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Abstract

Structural econometric models usually involve parametric distributional assumptions for

unobserved heterogeneity. Although these assumptions are typically not informed by eco-

nomic theory, and undermine the robustness of empirical results, they are generally thought

to be necessary to simulate counterfactual predictions. In partially identi�ed and incomplete

structural models, counterfactual analysis is also hampered by the multiplicity of admissible

structural parameter values and the multiplicity of counterfactual predictions for each struc-

tural parameter value. This paper shows how to construct identi�cation conditions for both

structural and counterfactual parameters in a large class of structural econometric models,

including partially identi�ed and incomplete ones, without imposing parametric distributional

assumptions for unobserved variables. The identi�ed set is characterized by moment inequal-

ities, so that existing inferential methods can be applied, including subvector inference when

only counterfactual parameters are of interest. The novelty and computational tractability

of the methodology is illustrated on a class of discrete choice models and a class of entry

models.

∗I am grateful to Marc Henry, Joris Pinkse and Keisuke Hirano for their invaluable guidance and support
throughout this project. I thank Michael Gechter, Paul Grieco, Patrik Guggenberger, Ismael Mouri�é, Charles
Murry, Mark Roberts, Karl Schurter and Neil Wallace for helpful discussions and suggestions. I would like to
thank the seminar participants at IO Brown Bag and Econometrics Reading Group at Penn State, Econometrics
Workshop at the University of Toronto and Cornell University for comments and suggestions.
†Department of Economics, The Pennsylvania State University. Email: lixiong.li@psu.edu

1

https://lixiongli.com/wp-content/uploads/JMP_Lixiong_Li.pdf
mailto:lixiong.li@psu.edu


1 Introduction

In structural model estimation, unobserved heterogeneity is usually handled by imposing para-

metric distributional assumptions. For example, the distribution of unobserved heterogeneity

is usually assumed to be Gumbel in discrete choice models, Pareto or Fréchet in structural

trade models, and Normal in empirical entry games. Although these assumptions could lead

to non-robust empirical results where parametric assumptions instead of data variation drive

the identi�cation, they are widely imposed in structural models. One main reason for this

is that these parametric assumptions are generally thought to be necessary to simulate the

counterfactual model predictions, which is usually the motivation to set up a structural model

in the �rst place.

This paper develops a novel identi�cation method to construct sharp bounds for both

structural and counterfactual parameters under semiparametric assumptions on the unob-

served heterogeneity. In contrast to the parametric assumptions, these semiparametric as-

sumptions often stem from more robust and interpretable restrictions such as conditional

mean/median independence, or quantile restrictions based on symmetric distributions or

�rst-order stochastic dominance. Moreover, due to the generality of the method, one can

use the method to construct bounds under a sequence of (possibly nested) assumptions. For

example, one can start from some very robust conditions, which typically result in insu�-

ciently informative bounds, and then impose more and more stringent assumptions until the

result is informative enough for empirical analysis. Through this process, one can gain a

good understanding of which assumption is essential to the �nal empirical results. This idea

can be traced back to Manski (see for instance the discussion in Manski (1999) and Manski

(2008)) but is only feasible when one can derive sharp identi�cation conditions for each set

of assumptions under evaluation, as I do in this paper.

More speci�cally, the semiparametric assumptions studied in this paper are moment con-

ditions which involve parameters, observables, and unobservables. These moment conditions

arise naturally in counterfactual analysis. As a simplistic example, consider a counterfactual

exercise in a multinomial choice model where some characteristic of choices, say, the price,

changes. Then, the counterfactual choice probability s̃ is an integration of each agent i's

counterfactual choice decision Ỹi. In this example, the counterfactual parameter s̃ and one

of the unobservables Ỹi are involved in one moment equation, E[Ỹi − s̃] = 0. This is di�erent

from the generalized method of moments (GMM) in which moment functions only depend on

parameters and observables, not unobservables.

This paper has two contributions to the literature. First, it develops a new identi�cation

approach which can be applied to more general models and is sharp under weaker conditions

than the existing literature. Second, it provides a new way to conduct the counterfactual

analysis under semiparametric assumptions, even if the model is not point identi�ed or has

multiple counterfactual model predictions.
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The identi�cation approach transforms the structural model and these moment condi-

tions into a set of moment inequalities which only depend on parameters and observables.

The transformation builds on support functions which bound the moment functions given the

model restrictions. It does not hinge on particular structures in which unobserved hetero-

geneity can be di�erenced out or integrated out, which makes it di�erent from Pakes (2010)

and Pakes et al. (2015). Moreover, I derive a set of su�cient conditions and a set of necessary

conditions for the sharpness of the approach.

This paper overcomes several challenging technical di�culties. First of all, it covers the

cases where moment functions are unbounded. The lack of boundedness violates regularity

conditions of most duality and random set theoretic results that serve as the cornerstone of the

existing identi�cation results. All existing results on the sharp identi�cation in similar econo-

metric models impose either compactness conditions or integrable boundedness conditions,

which rules out some interesting empirical applications. Ekeland et al. (2010) and Beresteanu

et al. (2011) are examples of papers that make such assumptions. Secondly, the sharp identi-

�cation conditions in this paper generally involve a continuum of moment conditions, which

could make them hard to implement in practice. Similar challenges exist in Ekeland et al.

(2010), Beresteanu et al. (2011) and Schennach (2014). Although there exist some inference

procedures designed for in�nitely many moment inequality models, their computational com-

plexity can be overwhelming. Simplifying these moment conditions without losing (too much)

information is a challenging task. There has been some related work in Galichon and Henry

(2011), Chernozhukov et al. (2013), Chesher and Rosen (2017) and Luo and Wang (2017),

which removes redundant moment inequalities among �nitely many conditions. However, the

problem here is even harder since the number of moment inequalities here could be in�nite.

To solve the �rst issue, I develop a new regularization procedure. The idea is to �rst

regularize the moment function by imposing constraints which, for example, bound the norm

of the moment functions. The identi�cation conditions for these regularized models can then

be easily derived. Next, I weaken these regularization conditions by gradually lifting the

bounds on the moment functions. During this process, the identi�ed set of the regularized

model will expand and eventually converge to a limiting set. It turns out that my identi�cation

approach is sharp if the set of parameters it characterizes is equal to this limiting set.

I also show that the �rst issue can be bypassed by relaxing the de�nition of the identi�ed

set to some enlarged version of it. This is in the spirit of Schennach (2014), but I only relax the

moment restriction while keeping the other model restrictions intact. This relaxation turns

out to be useful in that it removes the need for the boundedness conditions while preserving

a good approximation for the identi�ed set. Its similarities and di�erences with Schennach

(2014) will be elaborated in Section 3.5.

To solve the second issue, I provide a new simpli�cation algorithm. When the moment

function only takes �nitely many values, the algorithm �nds a minimal set of moment in-
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equalities which preserves sharpness, i.e., a minimal core determining class. The algorithm

transforms the problem into a group of linear programming problems so that �nding the min-

imal core determining class is equivalent to enumerating all vertices of a convex polyhedron.

One can then apply any existing vertex enumeration algorithm to the core determining class

problem. See, for example, Avis and Fukuda (1992) and, more recently, Avis and Jordan

(2018). In cases where the moment function is not discrete, the algorithm can still be helpful.

One can �rst discretize the moment function and �nd a minimal core determining class Λ for

that discretized model. Such a set Λ will not be core-determining for the original model, but

it should capture most of the information if the discretization is �ne enough. This idea is

formalized in Section 5.

1.1 Literature

This paper is not the �rst one to study the identi�cation in structural models with semipara-

metric assumptions. Pakes (2010) and Pakes, Porter, Ho and Ishii (2015) have studied some

important empirical models. They exploit the revealed preference conditions to construct

moment inequalities, where some particular structures in payo� functions and information

set are imposed to cancel or integrate out the unobserved heterogeneity. The framework in

this paper nests all the models they studied. In Example 1, I revisit one of their models and

show their identi�cation results are sharp under certain assumptions.

Our paper is mostly related to Ekeland, Galichon and Henry (2010), who propose a sharp

identi�cation approach which builds on the uniform integrability of the moment function and

the tightness of the support of the unobserved heterogeneity. Those assumptions are very

restrictive and rule out many models of interest, including the examples considered in this

paper. As explained later in Section 3.4, part of the reason why they need these stringent

assumptions is that their identi�cation approach implicitly treats all model restrictions as

moment conditions. In general cases, the bounds constructed in this paper are always weakly

and sometimes strictly tighter than that in Ekeland, Galichon and Henry (2010). Similar iden-

ti�cation ideas have been used in Beresteanu, Molchanov and Molinari (2011) for a di�erent

economic model, whose identi�cation results also rely on certain compactness assumptions.

