∗/∂I−

∫ 1
θ
∗ ξ
∗/λdλ = ωD(1+ r̄D)[∂λ̂(ξ∗)/∂I− (λ∗− δ)/I] + (θ∗− δ)D(1+ rD)/I +∫ 1

θ
∗ LIQ/(λI)dλ > 0, from ∂λ

∗/∂I− (λ∗− δ)/I = [(δD(1+ rD)− LIQ)(1+ rI)+ (1− δ)ξ∗D(1+

r̄D)+ξ
∗X/ω]/[I ·D((1+ rD)(1+ rI)−ξ

∗(1+ r̄D)]> 0 from Lemma 1.

Moreover, ∂ξ
∗/∂D > 0 because ∂GG∗/∂D = ωD(1+ r̄D)[∂λ

∗/∂D+(λ∗−δ)/D]− (θ∗−δ)(1+

rD)< 0, from ∂λ
∗/∂D =−ξ

∗(1+ r̄D)/[D((1+ rD)(1+ rI)−ξ
∗(1+ r̄D)]−λ

∗/D.

The views expressed in this paper are those of the authors and do not necessarily represent those of Federal Reserve
Board of Governors, anyone in the Federal Reserve System, the Bank of England Financial Policy Committee, or any of
the institutions with which we are affiliated.
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The partial effect of the loan rate and the early deposit rate are, respectively, negative and

positive, because ∂GG∗/∂rI = ωD(1 + r̄D)∂λ
∗/∂rI = ωD(1 + r̄D)[(1 + rD)(1 + r̄D)ξ

∗(1− θ
∗) +

ξ
∗X/ω]/[((1+ rD)(1+ rI)−ξ

∗(1+ r̄D)]> 0 and ∂GG∗/∂rD = ωD(1+ r̄D)∂λ
∗/∂rD− (θ∗−δ)D =

−ωD(1+ r̄D)λ
∗(1+ rI)/[((1+ rD)(1+ rI)−ξ

∗(1+ r̄D)]− (θ∗−δ)D < 0.

On the other hand, the sign of ∂ξ
∗/∂LIQ < 0 is ambiguous, because ∂GG∗/∂LIQ = ωD(1+

r̄D)∂λ
∗/∂LIQ−

∫ 1
θ
∗ 1/λdλ = ωD(1+ r̄D) · [∂λ

∗/∂LIQ− (λ∗−δ)/LIQ]+ (θ∗−δ)D(1+ rD)/LIQ+∫ 1
θ
∗ ξI/(λLIQ)dλ and we cannot unambiguously sign ∂λ

∗/∂LIQ− (λ∗− δ)/LIQ = [(δD(1+ rD)−
ξ
∗I)(1+ rI)+(1−δ)ξ∗D(1+ r̄D)+ξ

∗X/ω]/[I ·D((1+ rD)(1+ rI)−ξ
∗(1+ r̄D)].

Finally, the sign of ∂ξ
∗/∂r̄D is also ambiguous, because ∂GG∗/∂r̄D = ωD(1+ r̄D)∂λ

∗/∂r̄D +

ωD(λ∗− δ) = ωD[(λ∗− δ)(1+ rD)(1+ rI)− (1− δ)ξ∗(1+ rD
3 )]/[(1+ rD)(1+ rI)− ξ

∗(1+ r̄D)],

which cannot be unambiguously signed.

A.4 Proof of Proposition 2

To Be Completed.

A.5 Proof of Corollary 3

Given that c(0) = 0 and c′(·)> 0, c′′(·) = 0 implies that c(x) = ac ·x, with ac > 0. Then, ∂U∗E/∂ξ
∗ =

−[c′(I)I− c(I)]/∆ξ = 0. Moreover, the surplus to E, (1− q)c′′(I)I, is zero. Similarly, given that

V (0) = 0 and V ′(·) > 0, V ′′(·) = 0 implies that V (x) = av · x, with av > 0. Then, ∂U∗S/∂ξ
∗ =

−[V (D(1+ rD))−V ′(D(1+ rD))D(1+ rD)]/∆ξ = 0. Moreover, the surplus from the transaction

services of deposits, (1− q)V ′′(D(1 + rD))D(1 + rD)
2, is zero. Finally, the surplus in terms of

period 1 utility, U ′′(eR−D)D, is zero for U ′′(·) = 0 as well as for LIQS > 0, because then U∗S = Uα
S

given that V (D(1+ rD))−V ′(D(1+ rD))D(1+ rD) = 0 from condition (ii). In turn, LIQS > 0 if

savers endowment is higher than some threshold eS at which (3) holds with equality.