Similar ideas have also been presented as an optimal transportation approach in Galichon

and Henry (2011) in a parametric setting. Recently, Chesher and Rosen (2017) establish the

equivalence between the identi�cation conditions on the random set of the observables and

those on the random set of the unobservables.

Another related paper is Schennach (2014), who proposes an entropy-based identi�cation

approach which is computation-friendly and works under very mild conditions. However, the

identi�cation approach in Schennach (2014) is not sharp under the assumptions stated therein.

In fact, based on the approach in Schennach (2014), one could get two di�erent identi�cation

results for the same model if the model is written in two di�erent (yet equivalent) ways. As
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explained in Section 3.5, this is due to the fact that the theorem stated in Schennach (2014)

is in terms of some enlarged version of the identi�ed set. I clarify the relationship between

the identi�ed set and the enlarged identi�ed set in Section 3.4.

There is a growing literature on bounding counterfactual outcomes without imposing para-

metric distributions on the unobserved heterogeneity, especially in the context of discrete

choice models, Manski (2007) shows that sharp bounds on counterfactual choice probabilities

can be constructed by solving a linear programming problem given non-parametric constraints

on agents' preferences revealed in the data. This idea is further developed in Tebaldi, Tor-

govitsky and Yang (2018) which also takes into account the endogeneity in prices. Chiong,

Hsieh and Shum (2017) provide another non-sharp but computationally e�cient way to bound

counterfactual market shares based on the cyclic monotonicity implied by the optimality con-

ditions in discrete choice models. More recently, Aguiar and Kashaev (2018) discusses a way

to do counterfactual analysis in the context of the revealed preference axioms, which is similar

to the general approach presented in this paper.

There is also a literature on performing counterfactual analysis in incomplete models.

In the context of empirical games, computational methods have been developed for solving

or bounding the multiple counterfactual equilibria. Methods based on lattice theory (Jia

(2008), Uetake and Watanabe (2017)), mixed-integer linear programming (Reguant (2016))

and genetic algorithms (Aguirregabiria and Mira (2005)) have been proposed in the literature.

In contrast to these contributions, this paper does not focus on computational methods for the

counterfactuals. Instead, it proposes ways to perform counterfactual analysis without making

parametric assumptions on the unobserved heterogeneity on which all the above contributions

hinge.

As my identi�cation conditions take the form of moment inequalities, this paper also re-

lates to the literature on moment inequality inference. When my identi�cation conditions

are simpli�ed into or approximated by a �nite number of moment inequalities, one can apply

methods in Chernozhukov, Hong and Tamer (2007), Andrews and Soares (2010) and Cher-

nozhukov, Chetverikov and Kato (2018) to perform hypothesis testing and construct con�-

dence region. If the moment inequalities are conditional on other instruments, the inference

can be conducted by following Andrews and Shi (2013) and Chernozhukov, Lee and Rosen

(2013). In general, cases where the identi�cation conditions involve a continuum of moment

inequalities, one can use inference procedures in Andrews and Shi (2017) and Chernozhukov,

Lee and Rosen (2013).

The rest of the paper is organized as follows. Section 2 describes the class of models

studied in this paper and provides several examples. Section 3 presents the identi�cation

approach developed in this paper. Section 4 discusses the counterfactual analysis. Section 5

provides a computational method. Section 6 illustrates the method with some simulations.

Section 7 describes a further extension of the framework. Finally, Section 8 concludes the
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paper.

1.2 Notation

In the following, I use capital letters like U,Z to denote random variables, and use lower case

letters like u, z to denote speci�c values of those random variables. Unless otherwise speci�ed,

the norm ‖ ‖ stands for the Euclidean norm. For any positive integer k, I use Sk to denote

the unit sphere in Rk, i.e. Sk := {λ ∈ Rk : ‖λ‖ = 1}. I use 1(·) to denote the indicator

function. Given a probability measure H, I use EH and PH to denote the expectation and

probability taken with respect to H. If not explicitly speci�ed, expectation E and probability

P is take with respect to the true probability measure in the data generating process (DGP).

Finally, I use Θ to stand for the parameter space.

2 Frameworks and Motivating Examples

This paper studies the identi�cation for the following empirical model,

P[(U,Z) ∈ Γ(θ)] = 1, E[r(U,Z; θ)] = 0, (1)

where U stands for the vector of unobservable variables, and Z is the vector of observables.

Let U and Z be the space of U and Z respectively. Γ(θ) is a possibly θ-dependent set of

(U,Z), which summarizes all structural model restrictions on (U,Z). The function r maps

(U,Z) and θ to a Euclidean space Rdr where dr < ∞. The dimension of θ can be in�nite.

In the following, I denote the model restrictions in (1) by (Γ, r). I use the term support

restriction to refer to the �rst part of the restriction in (1), and use moment restriction to

refer to the second part.

For each θ ∈ Θ, set Γ(θ) and function r(·, ·; θ) are known. The goal is to �nd all parameters

θ which satisfy (1). Formally, let FZ be the distribution of Z, which is identi�ed from the

data. I de�ne the identi�ed set as follows.

De�nition 1 (identi�ed set). The identi�ed set ΘI is the set of all θ ∈ Θ such that there

exists a joint distribution H for (U,Z) which satis�es

(i) PH [(U,Z) ∈ Γ(θ)] = 1,

(ii) EH [r(U,Z; θ)] = 0,

(iii) H's marginal distribution for Z equals FZ .

where the probability and expectation in (i) and (ii) are taken with respect to distribution H.

The �rst two conditions in the de�nition are the statement of the general framework

in (1), and the last condition means the data generating process H is consistent with the
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data. In general, ΘI may or may not be a singleton. For each parameter θ in the identi�ed

set ΘI , there exists a distribution H which makes it observationally equivalent to the true

parameter θ0. This de�nition is in line with the de�nition used in most of the literature. See

Roehrig (1988) and Ekeland, Galichon and Henry (2010) among others. I sometimes write

ΘI as ΘI(Γ, r) when emphasizing the underlying model restrictions.

Framework in (1) covers a large class of structural models. In the following, I give several

examples to illustrate how di�erent kinds of structural models �t in the framework.

Example 1 (binary choice model with limited information). Consider a binary choice model

in which agents have limited information when making decisions. Let Yi ∈ {0, 1} be agent i's
choice, and πi be her ex post payo� if she chooses Yi = 1,

πi = Xiβ − α+ εi.

Here, εi is agent i's payo� shock, Xi are covariates and (α, β) are parameters to be estimated.

When making decisions, agent i knows εi, but she cannot observe Xi. Instead, she forms her

expectation of Xi based on her information set Ii. By the de�nition of Ii, the payo� shock

εi is contained in Ii.1 Let Es[πi|Ii] be agent i's subjective expectation for πi. Based on the

principle of revealed preference, assume Es[πi|Ii] ≥ 0 if she chooses Yi = 1, and Es[πi|Ii] ≤ 0

otherwise. Assume we have data on Yi and realized Xi, but we don't know agent i's payo�

shock εi or her information set Ii. Instead, assume we observe a vector Wi of variables

contained in Ii. De�ne νi to be the expectation error of the agent, i.e. νi := Es[Xi|Ii]−Xi.

Choice models with this information structure have been adopted to study various empir-

ical applications. For example, Ho and Pakes (2014) uses a similar model to study hospital

referral decisions, assuming there is no payo� shock, i.e. εi ≡ 0. Dickstein and Morales (2018)

adopt the same model to describe �rms' exporting decision, under the extra assumption that

εi follows a normal distribution and is independent of Es[πi|Ii]. The focus here is to ob-

tain sharp bounds on (α, β) and to conduct counterfactual analysis under di�erent sets of

assumption so that we can later evaluate the identi�cation power of di�erent assumptions.

To see how this model �ts in the general framework (1), let Ui := (νi, εi) be the collection

of all unobserved variables, Zi := (Yi, Xi,Wi) be the collection of observed variables and let

θ := (α, β) be the vector of all parameters. For the purpose of illustration, assume Xi is

scalar. By the de�nition of νi, our revealed preference assumptions can be written as the

following restriction,

P[(Ui, Zi) ∈ Γ(θ)] = 1, where Γ(θ) = {(ui, zi) : (−1)yi [(xi + νi)β − α+ εi] ≤ 0}. (2)

Equation (2) then serves as the support restriction in (1).

1Technically, the information set Ii is a σ-algebra. Hence, a more precise statement is that the σ-algebra
generated by εi is a subset of Ii.
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As for the moment restrictions in (1), there are many possibilities. On the one hand, we

could use the following weak assumptions,

E[1(νi ≥ 0)− 1(νi ≤ 0)|Ii] = 0,

E[1(εi ≥ 0)− 1(εi ≤ 0)|Wi] = 0.

which is equivalent to assuming that expectation error νi has zero median2 conditional on Ii
and εi has zero median conditional on Wi. Since Ii is not observable, we can instead work

with the following implication

E[1(Yi = 1, εi ≤ 0)
(
1(νi ≥ 0)− 1(νi ≤ 0)

)
|Wi] = 0,

E[1(Yi = 1, εi ≥ 0)
(
1(νi ≥ 0)− 1(νi ≤ 0)

)
|Wi] = 0,

E[1(Yi = 0, εi ≤ 0)
(
1(νi ≥ 0)− 1(νi ≤ 0)

)
|Wi] = 0,

E[1(Yi = 0, εi ≥ 0)
(
1(νi ≥ 0)− 1(νi ≤ 0)

)
|Wi] = 0,

E[1(εi ≥ 0)− 1(εi ≤ 0)|Wi] = 0.

(3)

Note that (3) is implied by the fact that εi belongs to agent i's information set Ii and Yi is a
function of Ii.

On the other hand, we could also impose the following assumption on the conditional

choice probability,

E
[
1(Yi = 1)− Φ

(
(Xi + νi)β − α

σ

) ∣∣∣Wi

]
= 0, (4)

where Φ is the c.d.f. of the standard normal distribution. Condition (4) is consistent with the

assumption that εi is distributed as N(0, σ2) and is independent of Wi and Es[Xi|Ii]. One

could then combine (4) and (3) to serve as the moment functions in (1).

Identi�cation results in Section 3 will show how to derive moment inequality constraints

which are equivalent to the above support and moment restrictions and, at the same time,

only involve parameters and observables.

Consider now the counterfactual analysis. Following Dickstein and Morales (2018), for

example, suppose each agent i is a �rm deciding whether to export (Yi = 1) or not (Yi = 0),

where Xi and α stand for its exporting pro�t and �xed cost respectively. I normalize Xi's

slope coe�cient to β ≡ 1. Consider a counterfactual in which the �xed cost has increased

by 10%. Suppose one is interested in how many �rms would continue to export after this

counterfactual increase in the cost. In other words, suppose one want to know the following

2Alternatively, one could also assume agent i has rational expectation so that E[vi|Ii] = 0. I will also discuss
this setting in Section 3.
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counterfactual parameter p̃:

p̃ = P(Es[Xi|Ii]− 1.1α+ εi ≥ 0) (5)

= P(Xi + νi − 1.1α+ εi ≥ 0),

where the second equality follows from the de�nition νi := E[Xi|Ii] − Xi. In general, this

model is partially identi�ed even when restrictions like (4) are imposed. In particular, the joint

distribution of (νi, εi) is not point identi�ed. Therefore, one cannot simply estimate α (and

σ) and then solve for p̃ by simulation. However, one can view the counterfactual parameter p̃

as a model primitive together with structural parameters (α, β). In fact, equation (5) can be

viewed as one of the moment restrictions in (1). Combining it with the support restrictions

(2) and the moment restrictions (3) and/or (4), one can derive the identi�ed set for p̃ and

(α, β) jointly using identi�cation methods developed in this paper. I provide more details in

Section 4. �

Example 2 (static entry game with complete information). Consider a static entry game

with complete information as in Bresnahan and Reiss (1991). Suppose there are I players.

In each market m, player i could choose to enter the market (Yi,m = 1) or not (Yi,m = 0).

When �rm i chooses Yi,m = 0, normalize its payo� at market m to 0; When �rm i chooses

Yi,m = 1, assume its payo� equals πi(Y−i,m, Xi,m; θ) + Ui,m where3

πi(Y−i,m, Xi,m; θ) = X ′i,mαi −
∑
k 6=i

∆k · Yk,m,

and where θ = (αi,∆i : i = 1, ..., I) is the parameter to be estimated, {Xi,m, i = 1, ..., I} are
�rm-speci�c observable characteristics in market m, and {Ui,m : i = 1, ..., I} are payo� shocks

which are known to both �rms but are unobserved in the data. A common interpretation

for Ui,m is that it captures the e�ect of all factors other than Xi,m which also a�ects �rm

i's payo�. Assume ∆i ≥ 0 for i = 1, ..., I so that the pure-strategy Nash equilibrium always

exists. Assume also that �rms always play a pure-strategy Nash equilibrium. De�ne Um =

(Ui,m : i = 1, ..., I), Ym = (Yi,m : i = 1, ..., I) and Xm = (Xi,m : i = 1, ..., I) as the vectors of

all players' payo� shocks, entry decision and observable characteristics respectively.

Similar models have been studied in Berry (1992) and Ciliberto and Tamer (2009) to

study market structures in Airline industries. More recently, Ciliberto, Murry and Tamer

(2018) have considered a richer model in which �rms not only make entry decisions but also

set price after entry. In all these papers, the payo� shocks Um are assumed to follow a

multivariate Normal distribution and to be independent of Xm. However, as discussed in

Section 6.2, the normality assumption seems to dominate the data variation and drives the

3Here, the linear form and the additive separability in the payo� function is assumed to keep the example simple
for clear illustration. The method in paper applies to nonlinear and nonseparable payo� functions.
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identi�cation result. As an alternative, I propose a semiparametric assumption based on the

median independence in the following.

First, let me show how the entry game �ts in framework (1). Let Zm := (Ym, Xm)

collect all the observables. And, recall that Um collects all the unobserved heterogeneity.

As �rms are assumed to play a pure-strategy Nash equilibrium, each �rm's choice must be

its best response to the other �rm's choice so that we have the following support restriction

P[(Um, Zm) ∈ Γ(θ)] = 1 where Γ(θ) is de�ned by

Γ(θ) := {(um, zm) : ∀i, (−1)yi,m(πi(y−i,m, xi,m; θ) + ui,m) ≤ 0} .

Now, instead of assuming that Um follows a Normal distribution as in the literature,

suppose Um has zero median conditional on Xm.
4 Formally, assume E[r(Um, Zm; θ)|Xm] = 0

where r = (ri : i = 1, ..., I) and

ri(um, zm; θ) = 1(ui,m ≥ 0)− 1(ui,m ≤ 0).

As shown later in Section 6.2, the identi�ed set of (Γ, r) in this example can be characterized

by a �nite number of conditional moment inequalities. Moreover, the evaluation of these

conditional moment inequalities does not require to solve the set of all pure-strategy Nash

equilibria, which is a huge computational advantage over the existing literature. �

Example 3 (Panel Multinomial Choice Model). Consider a panel multinomial choice model,

where agent i chooses from a choice set J = {0, 1, ..., J} at time periods t = 1, ..., T . T is a

�nite integer and T ≥ 2. Agent i's indirect payo� from choosing option j at time t is Uijt

which is de�ned by

Uijt = π(X ′ijtθ, νij , εijt)

where Xijt is a vector of observable characteristics of option j speci�c to agent i at time t, νij

captures the �xed e�ect which agent i has on option j, and εijt is agent i's transitory taste

shock on option j at time t. νij and εijt can be of in�nite dimension. Let Ui, Yi, Xi, νi and

εi be the collection of agent i's Uijt, Yit, Xijt, νij and εijt over all choices and time periods

respectively. Both νij and εijt are treated as unobserved heterogeneity. Assume that for each

agent i and for an time t, {Uijt : j ∈ J } has a unique maximizer,5 and assume that agent i's

observed choice Yit at time t selects the best choice, Yit = arg maxj∈J Uijt. The goal here is

to identify parameter θ under mild condition on function π.

4Suppose, conditional on Xm, that Um has zero mean instead of zero median. By applying results in Section 3.3,
one can show that the identi�ed set is the entire parameter space, which means that the zero mean assumption has
no empirical content in this model.

5This is a standard assumption in the literature. Without this assumption, the identi�ed set for θ equals the
entire parameter space, as any choice probability and any value of θ can be rationalized by selecting π to be a
constant function, i.e., π ≡ 0. This happens because function π is treated as a nonparametric function in this
example.
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This model has been studied in Pakes and Porter (2016) and Shi, Shum and Song (2018),

both of which assume that X ′ijtθ and εijt are additively separable in π. More recently, Gao

and Li (2018) proposes a novel identi�cation strategy which allows for nonseparable structures

in π and in�nite dimensional unobserved heterogeneity. This is a nontrivial contribution, as

the �xed e�ect cannot be di�erenced out in a nonseparable payo� function. Nevertheless, in

the following, I show their identi�cation approach can be further improved using the method

developed in this paper.

To see how this model �ts in the framework. Let Zi = (Yi, Xi) collect all the observables.

Then, the revealed preference condition implies the following support restriction, P[(Ui, Zi) ∈
Γ(θ)] = 1, where

Γ(θ) =
{

(ui, zi) : ∀t = 1, ..., T, yit = arg max
j∈J

uijt

}
. (6)

To derive the moment restriction, following Gao and Li (2018), assume that

(i) Given νij and εijt, function π is weakly increasing in its �rst argument. That is, for any

δ ≥ δ′, π(δ, νij , εijt) ≥ π(δ′, Aij , εijt).