A.6 Proof of Proposition 3

First, set X = 0 to make the determination of the run threshold in (20) scale invariant. Dividing it

by the balance sheet size, E +D (or I +LIQ), (20) becomes:

GGBS =
∫

λ̂

δ

ω(1− k)(1+ r̄D)dλ−
∫

θ
∗

δ

(1− k)(1+ rD)−
∫ 1

θ
∗

ξ
∗(1− `)+ `

λ
dλ = 0, (A.1)

where

λ̂BS =
(ξ∗(1− `)+ `)(1+ rI)−ξ

∗((1− k)(1+ r̄D))

(1− k)[(1+ rD)(1+ rI)−ξ
∗(1+ r̄D)]

. (A.2)

Thus, k affects the payoff differential in a partial run as well as the range that monitoring occurs,

λ̂− δ, via its effect on bank profitability. Totally differentiating (A.1) with respect to k, while

2



keeping `, rI , rD and r̄D constant we get:

∂GGBS

∂k
=

∂λ̂

∂k
ω(1− k)(1+ r̄D)︸ ︷︷ ︸
More monitoring

−(λ̂−δ)[ω(1+ r̄D)− (1+ rD)]︸ ︷︷ ︸
Lower payoff

given monitoring

+(θ∗− λ̂)(1+ rD)︸ ︷︷ ︸
’Higher’ payoff

absent monitoring

, (A.3)

where ∂λ̂/∂k > 0. Hence, the trade-off from setting a higher requirement k ≥ k̄ is that monitoring

becomes more probable, but the payoff to depositors is smaller given monitoring. Combining the

two effects we get that

∂GGBS

∂k
=

[
ξ
∗(1+ r̄D)

(1+ rD)(1+ rI)−ξ
∗(1+ r̄D)

+δ

]
ω(1+ r̄D)+(θ∗−δ)(1+ rD)> 0, (A.4)

which implies that ∂ξ
∗/∂k =−(∂GG∗BS/∂k)/(∂GG∗BS/∂ξ

∗)< 0, i.e., higher k reduces the run prob-

ability q.

Finally, note that CR = k(1− `). So tightening leverage is equivalent to setting a higher capital

requirement other things equal and, thus, higher CR reduces the run probability q.

A.7 Proof of Proposition 4

The proof use material described in proof A.6 above. Totally differentiating (A.1) with respect to `,

while keeping k, rI , rD and r̄D constant we get:

∂GGBS

∂`
=

∂λ̂

∂`
ω(1− k)(1+ r̄D)︸ ︷︷ ︸
More monitoring

−
∫ 1

θ
∗

1−ξ
∗

λ
dλ︸ ︷︷ ︸

Higher payoff
in full run

, (A.5)

where ∂λ̂/∂ell > 0. Hence, the trade-off from setting a higher requirement `≥ ¯̀ is that monitoring

becomes more probable, but the incentives to join a full run increase. Combining the two effects we

get that
∂GGBS

∂`
= (1−ξ

∗)

[
ω(1+ r̄D)(1+ rI)

(1+ rD)(1+ rI)−ξ
∗(1+ r̄D)

+ logθ
∗
]
, (A.6)

which is definitely positive if logθ
∗ > −1 given that ω(1+ r̄D) > 1+ rD. In turn, this is satisfied

under sufficient conditions δ > e−1 given that θ
∗ > δ or ` > ˆ̀≡

[
e−1 · (1− k)(1+ rD)−ξ

∗]/(1−
ξ
∗), which is true for high enough ξ

∗ in the private equilibrium.

Finally, note that LCR = ((1−ξ)`+ξ)/(k(1+ rD)) and NSFR = (k+(1−δ)(1− k))/(1− `).

So increasing ` is equivalent to increasing LCR or NSFR other things equal and, thus, higher LCR

or NSFR reduce the run probability q.
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B Extensions and Additional Derivations

B.1 Intermediation Margins in Private Equilibrium

The first-order conditions (23) together with the four constraints in Y can be combined to character-

ize the private equilibrium as follows. If (23) gives an interior rD > 0, then it is used it to determine

rD as a function of all other variables in C ; otherwise, set rD = 0. Then, use (2) (7), (9) and (20)

to express (implicitly) r̄D, rI , E, and ξ
∗ in terms of I, LIQ and D. The next steps is the express the

shadow values on the four constraints Y in terms of I, LIQ, and D. The shadow value of funds is

determined by the first-condition with respect to E,

ψBS =W ′(eB +D− I−LIQ), (B.7)

where we have substituted E = I +LIQ−D.

The shadow value on the deposit supply schedule can be obtained from (23) with respect to r̄D,

which yields

ψDS =−
(

∂UB

∂r̄D
+ψGG

∂GG
∂r̄D

)
∂DS
∂r̄D

−1

. (B.8)

The choice of r̄D matters for the banker via the effect on profits and on the run dynamics. The

shadow value determined in (B.8) captures the sum of these effect as the deposit rate moves along

the deposit supply schedule. Because the three variables of interest –I, LIQ, and D– affect the loan

demand directly as well as indirectly via r̄D, their overall effect on the deposit supply will be scaled

by the shadow value ψDS in their respective first-order conditions.

The shadow value on the loan demand schedule can be obtained from (23) with respect to rI ,

which yields

ψLD =−
(

∂UB

∂rI
+ψGG

∂GG
∂rI

)
∂LD
∂rI

−1

. (B.9)

Similar to (B.8), condition (B.9) says that the shadow value on the loan demand is measured by how

a change in loan rate along the loan demand schedule affects banker’s utility.

Equivalently, combining (23) for C = ξ
∗, (B.8) and (B.8), the shadow value on the global game

constraint is given by

ψGG =−

(
∂UB

∂ξ
∗ −

∂UB

∂r̄D

∂DS
∂r̄D

−1
∂DS
∂ξ
∗ −

∂UB

∂rI

∂LD
∂rI

−1
∂LD
∂ξ
∗

)
· dGG

dξ
∗

−1
, (B.10)

where dGG/dξ
∗ is the total effect of the run threshold ξ

∗ on the utility differential determining the

run behavior, which captures the partial direct effect –∂GG/∂ξ
∗ in (B.47)–and the partial indirect

effects via the deposit and loan rate:

dGG
dξ
∗ =

∂GG
∂ξ
∗ −

∂GG
∂r̄D

∂DS
∂r̄D

−1
∂DS
∂ξ
∗ −

∂GG
∂rI

∂LD
∂rI

−1
∂LD
∂ξ
∗ . (B.11)
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Overall, ψGG measures the effect of a change in the run threshold, which is consistent with optimal

run behavior, i.e., along the global game constraint, on B’s welfare.

Combining (23) with respect to LIQ and I, and substituting in (B.8), (B.9) and (B.10), we obtain

the asset allocation margin in the private equilibrium (AAMPE):

Effect of asset mix on UB via bank profits: dUB/dLIQ−dUB/dI︷ ︸︸ ︷
∂UB

∂LIQ
− ∂UB

∂I
− ∂UB

∂r̄D

∂DS
∂r̄D

−1(
∂DS
∂LIQ

− ∂DS
∂I

)
− ∂UB

∂rI

∂LD
∂rI

−1(
∂LD
∂LIQ

− ∂LD
∂I

)