(ii) (Yi, Xi, νi, εi) are i.i.d. across i.

(iii) The conditional distribution of εit = (εijt : j ∈ J ) given (Xi, νi) is time invariant.

In Appendix H.3, I show that the above assumptions imply the following moment restric-

tions: For any two time periods s and t, de�ne Aist(θ) = {j ∈ J : X ′ijsθ ≥ X ′ijtθ} and

Bist(θ) = {j ∈ J : X ′ijsθ ≤ X ′ijtθ}. For any two nonempty subsets J1 and J2 of J , de�ne
ρist(J1,J2; θ) = 1

(
J1 ⊆ Aist(θ) and J2 ⊆ Bist(θ)

)
. Then,

E
[
ρist(J1,J2; θ)

{
1

(
max
j∈J1

Uijs ≥ max
j∈J2

Uijs

)
− 1

(
max
j∈J1

Uijt ≥ max
j∈J2

Uijt

)}∣∣∣Xi

]
≥ 0. (7)

Moment restrictions as in (7) is an moment inequality restriction. Therefore, it does

not directly �t into the framework in (1). In Section 7, however, I show that there is a

straightforward extension of the framework in (1) to incorporate these moment inequality

restrictions. In Section 7, I also work out the identi�cation conditions derived from the

support restriction in (6) and moment restrictions in (7). The set of identi�cation constraints

in Gao and Li (2018) are nested in these identi�cation conditions. �

3 Identi�cation Results

3.1 Overview of Results and Basic Intuition

Before the formal statement of the general theorems, let's start with a simple special case to

illustrate the main identi�cation idea. Suppose the moment function r(u, z; θ) takes values
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in R, i.e. dr = 1.

As a �rst step, we want to �nd the identi�cation conditions implied by (1). Since the

conditions in (1) involve unobservable variable U , they cannot be taken to the data directly.

We need to transform them into conditions which only involves observable variable Z. To do

so, let's de�ne r and r to be the lower and upper bounds of r given the support restriction.

That is,

r(z; θ) := inf
u
r(u, z; θ) and r(z; θ) := sup

u
r(u, z; θ) (8)

s.t. (u, z) ∈ Γ(θ) s.t. (u, z) ∈ Γ(θ)

The functions r(z; θ) and r(z; θ) are always well-de�ned, although they may take the values

of −∞ or +∞, for example, when r and Γ(θ) are unbounded.

For any θ ∈ ΘI , we have P[(U,Z) ∈ Γ(θ)] = 1, so that P[r(Z; θ) ≤ r(U,Z; θ) ≤ r(Z; θ)] =

1. Moreover, we know that E[r(U,Z; θ)] = 0. These lead to

E[r(Z; θ)] ≤ 0 ≤ E[r(Z; θ)]. (9)

Note that the expectation in Condition (9) involves only the observable variable Z. As a

result, Condition (9) can be taken to the data, and one can then compute con�dence regions

for θ using existing inference procedures for moment inequalities.

The transformation from (1) to (9) conveys the basic intuition of the identi�cation strategy

in this paper. By bounding the moment function with the support restriction, one can derive

moment inequalities involving only observable variables.

Furthermore, there is no information loss in this transformation. Condition (9) is not only

implied by (1), but is in fact equivalent to it. To provide the intuition for this sharpness

result, I provide a heuristic proof in the following paragraph, and defer the formal proof to

later sections.

Let θ∗ be an arbitrary parameter for which Condition (9) holds. To show θ∗ ∈ ΘI , I'll

construct a joint distribution H∗ of (U,Z) so that

PH∗ [(U,Z) ∈ Γ(θ∗)] = 1 and EH∗ [r(U,Z; θ∗)] = 0, (10)

where the expectation and probability are taken with respect to distribution H∗. Suppose

the bounds, r and r, can be achieved. That is, suppose there exist functions u(z; θ∗) and

u(z; θ∗) such that

u(z; θ∗) ∈ arg min
u∈Γ(z;θ∗)

r(u, z; θ∗)

u(z; θ∗) ∈ arg max
u∈Γ(z;θ∗)

r(u, z; θ∗).
(11)

where Γ(z; θ∗) := {u : (u, z) ∈ Γ(θ∗)}.
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De�ne p∗ := E[r(Z; θ∗)]/(E[r(Z; θ∗)]−E[r(Z; θ∗)]) and assume the denominator is nonzero.

Since θ∗ satis�es the moment inequalities in (9), we know p∗ is between 0 and 1. Then,

construct a discrete probability distribution H∗U |Z of U conditional on Z = z as

U =

{
u(z; θ∗) with probability p∗

u(z; θ∗) with probability 1− p∗.
(12)

Let H∗ be the joint distribution of (U,Z) constructed based on conditional distribution H∗U |Z
of U and the marginal distribution of Z. Recall that the marginal distribution of Z is identi�ed

in the data, as Z is observable. Such an H∗ satis�es Restriction (10). To see this, note that,

by construction in (11) and (12),

PH∗ [(U,Z) ∈ Γ(θ∗)|Z = z] = 1 for almost every z,

which further implies PH∗ [(U,Z) ∈ Γ(θ∗)] = 1 . Moreover, we have

EH∗ [r(U,Z; θ∗)] = EH∗
[
EH∗|Z [r(U,Z; θ∗)|Z]

]
= E [p∗r(Z; θ∗) + (1− p∗)r(Z; θ∗)] = 0,

where the �rst equality follows from the law of iterated expectation and the second equality

comes from the construction of H∗U |Z , and the last equality is a result of the construction

of p∗.

In words, by combining points which attain the bounds of the moment functions, we

can construct a joint distribution of (U,Z) so that all model conditions are satis�ed by the

parameter θ∗. In the following sections, such idea will be formalized to prove the sharp

identi�cation results in general cases when moment functions are (integrably) bounded.

However, the moment functions r could be unbounded in some interesting applications. In

those unbounded cases, our previous constructive argument fails, as bounds are in�nite and

boundary points like u(z; θ) and u(z; θ) no longer exists. Although the moment inequalities

in (9) are still implied by the model restriction, they may or may not be sharp. I develop

two approaches to study the identi�cation in these cases. One involves regularization of the

original model, which provides both su�cient conditions and necessary conditions for θ ∈ ΘI .

The other approach considers a weaker notion of the identi�ed set. There two approaches are

discussed in Section 3.3 and 3.4 respectively.

3.2 Basic Identi�cation Results

In this section, I develop identi�cation results in the general case. I show how to convert the

conditions in De�nition 1 into moment inequalities like those in (9), using the same intuition

as in the previous heuristic derivation.

For any θ ∈ ΘI and one of its corresponding distributions H satisfying the conditions in
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De�nition 1, the following moment equality must hold for any vector λ in the unit sphere Sdr:

EH [λ′r(U,Z; θ)] = 0. (13)

De�ne Γ(z; θ) to be the projection of Γ(θ). That is,

Γ(z; θ) := {u : (u, z) ∈ Γ(θ)} . (14)

Then, (U,Z) ∈ Γ(θ) with probablity 1 implies that

PH

(
λ′r(U,Z; θ) ≤ sup

u∈Γ(Z;θ)
λ′r(u, Z; θ)

)
= 1.

Therefore, we have

EH [λ′r(U,Z; θ)] ≤ EH

[
sup

u∈Γ(Z;θ)
λ′r(u, Z; θ)

]
= E

[
sup

u∈Γ(Z;θ)
λ′r(u, Z; θ)

]
. (15)

The E in the last term denotes the expectation with respect to the distribution of Z in the

data. The last equality holds, because supu∈Γ(z;θ)[λ
′r(u, z; θ)] is a function which only depends

on z and Z is observed.

Combining (13) and (15), we conclude that, for any θ ∈ ΘI ,

∀λ ∈ Sdr, E

[
sup

u∈Γ(Z;θ)
λ′r(u, Z; θ)

]
≥ 0. (16)

Recall that Sdr denotes the unit sphere {λ ∈ Rdr : ‖λ‖ = 1} and Γ(z; θ) is de�ned in (14).

When dr = 1, the moment inequalities in (16) are equivalent to the two moment inequal-

ities in (9). When dr > 1, the conditions in (16) typically involve a continuum of moment

inequalities, which is similar to the cases in Ekeland, Galichon and Henry (2010), Beresteanu,

Molchanov and Molinari (2011) and Schennach (2014). To do inference based on (16), one

can adopt the procedures in Chernozhukov, Lee and Rosen (2013) or Andrews and Shi (2017).

In some special cases, condition (16) can be further simpli�ed to a �nite number of moment

inequalities. I discuss this issue in Section 5.