+

(
∂UB

∂ξ
∗ −

∂UB

∂r̄D

∂DS
∂r̄D

−1
∂DS
∂ξ
∗ −

∂UB

∂rI

∂LD
∂rI

−1
∂LD
∂ξ
∗

)
︸ ︷︷ ︸

Effect on UB via ξ
∗: dUB/dξ

∗

·
(

∂ξ
∗

∂LIQ
− dξ

∗

dI

)
︸ ︷︷ ︸

Effect of asset mix on ξ
∗

= 0, (B.12)

where dξ
∗/dLIQ and dξ

∗/dI are obtained from total differentiation of (20), hence

dξ
∗

dLIQ
− dξ

∗

dI
=−

[
∂GG
∂LIQ

− ∂GG
∂I
− ∂GG

∂r̄D

∂DS
∂r̄D

−1(
∂DS
∂LIQ

− ∂DS
∂I

)
− ∂GG

∂rI

∂LD
∂rI

−1(
∂LD
∂LIQ

− ∂LD
∂I

)]
· dGG

dξ
∗

−1
.

(B.13)

The asset allocation margin in (B.12) captures the decision to substitute a unit of loans with a unit of

liquid assets. The banker in the private equilibrium weighs the effect of the change in the asset mix

on the bank profitability (the first line) and on the run threshold, which determines run risk, because

both affect her welfare (the second line). The asset mix matters for bank profits due to portfolio

effects (first two terms in first line), but also due to the way it will influence the profit margin via

the loan rate and deposit rates (remaining terms in first line). The latter (general equilibrium) effect

via rates captures how the asset mix matters for the loan rate or deposit rate entrepreneurs and

depositors are willing to accept. Similarly, the asset mix changes the payoffs governing the run

dynamics directly and indirectly via the loan and deposit rates (captured by (B.13)), which in turn

affect the run threshold influencing B’s welfare directly and indirectly via the loan and deposit rates.

Similarly, combining (23) with respect to E and D, and substituting in (B.8), (B.9) and (B.10),

we obtain the capital structure margin in the private equilibrium (CSMPE):

Effect of liabilities mix on UB via bank profits: dUB/dE−dUB/dD︷ ︸︸ ︷
∂UB

∂E
− ∂UB

∂D
+

∂UB

∂r̄D

∂DS
∂r̄D

−1
∂DS
∂D

+
∂UB

∂rI

∂LD
∂rI

−1
∂LD
∂D

−

(
∂UB

∂ξ
∗ −

∂UB

∂r̄D

∂DS
∂r̄D

−1
∂DS
∂ξ
∗ −

∂UB

∂rI

∂LD
∂rI

−1
∂LD
∂ξ
∗

)
︸ ︷︷ ︸

Effect on UB via ξ
∗: dUB/dξ

∗

· dξ
∗

dD︸︷︷︸
Effect of liabilities

mix on ξ
∗

= 0, (B.14)

where
dξ
∗

dD
=−

[
∂GG
∂D
− ∂GG

∂r̄D

∂DS
∂r̄D

−1
∂DS
∂D
− ∂GG

∂rI

∂LD
∂rI

−1
∂LD
∂D

]
· dGG

dξ
∗

−1
. (B.15)
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Finally, combining (23) with respect to I and D, and substituting in (B.8), (B.9) and (B.10), we

obtain the margin for the scale of intermediation in the private equilibrium (SIMPE):

Effect of intermediation scale on UB via bank profits: dUB/dI +dUB/dD︷ ︸︸ ︷
∂UB

∂I
+

∂UB

∂D
− ∂UB

∂r̄D

∂DS
∂r̄D

−1(
∂DS
∂I

+
∂DS
∂D

)
− ∂UB

∂rI

∂LD
∂rI

−1(
∂LD
∂I

+
∂LD
∂D

)

+

(
∂UB

∂ξ
∗ −

∂UB

∂r̄D

∂DS
∂r̄D

−1
∂DS
∂ξ
∗ −

∂UB

∂rI

∂LD
∂rI

−1
∂LD
∂ξ
∗

)
︸ ︷︷ ︸

Effect on UB via ξ
∗: dUB/dξ

∗

·
(

dξ
∗

dI
+

dξ
∗

dD

)
︸ ︷︷ ︸

Effect of intermediation
scale on ξ

∗

= 0, (B.16)

where

dξ
∗

dI
+

dξ
∗

dD
=−

[
∂GG

∂I
+

∂GG
∂D
− ∂GG

∂r̄D

∂DS
∂r̄D

−1(
∂DS
∂I

+
∂DS
∂D

)
− ∂GG

∂rI

∂LD
∂rI

−1(
∂LD
∂I

+
∂LD
∂D

)]
· dGG

dξ
∗

−1
.

(B.17)

Note that expanding the first two terms in (B.16) we get that

∂UB

∂I
+

∂UB

∂D
= ω

{
[(1−q)−δ(1+ rD

2 )log(ξ/ξ
∗)/∆ξ](1+ rI)− (1−δ)(1+ rD

3 )
}
, (B.18)

where q is the run probability. Hence, the third margin capturing the scale of intermediation can be

proxied by the intermediation spread between the loan rate, rI , and the late deposit rate, r̄D.

The three intermediation margins pin down the three free variables I, LIQ and D. The remaining

variables, E, ξ
∗, rI , and r̄D, are implicitly functions of the three free variables via constraints (9),

(20), (7) and (2), which are always binding in equilibrium . Hence, there are three degrees of

freedom and the private equilibrium is characterized by (B.12), (B.14) and (B.16).

B.2 Intermediation Margins in Social Planner’s Equilibrium

To Be Completed.

B.3 Incomplete Deposit Contracts and Lack of Commitment

To Be Completed.

B.4 Loan Market and Price-Taking Behavior

To Be Completed.

B.5 Tools-augmented planner

We consider a tools-augmented planner who is endowed with the set of tools T ∈ T and want

to replicated the social planner’s allocations Csp, as a private equilibrium. The tools-augmented

planner’s problem is akin to a Ramsey planner’s problem in the public finance literature.
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For each T ∈ T there is a regulatory constraint RC(T ,C ) ≥ 0, which ties the tool with the

endogenous variables C or an additional term in B’s utility, UB(T ,C ) in the case the tool is a

Pigouvian tax imposed directly on the payoffs to B. It is important to note that the regulatory

constraints, RC, are defined as inequalities, i.e., the planner can tighten them, but not loosen them,

while there are no restrictions on Pigouvian taxes which can be positive or negative. Let ψT be the

multipliers that the banker in the private equilibrium assigns to constraint RC(T ,C )≥ 0.

Under regulation, the optimization margins change to:

AAMT : AAMPE +∑
T

{
ψT

[
∂RC(T ,C )

∂LIQ
− ∂RC(T ,C )

∂I

]
+

∂UB(T ,C )

∂LIQ
− ∂UB(T ,C )

∂I

}
= 0,

(B.19)

CSMT : CSMPE +∑
T

{
ψT

[
∂RC(T ,C )

∂E
− ∂RC(T ,C )

∂D

]
+

∂UB(T ,C )

∂E
− ∂UB(T ,C )

∂D

}
= 0,

(B.20)

SIMT : SIMPE +∑
T

{
ψT

[
∂RC(T ,C )

∂I
+

∂RC(T ,C )

∂D

]
+

∂UB(T ,C )

∂I
+

∂UB(T ,C )

∂D

}
= 0.

(B.21)

We will show that in order to implement the equilibrium allocations of the social planner, de-

noted by Csp, it is not necessary to solve the full problem of the tools-augmented planner. Instead, it

suffices that the there are tools, T , that first satisfy the regulatory constraints RC(T ,Csp) = 0 at the

planner’s allocations, and, second, the intermediation margins in the associated equilibrium are the

same as the intermediation margins of the planner. Essentially, this means that the additional terms

in (B.19), (B.20) and (B.21) need to equal the wedges derived in (30), (31) and (32). In matrix form,

this can be written as:

∆RC(T ,Csp) ·ΨT +∆UB(T ,Csp) ·1T =WDsp, (B.22)

where ΨT is the Tx1 vector of the multiplier on the T regulatory constraints, 1T is a Tx1 unit vector,

WDsp is the 3x1 vector of the wedges in the three intermediation margins evaluated at the planner’s

equilibrium values, ∆RC(T ,Csp) is the 3xT matrix of the partial derivatives of the relevant variables

for each intermediation margin on the T regulatory constraints, and ∆UB(T ,Csp) is the 3xT matrix

of the partial derivatives of the utility terms introduced by Pigouvian taxation with respect to the

relevant variables for each intermediation margin.