In the following, Theorem 1 formalizes the above heuristic derivation and shows the mo-

ment inequalities in (16) are valid identi�cation conditions under very mild assumptions.

Theorem 2 then provides su�cient conditions under which Condition (16) is a sharp char-

acterization of the identi�ed set. Results in Theorem 2 will be further generalized later in

Theorem 3. The proof of Theorem 1 and 2 can be found in Appendix C.

Theorem 1. Suppose that, for every θ ∈ Θ, the following conditions hold,

C1 Set Γ(θ) is a Borel set and Γ(z; θ) is nonempty for almost every z. Moreover, the
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function r(u, z; θ) is Borel measurable in U × Z.

C2 There exists an integrable function g(·; θ) such that for almost every z,

g(z; θ) ≥ inf{‖r(u, z; θ)‖ : u ∈ Γ(z; θ)}.

Then, Condition (16) holds for any θ ∈ ΘI .

Theorem 2. Suppose, for every θ ∈ Θ, Condition C1 and the following conditions hold,

C3 For almost every z, {r(u, z; θ) : u ∈ Γ(z; θ)} is a closed set.

C4 There exists an integrable function g(·; θ) such that for almost every z,

g(z; θ) ≥ sup{‖r(u, z; θ)‖ : u ∈ Γ(z; θ)}.

Then, θ ∈ ΘI if and only if θ satis�es Condition (16).

Remark 1. Condition C1 is a regularity condition on the measurability of Γ(θ) and r(u, z; θ).

It is a very mild condition in most applications. Nevertheless, it could fail in cases when

r(u, z; θ) stems from certain optimization problems. For example, let X be some unbounded

and uncountable set and r(u, z; θ) = supx∈X π(u, x, z; θ). Then, r(u, z; θ) will not necessarily

be Borel measurable.

Condition C2 is a very mild regularity condition on the integrability of r. It ensures that

the expectation in (16) is well de�ned, but it does not rule out the case where the expectation

may be in�nite for some λ.

Condition C3 holds in various cases. For example, it holds when r(u, z; θ) is continuous in

u and Γ(z; θ) is a compact set. It also holds when r(u, z; θ) is a discrete function. However,

it could be violated in some interesting cases as illustrated later in a concrete example.

Condition C4 is stronger than C2. It assumes that the moment function r restricted to

Γ is bounded, and its bound is integrable. This is usually called the integrable boundedness

condition, and is a standard assumption in random set theory. For example, see Chapter

2.1 in Molchanov (2005). This condition together with Condition C3 forms the regularity

conditions under which u and u in (11) exist and are integrable in the constructive proof in

the previous section. Condition C4 can be quite restrictive. For example, it can be violated

whenever both the function r and the set Γ(θ) are unbounded. I will relax this condition in

Theorem 3. �

In the following, I will use Example 1 as the leading example to illustrate when all condi-

tions are satis�ed and when Condition C3 and Condition C4 could fail.

Example 1 (continued). Recall that, in Example 1, I have assumed the support restriction

15



P[(Zi, Ui) ∈ Γ(θ)] = 1 where

Γ(θ) = {(zi, ui) : (−1)yi [(xi + νi)β − α+ εi] ≤ 0}, (2) revisited

where yi is agent i's choice, xi stands for the covariates realized ex post, νi is agent i's

expectation error and εi is her payo� shock. Let zi := (yi, xi) stand for all variables in the

data, and let ui := (νi, εi) collect all latent variables. Recall also that I assume that the vector

Wi is contained in agent i's information set.

In the rest of the discussion of the example, I condition on a value wi of Wi and suppress

it in the notation. The identi�ed set discussed in the following should be viewed as the set of

parameters which rationalize the model and the data conditional on Wi = wi. The moment

inequalities which I derive later should also be considered as moment inequalities conditional

on Wi = wi.

Case 1: Conditions C1-C4 are satis�ed. Suppose we impose the following moment

condition which stems from the zero median assumptions on νi and εi,

E[1(Yi = 1, εi ≤ 0)
(
1(νi ≥ 0)− 1(νi ≤ 0)

)
] = 0,

E[1(Yi = 1, εi ≥ 0)
(
1(νi ≥ 0)− 1(νi ≤ 0)

)
] = 0,

E[1(Yi = 0, εi ≤ 0)
(
1(νi ≥ 0)− 1(νi ≤ 0)

)
] = 0,

E[1(Yi = 0, εi ≥ 0)
(
1(νi ≥ 0)− 1(νi ≤ 0)

)
] = 0,

E[1(εi ≥ 0)− 1(εi ≤ 0)] = 0.

(3) revisited

Since the moment functions in (3) can only take �nitely many possible values, Condition

C1-C4 are satis�ed. Then, Theorem 2 implies that θ ∈ ΘI if and only if

∀λ ∈ Sdr, E

[
sup

u∈Γ(Z;θ)
λ′r(u, Z; θ)

]
≥ 0, (17)

where dr = 5 and

r(u, z; θ) =



1(yi = 1, εi ≤ 0)
(
1(νi ≥ 0)− 1(νi ≤ 0)

)
1(yi = 1, εi ≥ 0)

(
1(νi ≥ 0)− 1(νi ≤ 0)

)
1(yi = 0, εi ≤ 0)

(
1(νi ≥ 0)− 1(νi ≤ 0)

)
1(yi = 0, εi ≥ 0)

(
1(νi ≥ 0)− 1(νi ≤ 0)

)
1(εi ≥ 0)− 1(εi ≤ 0)


. (18)

In fact, when β 6= 0, one can simplify (17) into the following moment inequality conditions:

E
[
1(Yi = 1)

(
31(Xiβ − α > 0)− 1(Xiβ − α < 0)

)
+ 1(Yi = 0)

]
≥ 0

E
[
1(Yi = 0)

(
31(Xiβ − α < 0)− 1(Xiβ − α > 0)

)
+ 1(Yi = 1)

]
≥ 0

. (19)
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Intuitively, the moment conditions in (19) tend to be satis�ed for parameters with which

positive ex post mean utility, βXi − α > 0, often arises together with Yi = 1, and tend to be

violated otherwise. The moment conditions in (19) are also related to some classical identi�-

cation conditions in the literature. In fact, if one assumes agent i has perfect expectations (i.e.

νi ≡ 0), the moment conditions in (17) reduce to the maximum score estimating equations in

Manski (1975) and Manski (1988).

Case 2: Condition C4 is violated. In this case, assume there is no payo� shock and

the expectation error has zero mean conditional on the agent's information set. That is, we

assume εi ≡ 0 and E[νi|Ii] = 0. Under these assumptions, the support restriction can be

simpli�ed to

P[(U,Z) ∈ Γ(θ)] = 1 where Γ(θ) = {(zi, ui) : (−1)yi [(xi + νi)β − α] ≤ 0}. (20)

Moreover, since agent i's decision Yi is a function of her information set, E[νi|Ii] = 0 implies

that the following moment conditions hold for any covariate Wi ∈ Ii:

E[1(Yi = 0)νi|Wi] = 0 and E[1(Yi = 1)νi|Wi] = 0. (21)

Assume β 6= 0. Then, equation (21) is equivalent to

E[r(U,Z)] = 0, where r(u, z) =

(
1(yi = 1)βνi

1(yi = 0)βνi

)
, (22)

where I suppress the conditioning on Wi in the notation as before.

One can show that moment inequality (17) with the above de�nition of r is now equivalent

to

E[1(Yi = 1)(Xiβ − α)] ≥ 0 and E[1(Yi = 0)(Xiβ − α)] ≤ 0. (23)

In fact, the two moment inequalities in (23) are the conditions one would get when applying

approaches in Pakes (2010) and Pakes, Porter, Ho and Ishii (2015). However, Pakes (2010)

and Pakes, Porter, Ho and Ishii (2015) do not provide any results on the sharpness of their

approach. Whether or not (23) is a sharp characterization of the identi�ed set is an open

question in the literature. Later, I provide a proof of sharpness with my methodology in

Section 3.3. In the next paragraph, I explain the di�culties involved.

Conditions C1-C3 are satis�ed in this case, but Condition C4 is violated. To see these

points, note that for some �xed z := (x, y), the set {r(u, z) : (u, z) ∈ Γ(θ)} is equal to

{0} × (−∞, α− xβ] when y = 0, and is equal to [α− xβ,+∞)× {0} when y = 1. Therefore,

for any z, we have sup{‖r(u, z; θ)‖ : u ∈ Γ(z; θ)} = +∞.

There is no easy way to restore Condition C4 without imposing extra restrictions. There-

fore, one cannot apply Theorem 2 to establish the sharpness of (23). This motivates Theorem
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3 in the next section which relaxes Condition C3 and C4.