Hence, it suffices to find (only) three tools such that, first, the matrix ∆RC(T ,Csp) is invertible,

and, second, all elements in ΨT are positive. Invertibility, is trivially satisfied under three Pigouvian

taxation tool that can be chosen independently such that ∆UB(T ,Csp) · 1T = WDsp. But, three

regulatory (capital or liquidity) tools may not be linearly independent because choosing two of them

7



may replicate the value of the third. Hence, the matrix may not be invertible if we do not include

Pigouvian tools, i.e., ∆UB(T ,Csp) = 0, which is actually the case in Section 4.3. That is the reason

we combine a capital and a liquidity tool with a subsidy on deposit interest expenses. Moreover, the

regulatory tools need to be jointly binding, because the constraints RC are inequalities. For example,

a capital and a liquidity tool can be jointly binding, but two liquidity tools cannot. This is not the

case for Pigouvian taxes as we do not impose any restriction on their sign.

We now show that (B.22) is (generically) a necessary and sufficient condition such that the

social planner’s solution described in section 3.1 can be decentralized as a private equilibrium by

using regulatory tools T ∈ T. The tools-augmented planner not only chooses optimally allocations

C , but also the level of tools T ∈ T and the multipliers ψT , which are the shadow values that the

bank assigns to constraints RC(T ,C )≥ 0 in the new equilibrium. Her problem is:

max
C ,T ,ψT

U∗sp s.t. Y (C ) = 0, RC(T ,C )≥ 0, AAMT (T ,C ,ΨT ) = 0,CSMT (T ,C ,ΨT ) = 0,

SIMT (T ,C ,ΨT ) = 0. (B.23)

Note that the additional utility terms UB(T ,C due to Pigouvian taxation tools do not appear in

the utility the tools-augmented planner maximizes, because she engages to equal in size lump-sum

transfers.

The first-order condition with respect to C (similar to first-order condition (29)) are:

∂UB

∂C
+wS

∂U∗S
∂C

+wE
∂U∗E
∂C

+∑
Y

ζY
∂Y
∂C

+∑
T

ζT
∂RC
∂C

+ζAAM
∂AAMT

∂C
+ζCSM

∂CSMT
∂C

+ζSIM
∂SIMT

∂C
= 0, (B.24)

where ζT , ζAAM, ζCSM and ζSIM are the multipliers the tool-augmented planner assigns to regulatory

constraints and the three regulation-distorted intermediation margins.

The first-order conditions with respect to the level of tools T are:

ζT
∂RC
∂T

+ζAAM
∂AAMT

∂T
+ζCSM

∂CSMT
∂T

+ζSIM
∂SIMT

∂T
= 0, (B.25)

and choosing optimally the multipliers ψT yields:

ζAAM
∂AAMT

∂ψT
+ζCSM

∂CSMT
∂ψT

+ζSIM
∂SIMT
∂ψT

= 0. (B.26)

To prove sufficiency, (B.22) implies that there need to be three regulatory tools, including Pigou-

vian taxes, such that a solution to multipliers ψT can be obtained. This means that there are three

first-order conditions of the form in (B.25) and at most three of the form in (B.26), because Pigou-

vian taxes are not assigned a Lagrange multiplier as they are free to be positive or negative. Then,

conditions (B.26) can be written in matrix form as transpose(∆RC)·transpose([ζAAM,ζCSM,ζSIM])=
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0. Given that ∆RC is invertible by the conjecture that (B.22) is sufficient, ζAAM = ζCSM = ζSIM = 0.

Thus, the only solution requires all ζT to be zero and the first-order conditions (B.24) coincide with

the first-order conditions (29) of the social planner.