Case 3: Condition C3 violated. In this case, I impose the parametric assumption on

the conditional choice probability as in (4), which results in the following moment restriction

E[r(U,Z; θ)|W ] = 0 where

r(ui, zi; θ) =



1(yi = 1)− Φ
(

(Xi+νi)β−α
σ

)
1(yi = 1, εi ≤ 0)

(
1(νi ≥ 0)− 1(νi ≤ 0)

)
1(yi = 1, εi ≥ 0)

(
1(νi ≥ 0)− 1(νi ≤ 0)

)
1(yi = 0, εi ≤ 0)

(
1(νi ≥ 0)− 1(νi ≤ 0)

)
1(yi = 0, εi ≥ 0)

(
1(νi ≥ 0)− 1(νi ≤ 0)

)
1(εi ≥ 0)− 1(εi ≤ 0)


.

and Φ stands for the c.d.f. of the standard normal distribution. In this case, Condition C1,

C2 and C4 are satis�ed, as the function r is bounded. However, Condition C3 fails to hold.

To see this, let r1(u, z) = 1(yi = 1)− Φ
(

(Xi+νi)β−α
σ

)
. Then, it is easy to see that

{r1(u, z) : (u, z) ∈ Γ(θ)} =

(−1, 0) if y = 0,

(0, 1) if y = 1,

where the openness stems from the fact that the image of Φ(·) on R is an open interval

between 0 and 1. In other words, when yi = 1, the result can always be rationalized by

holding εi �xed and letting βνi → +∞. When βνi → +∞, r1(ui, zi; θ) → 0. However, there

does not exist any �nite u which makes r1(u, z) = 0. This loss of closedness cannot be ruled

out without imposing more restrictions. �

3.3 Identi�cation Results with Regularization

Theorem 2 shows that the moment inequalities (16) are sharp under Conditions C1-C4. How-

ever, as illustrated in Example 1, Conditions C3 and C4 can be restrictive. To explore iden-

ti�cation results without imposing Conditions C3 and C4, I �rst regularize the model so

that all conditions are restored, then I show that the identi�cation results in the regularized

model have some implications on the original model. Based on such an approach, I can to

derive a set of su�cient conditions and a set of necessary conditions under which the moment

inequalities in (16) are sharp.

Let's start from the simple case where only Condition C4 is violated while Condition C1-

C3 are satis�ed. De�ne δ(z; θ) := inf{‖r(u, z; θ)‖ : u ∈ Γ(z; θ)}. For any k > 0, de�ne the

regularized support restriction Γk,δ as Γk,δ(θ) := Γ(θ) ∩ {(u, z) : ‖r(u, z; θ)‖ ≤ δ(z; θ) + k}.
Compared to Γ, the regularized support restriction Γk,δ has an extra restriction which

bounds the norm of the moment function. Also, Γk,δ is monotone in k as Γk,δ(θ) ⊆ Γk+1,δ(θ)
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for any k ≥ 1. When k →∞, one can show that Γk,δ(θ) converges to Γ(θ) for each θ ∈ Θ in

the sense that Γ(θ) = ∪k>0Γk,δ(θ).

When there is a violation of Condition C4, studying the regularized model (Γk,δ, r) can

help us understand the original model (Γ, r). First, if θ is in the identi�ed set of model

(Γk,δ, r), then θ is also in the identi�ed set of the original model. Second, even when Condition

C4 is violated in the original model, it always holds in the regularized model (Γk,δ, r). As a

result, Theorem 2 implies that θ is in the identi�ed set of model (Γk,δ, r) if and only if the

following moment inequalities are satis�ed,

∀λ ∈ Sdr, E

[
sup

u∈Γk,δ(Z;θ)
λ′r(u, Z; θ)

]
≥ 0, (24)

where Γk,δ(z; θ) := {u : (u, z) ∈ Γk,δ(θ)} is the projection of Γk,δ. Therefore, (24) serves as a

su�cient condition for θ ∈ ΘI .

As for a necessary condition for θ ∈ ΘI , given the fact that Γk,δ(θ) converges to Γ(θ), it

is natural to conjecture that, for any θ ∈ ΘI , the moment inequality (24) is satis�ed in the

limit when k →∞. This conjecture is con�rmed later in Theorem 3.

In general cases where both Condition C3 and C4 could be violated, we de�ne the regu-

larized model in the following way.

De�nition 2. Given model (Γ, r), we say (Γ′, r) is a regularized model of (Γ, r) if, for any

θ ∈ Θ,

(i) Γ′(θ) ⊆ Γ(θ)

(ii) Condition C1-C4 hold for model (Γ′, r).

Furthermore, let {(Γk, r) : k ≥ 1} be a sequence of regularized models of (Γ, r). We say that

(Γk, r) converges to (Γ, r) if, for any θ ∈ Θ,

(i) for any k ≥ 1, Γk(θ) ⊆ Γk+1(θ).

(ii) Γ(θ) = ∪k≥1Γk(θ).

The following theorem now formalizes and extends our previous discussions on (Γk,δ, r) to

more general cases. Its proof can be found in Appendix D.

Theorem 3. Suppose all θ in Θ satisfy Conditions C1-C2 for model (Γ, r). Let {(Γk, r) :

k ≥ 1} be a sequence of regularized models of (Γ, r).

(i) If (Γk, r) converges to (Γ, r), then for any θ ∈ ΘI , we have

lim
k→∞

inf
λ∈Sdr

E

[
sup

u∈Γk(Z;θ)
λ′r(u, Z; θ)

]
≥ 0. (25)
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(ii) θ ∈ ΘI if there exists some k ≥ 1 such that

inf
λ∈Sdr

E

[
sup

u∈Γk(Z;θ)
λ′r(u, Z; θ)

]
≥ 0. (26)

Although Theorem 3 only applies to the regularized models, it actually implies both

Theorem 1 and 2. To see this, note that for any k ≥ 0, we have Γk ⊆ Γ so that for any

λ ∈ Sdr,

E

[
sup

u∈Γ(Z;θ)
λ′r(u, Z; θ)

]
≥ E

[
sup

u∈Γk(Z;θ)
λ′r(u, Z; θ)

]
.

As a result, (25) implies (16) so that Result (i) in Theorem 3 implies Theorem 1. Furthermore,

if we set Γk = Γ, Result (ii) in Theorem 3 trivially implies Theorem 2.

Moreover, Theorem 3 also implies a set of necessary conditions and a set of su�cient

conditions under which Condition (16) is a sharp characterization of the identi�ed set.

Corollary 1. Suppose all θ in Θ satisfy Condition C1-C2 for model (Γ, r). Let {(Γk, r) :

k ≥ 1} be a sequence of regularized models which converges to (Γ, r). Let Θ̃ be the set of

parameters which satisfy Condition (16),

∀λ ∈ Sdr, E

[
sup

u∈Γ(Z;θ)
λ′r(u, Z; θ)

]
≥ 0. (16) revisited

(i) ΘI = Θ̃ implies that for any ε > 0 and any θ satisfying (16), there exists some k > 0

such that

∀λ ∈ Sdr, E

[
sup

u∈Γk(Z;θ)
λ′r(u, Z; θ)

]
≥ −ε. (27)

(ii) ΘI = Θ̃ if for each θ satisfying (16), there exists some k ≥ 0 such that

∀λ ∈ Sdr, E

[
sup

u∈Γk(Z;θ)
λ′r(u, Z; θ)

]
≥ 0. (28)

In the following, I show how Theorem 3 and Corollary 1 can be applied to a concrete

example.

Example 1 (continued). Let's now revisit Case 2 in Example 1 where Condition C4 is

violated. Recall that, in this case, we have Γ de�ned in (20) and r de�ned in (22). Consider

Γk de�ned by

Γk(θ) = Γ(θ) ∩ {(u, z) : ‖r(u, z)‖ ≤ |xβ − α|+ k} (29)

Then, one can verify that Conditions C1-C4 hold for each (Γk, r).

For any k ≥ 1, one can show that the moment inequalities (28) in this case can be
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simpli�ed to the following restrictions:

E[1(Yi = 1)(Xiβ − α)] ≥ 0

E[1(Yi = 0)(Xiβ − α)] ≤ 0

E[1(Yi = 1)(Xiβ − α)] ≤ k
E[1(Yi = 0)(Xiβ − α)] ≥ −k.

(30)

Compared to the moment inequalities (23) derived from the original model, we have two extra

inequalities in (30) which involve k. Based on Corollary 1, a su�cient condition for (23) to

be a sharp characterization is that, for each parameter (α, β), (23) implies (30) for a large

enough k.

Now, it's easy to see that, for any k ≥ E[|Xiβ − α|], the last two inequalities in (30)

always hold and, hence, are redundant. As a result, (23) and (30) are equivalent for any

k ≥ E[|Xiβ − α|]. This proves that (23) is a sharp characterization of the identi�ed set in

this case.