To prove necessity, suppose that (B.22) does not hold. Using conditions (B.24) we can de-

rive intermediation margins AAMTAP = AAMSP + AAMTAP,WD, CSMTAP = CSMSP +CSMTAP,WD

and SIMTAP = SIMSP + SIMTAP,WD for the tool-augmented planner, where the wedges are linear

combination of one multiplier ζT , ζAAM, ζCSM and ζSIM. The social planner’s and tools-augmented

planner’s solutions coincide if both wedges AAMTAP,WD, CSMTAP,WD, and SIMTAP,WD are all zero,

which in principle is possible because there are at least three tools, hence three degrees of freedom.

However, equations (B.25) and (B.26) remove as many degrees of freedom as the number of regu-

latory tools degrees of freedom. Hence, it is not possible to replicate the social planner’s solution

with fewer that three independent tools, which leads to a contradiction.

B.6 Zero-profit entrepreneurial sector

To Be Completed.

B.7 Direct lending

To Be Completed.

B.8 Additional distortionary tools

To Be Completed.

B.9 Negative interest rates

To Be Completed.

B.10 Outside equity

To Be Completed.

B.11 Derivatives

This section reports the partial derivatives of banker’s utility UB in (14), the monitoring threshold λ̂

in (13), the global game constraint GG in (20), the deposit supply schedule DS in (2), and the loan

demand schedule LD in (7) with respect to the choice variables in C. When it is unambiguous, we

also report the sign of the derivatives.

Partial derivatives ∂UB/∂C .

∂UB

∂I
= ω(1−q)(1+ rI)> 0. (B.27)
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∂UB

∂LIQ
= ω(1+ rI) log(ξ/ξ

∗)/∆ξ > 0. (B.28)

∂UB

∂D
=−ω

[
δ(1+ rD)(1+ rI) log(ξ/ξ

∗)/∆ξ +(1−δ)(1−q)(1+ r̄D)
]
< 0. (B.29)

∂UB

∂E
=−W ′(eB−E)< 0. (B.30)

∂UB

∂ξ
∗ =−

[
ω
(
(ξ∗I−δD(1+ rD)+LIQ)/ξ

∗(1+ rI)− (1−δ)D(1+ r̄D)
)
−X

]
/∆ξ < 0. (B.31)

∂UB

∂rI
= ω

[
(1−q)I− (δD(1+ rD)−LIQ) log(ξ/ξ

∗)/∆ξ

]
> 0. (B.32)

∂UB

∂rD
=−ωδD(1+ rI) log(ξ/ξ

∗)/∆ξ < 0. (B.33)

∂UB

∂r̄D
=−ω(1−δ)(1−q)D < 0. (B.34)

Partial derivatives ∂λ̂/∂C .

∂λ̂

∂I
= ξ

∗(1+ rI)/
[
D
(
(1+ rD)(1+ rI)−ξ

∗(1+ r̄D)
)]

> 0. (B.35)

∂λ̂

∂LIQ
= (1+ rI)/

[
D
(
(1+ rD)(1+ rI)−ξ

∗(1+ r̄D)
)]

> 0. (B.36)

∂λ̂

∂D
=−ξ

∗(1+ r̄D)/
[
D
(
(1+ rD)(1+ rI)−ξ

∗(1+ r̄D)
)]
− λ̂/D < 0. (B.37)

∂λ̂

∂E
= 0. (B.38)

∂λ̂

∂ξ
∗ = [I(1+ rI)− (D(1+ r̄D)+X/ω)]/

[
D
(
(1+ rD)(1+ rI)−ξ

∗(1+ r̄D)
)]

+ λ̂(1+ r̄D)/
[
(1+ rD)(1+ rI)−ξ

∗(1+ r̄D)
]
> 0. (B.39)
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∂λ̂

∂rI
= (ξ∗I +LIQ)/

[
D
(
(1+ rD)(1+ rI)−ξ

∗(1+ r̄D)
)]

− λ̂(1+ rD)/
[
(1+ rD)(1+ rI)−ξ

∗(1+ r̄D)
]
> 0. (B.40)

∂λ̂

∂rD
=−λ̂(1+ rI)/

[
(1+ rD)(1+ rI)−ξ

∗(1+ r̄D)
]
< 0. (B.41)

∂λ̂

∂r̄D
=−(1− λ̂)ξ∗/

[
(1+ rD)(1+ rI)−ξ

∗(1+ r̄D)
]
< 0. (B.42)

Partial derivatives ∂GG/∂C (see proof of Corollary 1 for the sign of ∂GG∗/∂C ).

∂GG
∂I

= ωD(1+ r̄D)
∂λ̂

∂I
−

∫ 1

ξ
∗

ξ
∗

λ
dλ. (B.43)

∂GG
∂LIQ

= ωD(1+ r̄D)
∂λ̂

∂LIQ
−

∫ 1

ξ
∗

1
λ

dλ. (B.44)

∂GG
∂D

= ωD(1+ r̄D)

[
∂λ̂

∂D
+(λ̂−δ)/D

]
− (θ∗−δ)(1+ rD). (B.45)

∂GG
∂E

= 0. (B.46)

∂GG
∂ξ
∗ = ωD(1+ r̄D)

∂λ̂

∂ξ
∗ −

∫ 1

ξ
∗

I
λ

dλ. (B.47)

∂GG
∂rI

= ωD(1+ r̄D)
∂λ̂

∂rI
. (B.48)

∂GG
∂rD

= ωD(1+ r̄D)
∂λ̂

∂rD
−D(θ∗−δ). (B.49)

∂GG
∂r̄D

= ωD(1+ r̄D)
∂λ̂

∂r̄D
+ωD(λ̂−δ). (B.50)
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Partial derivatives ∂DS/∂C .

∂DS
∂I

= [βδ+β
2(1−β)] ·q ·

ξ
∗+ξ

2
· 1

D
> 0. (B.51)

∂DS
∂LIQ

= [βδ+β
2(1−β)] ·q · 1

D
> 0. (B.52)

∂DS
∂D

=U ′′(eS−D)− [βδ+β
2(1−β)] ·q ·

(
LIQ+ I ·

ξ
∗+ξ

2

)
1

D2

+(1−q)V ′′(D(1+ rD))(1+ rD)
2 < 0. (B.53)

∂DS
∂E

= 0. (B.54)

∂DS
∂ξ
∗ =

{
[βδ+β

2(1−β)]
LIQ+ξ

∗I
D

−δβ(1+ rD)

−(1−δ)β2
ω(1+ rD)−V ′(D(1+ rD))(1+ rD)

}
∆
−1
ξ

< 0. (B.55)

∂DS
∂rI

= 0. (B.56)

∂DS
∂rD

= (1−q)
[
βδ+V ′(D(1+ rD))+V ′′(D(1+ rD))D(1+ rD)

]
> 0. (B.57)

∂DS
∂r̄D

= ω ·β2(1−δ)(1−q)> 0. (B.58)

Partial derivatives ∂LD/∂C .

∂LD
∂I

= ω(A− (1+ rI))
δD(1+ rD)−LIQ

I2
log(ξ/ξ

∗)

∆ξ

− (1−q)c′′(I)≶ 0. (B.59)

∂LD
∂LIQ

= ω(A− (1+ rI))
1
I

log(ξ/ξ
∗)

∆ξ

> 0. (B.60)

12



∂LD
∂D

=−ω(A− (1+ r))
δ(1+ rD)

I
log(ξ/ξ

∗)

∆ξ

< 0. (B.61)

∂LD
∂E

= 0. (B.62)

∂LD
∂ξ
∗ =−

[
ω(A− (1+ rI))

ξ
∗I−δD(1+ rD)+LIQ

ξ
∗I

− c′(I)
]

∆
−1
ξ

≷ 0. (B.63)

∂LD
∂rI

=−ω

[
(1−q)− δD(1+ rD)

I
log(ξ/ξ

∗)

∆ξ

]
< 0. (B.64)

∂LD
∂rD

=−ω(A− (1+ r))
δD
I

log(ξ/ξ
∗)

∆ξ

< 0. (B.65)

∂LD
∂r̄D

= 0. (B.66)
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