Similarly, by applying Corollary 1, one can show Condition (16) also sharply characterize

the identi�ed set in Case 3 of Example 1. �

3.4 Enlarged Identi�ed Set

There are two ways to understand the identi�cation property of Condition (16) derived in this

paper. One way is to study conditions under which Condition (16) is a sharp characterization

of the identi�ed set, as I did in previous sections. Another way is to study what parameter

value actually satisfy Condition (16) and what properties they have without imposing any

restrictive assumptions, which is the topic of this section.

Let's start from the following weaker notion of identi�ed set, which is the same as the

identi�ed set in De�nition 1 except that the moment restrictions are slightly relaxed.

De�nition 3 (ε-enlarged identi�ed set). For any ε > 0, de�ne Θε
I as the set of all θ ∈ Θ such

that there exists a joint distribution H of (U,Z) which satis�es

(i) PH(U ∈ Γ(Z; θ)) = 1

(ii) ‖EHr(U,Z; θ)‖ ≤ ε

(iii) H's marginal distribution for Z equals FZ .

In addition, de�ne Θ′I :=
⋂
ε>0 Θε

I .

By the de�nition of Θε
I , for any ε1 < ε2, we have Θε1

I ⊆ Θε2
I . Therefore, Θ′I could be

viewed as the limit of Θε
I . It turns out that Θ′I is actually equal to the set of all parameters

which satisfy Condition (16), as shown in the following theorem. Its proof is in Appendix C.

Theorem 4. Suppose Conditions C1 and C2 hold for every θ ∈ Θ. Then, θ ∈ Θ′I if and only

if θ satis�es (16).
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Note that Theorem 4 should not be interpreted as a sharpness result. Although based on

Theorem 2 and Corollary 1, we already know that Θ′I can equal ΘI under some regularity

conditions, Θ′I could be very di�erent from ΘI in some other cases. For some model (Γ, r), it

is possible to transform it into another equivalent model (Γ̃, r̃) such that ΘI(Γ, r) = ΘI(Γ̃, r̃)

but Θ′I(Γ, r) 6= Θ′I(Γ̃, r̃). I �rst illustrate this point using our leading example, and then

discuss its implications.

Example 1 (continued). In what follows, I revisit Case 2 in Example 1. I'm going to show

three di�erent representations of this model. ΘI does not vary with the representation, but

Θ′I does.

Representation 1 In previous discussions, we have been using the following de�nition of Γ

and r in Case 2:

Γ1(θ) = {(u, z) : (−1)y[(x+ v)β − α] ≤ 0} and r1(u, z) =

(
1(y = 1)βν

1(y = 0)βν

)
.

As shown in the previous section, Condition (16) is a sharp characterization of the identi�ed

set in this case. Therefore, Theorem 4 implies ΘI(Γ1, r1) = Θ′I(Γ1, r1). (Note that, to

emphasize the underlying model, I write ΘI(Γ1, r1) for ΘI and Θ′I(Γ1, r1) for Θ′I .)

Representation 2 Alternatively, one might view the support restriction as one of the

moment restrictions, which results in the following choice for (Γ2, r2):

Γ2(θ) = R2 × {0, 1} and r2(u, z) =


1

(
(−1)y[(x+ v)β − α] ≤ 0

)
− 1

1(y = 1)βν

1(y = 0)βν

 .

where R2 × {0, 1} is the entire space of (u, z) or (ν, x, y). In this representation, the support

restriction P[(U,Z) ∈ Γ2(θ)] = 1 always holds and does not have any identifying power.

All restrictions are now summarized in the moment condition E[r2(U,Z)] = 0. As (Γ1, r1)

and (Γ2, r2) are two representations of the same model, we have ΘI(Γ1, r1) = ΘI(Γ2, r2).

However, by solving Condition (16) for this model and applying Theorem 4, one can show

that Θ′I(Γ2, r2) equals the entire parameter space, i.e. Θ′I(Γ2, r2) = Θ.

Representation 3 In this representation, we perform a change of variable. Recall the agent's

payo� π = (x + ν)β − α. Therefore, we have βν = π − (xβ − α). Furthermore, by the fact

that (−1)yπ ≤ 0 holds with probablity 1, we know βν = 1(y = 1)|π|−1(y = 0)|π|− (xβ−α).

This motivates the following representation,

Γ3(θ) = R2 × {0, 1}, and r3(π, z) =

(
1(y = 1)(|π| − (βx− α))

1(y = 0)(−|π| − (βx− α))

)
.

where π is now the only unobserved random variable in the model. As in the second represen-
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tation, the support restriction P[(π, Z) ∈ Γ3] = 1 trivially holds and all possible identifying

power comes from the moment condition E[r3(π, Z)] = 0. Yet, in this case, by applying

Corollary 1 and Theorem 4, one can show that Θ′I(Γ3, r3) = ΘI(Γ3, r3).

In the above, we have three equivalent representations of the same model. In the �rst

and the third representation, we have ΘI = Θ′I , whereas ΘI and Θ′I di�er a lot in the second

representation. These results are consistent with our previous �ndings in Corollary 1. By

constructing a sequence of regularized models as in (29), one can show that the su�cient

conditions in Corollary 1(ii) for ΘI = Θ′I are satis�ed in Representations 1 and 3, whereas

the necessary conditions in Corollary 1(i) for ΘI = Θ′I are violated in Representation 2. �

Therefore, Theorem 4 should not be interpreted as a sharpness result. As illustrated in

the previous example, Θ′I may be di�erent for di�erent representations of the same model.

Technically, this is due to the fact that the set of all probability measures of U and Z is in

general not compact in the topology of weak convergence. To see this, let {εn} be any positive
sequence converging to zero. For any θ ∈ Θ′I , there exists a sequence of probability measures

{Hn} satisfying ‖EHnr(U,Z; θ)‖ ≤ εn and the other two conditions in De�nition 3. However,

without imposing more regularity conditions, {Hn} need not be uniformly tight. Therefore,

even if EHn [r(U,Z; θ)] converges to zero, there still might not be a distribution H satisfying

EH [r(U,Z; θ)] = 0.

However, Theorem 4 does shed some light on the identi�cation property of Condition (16).

It suggests that the support restriction should not be treated as one of the moment restrictions.

To make this point concrete, for any model (Γ, r), de�ne model (Γ̃, r̃) as

Γ̃(θ) = U × Z and r̃(u, z; θ) =

 1

(
(u, z) ∈ Γ(θ)

)
− 1

r(u, z; θ)

 (31)

where U and Z are the space of random vectors U and Z respectively. By the de�nition

of Θ′I , one can show that Θ′I(Γ, r) ⊆ Θ′I(Γ̃, r̃). Then, Theorem 4 implies that Condition

(16) always generates weakly tighter bounds on θ in model (Γ, r) than that in model (Γ̃, r̃).

When Conditions C1-C4 or su�cient conditions in Corollary 1(ii) hold for model (Γ̃, r̃), we

have ΘI(Γ, r) = ΘI(Γ̃, r̃) = Θ′I(Γ, r) = Θ′I(Γ̃, r̃). However, those conditions can be quite

restrictive. For example, when both r and {u : (u, z) ∈ Γ(θ)} are unbounded for some �xed

z, Conditions C1-C4 for model (Γ̃, r̃) require the support of U to be compact. Moreover,

when the necessary condition in Corollary 1(i) is violated for model (Γ̃, r̃), we could still have

the su�cient condition in Corollary 1(ii) holding for model (Γ, r), in which case ΘI(Γ, r) =

ΘI(Γ̃, r̃) = Θ′I(Γ, r) $ Θ′I(Γ̃, r̃). In the latter case, the di�erence between Θ′I(Γ, r) and

Θ′I(Γ̃, r̃) can be considerable, as illustrated in the previous example.
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3.5 Relation with the Entropy Based Approach

An entropy based approach has been proposed in Schennach (2014). To compare my approach

with Schennach (2014), it's helpful to restate her theorem in my notation. In order to apply

the method in Schennach (2014), one has to choose a dominating measure µθ on (U,Z) for

each θ, where µθ could be θ-dependent. De�ne µ := {µθ : θ ∈ Θ}. Suppose the user-speci�ed
µ satis�es the following assumption.

Assumption S. Suppose for any θ ∈ Θ,

(i) µθ's marginal distribution for Z equals FZ . (Recall FZ stands for the distribution of Z

identi�ed in the data.)

(ii) For any λ ∈ Rdr, ∫
log
(
Eµθ [exp(λ′r(U, z; θ))|Z = z]

)
dFZ(z)

is �nite and di�erentiable with respect to λ.

(iii) ‖r‖ is an integrable function with respect to µθ.

(iv) Pµθ [(U,Z) ∈ Γ(θ)] = 1.

Assumption S is a restatement of De�nition 2.2 in Schennach (2014) when there is no

e�ective support restriction, i.e. Γ(θ) = U × Z. (Recall that U and Z are the spaces of U

and Z respectively.) If a probability distribution H is absolutely continuous with respect to

µθ, we write H � µθ. In the following, I de�ne the set Θ′I,µ as the enlarged identi�ed set

with respect to the dominating measure µ.

De�nition 4 (ε-enlarged µ-identi�ed set). Given any dominating measure µθ which satis�es

Assumption S and any ε > 0, de�ne Θε
I,µ as the set of all θ ∈ Θ such that there exists a

probability measure H of (U,Z) which satis�es

(i) PH [(U,Z) ∈ Γ(θ)) = 1,

(ii) ‖EHr(U,Z; θ)‖ ≤ ε,

(iii) H's marginal distribution for Z equals FZ ,

(iv) H � µθ.

Moreover, de�ne Θ′I,µ :=
⋂
ε>0 Θε

I,µ.

Compared to the enlarged identi�ed set Θ′I de�ned in De�nition 3, the dominated enlarged

identi�ed set Θ′I,µ de�ned in De�nition 4 requires H to be dominated by µθ, i.e. H � µθ

in Condition (iv). This condition is stronger than that the support of H is included in the

support of µθ. For example, if one assumes µθ to be the standard normal distribution, then

H � µθ implies that H cannot have any mass point.
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A generalized version of the identi�cation results in Schennach (2014) is stated in the

following theorem.

Theorem 5 (Schennach (2014)). Suppose Condition C1-C2 holds for each θ ∈ Θ. Then, for

any dominating measure µ which satis�es Assumption S, θ ∈ Θ′I,µ if and only if

inf
λ∈Rdr

∥∥EHλ,θr(U,Z; θ)
∥∥ = 0, (32)

where the Radon-Nikodym derivative of Hλ,θ with respect to µθ is de�ned by

hλ,θ(u, z) =
exp(λ′r(u, z; θ))

Eµθ [exp(λ′r(U, z; θ))|Z = z]
. (33)

Remark 2. When µθ is the same for all θ and there is no e�ective support restriction i.e.

Γ(θ) = U×Z, Theorem 5 is the same as Theorem 2.1 in Schennach (2014) and equation (32) is

equivalent to Schennach (2014)'s identi�cation condition (i.e. equation (6) therein). Although

not explicitly stated in Theorem 2.1 in Schennach (2014), Condition (iv) in De�nition 4

is in fact necessary for Schennach (2014)'s identi�cation result. Counterexamples can be

constructed when Condition (iv) is removed. See Appendix E.1 for a concrete example.

When the support restriction is e�ective, i.e. Γ(θ) ( U × Z, Theorem 5 formalizes the

discussion in Section 4.1 in Schennach (2014). I provide a proof for Theorem 5 in Appendix

E for completeness. �

In theory, Theorem 5 di�ers from my results in two aspects. First, since Θ′I and Θ′I,µ are

di�erent in general, Theorem 4 and 5 imply that my approach and the approach in Schennach

(2014) characterize two di�erent sets of parameters. Θ′I only depends on the structures de�ned

in (Γ, r), whereas Θ′I,µ also depends on the choice of dominating measure due to its extra

dominance restriction. This dominance restriction could be helpful, for example, if applied

researchers have prior knowledge that the distribution of U has no mass point. But, as

discussed later, it could also cause pitfalls when implementing the entropy based method.

Second, Θ′I,µ is also an enlarged identi�ed set. Conditions in the de�nition of Θ′I,µ do

not require distribution H and parameter θ to satisfy moment restrictions exactly. One can

de�ne a notion of identi�ed set analogous to ΘI when using the entropy based approach.

De�nition 5 (µ-identi�ed set). Given any dominating measure µθ which satis�es Assumption

S, de�ne ΘI,µ as the set of all θ ∈ Θ such that there exists a probability measure H of (U,Z)

which satis�es

(i) PH [(U,Z) ∈ Γ(θ)) = 1,

(ii) EHr(U,Z; θ) = 0,

(iii) H's marginal distribution for Z equals FZ ,

(iv) H � µθ.
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Just as ΘI and Θ′I could be very di�erent as discussed in Section 3.4, the enlarged identi�ed

set Θ′I,µ could be much larger than the identi�ed set ΘI,µ. Theorem 2.1 in Schennach (2014)

and Theorem 5 in this paper did not establish the equivalence between that θ ∈ ΘI,µ and that

θ satis�es (32). Also, Schennach (2014) did not distinguish the di�erence between support

restrictions and moment restriction. But as pointed out in Section 3.4, it's generally a good

idea to treat these two restrictions di�erently. This could also be true for entropy based

approach, but, to the best of my knowledge, there is no such theoretical analysis for entropy

based approach in the literature as I've done in the previous sections. Nor does there exist

any formal results showing su�cient or necessary conditions for Θ′I,µ = ΘI,µ.

Let me now discuss the di�erence between the two approaches in terms of numerical

computation. When implementing the entropy based approach, one often approximates the

dominating measure µθ by some discrete distribution µ̂θ whose support for U conditional on

Z is discrete and �nite. This is usually done by sampling from µθ's conditional distribution

for U given Z. One can then easily calculate the expectation in (32) with µθ replaced by µ̂θ.

In this way, one attempts to approximate Θ′I,µ by Θ′I,µ̂.

The same approximation idea could be used to implement my method. Let supp(µ̂θ, z)

be µ̂θ's support for U conditional on Z = z. One can then approximate (16) by the following

moment inequality,

∀λ ∈ Sdr, E
[
max{λ′r(u, Z; θ) : u ∈ Γ(Z; θ) ∩ supp(µ̂θ, Z)}

]
≥ 0. (34)

The max inside the expectation can then be easily calculated, since supp(µ̂θ, z) has a �-

nite number of elements. To see why approximation (16) makes sense, note that Θ′I(Γ ∩
supp(µ̂), r) = Θ′I,µ̂ whenever the supp(µ̂θ, Z) is discrete. Theorem 4 then implies that θ ∈ Θ′I,µ̂
if and only if θ satis�es (34).

Though easy to implement in practice, this approximation idea does have some pitfalls.

For any two dominance measures µθ and ηθ, if µθ � ηθ and ηθ � µθ, then Θ′I,µ = Θ′I,η
in theory. In practice, however, the support of distributions µ̂θ and η̂θ, which approximates

µθ and ηθ respectively, can be very di�erent. For example, if the µθ's and ηθ's conditional

distribution for U given Z are N(0, 1) and N(10, 1), and µ̂θ and η̂θ are generated by sampling

k random points from µθ and ηθ respectively. Then, it's likely that the support of µ̂θ and

η̂θ can be contained in two disjoint intervals even when k is large. As a result, Θ′I,µ̂ and

Θ′I,η̂ could look very di�erent. In this way, this approximation idea makes the computation

results sensitive to the choice of dominating measures, even for those which yield equivalent

results in theory. In practice, this can lead to nonrobust and misleading results for empirical

analysis. In addition, there is no formal results in the literature which establish that Θ′I,µ̂
would converges to Θ′I,µ when µ̂(θ) converges to µθ. In Section 5, I provide an alternative

method which is more reliable and sometimes more e�cient.
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4 Counterfactual Analysis

In this section, I show how the identi�cation approach developed in the previous section can be

used to conduct counterfactual analysis. In the following, I call the parameters of interest in

the counterfactual analysis counterfactual parameters, and call the other parameters structural

parameters. Before discussing the general results, let's �rst look at the following example.

Example 1 (continued). Recall that, in Example 1, we assume the following support re-

striction, P[(Zi, Ui) ∈ Γ(θ)] = 1 where

Γ(θ) = {(zi, ui) : (−1)yi [(xi + νi)β − α+ εi] ≤ 0}, (2) revisited

where yi is agent i's choice, xi stands for the covariates realized ex post, νi is agent i's

expectation error and εi is her payo� shock. Here, ui = (νi, εi) stands for all unobservable

variables, zi = (yi, xi) collects all observables and θ := (α, β) stands for all parameters. In

addition, suppose we impose the moment restrictions in (3).

Let's now consider a counterfactual setting in which parameter α changes to a hypothetical

value α̃. Let Ỹi be agent i's choice in this counterfactual. Suppose we are interested in

the counterfactual choice probability p̃ de�ned as p̃ = E[1(Ỹi = 1)]. Given the fact that

agent i's counterfactual choice Ỹi is not observed, how can we �nd the identi�ed set for the

counterfactual parameter p̃ ?

It turns out that even if Ỹi is not observed, it must satisfy the following restriction almost

surely

Ỹi ∈


{1} if (Xi + νi)β − α̃+ εi > 0,

{0} if (Xi + νi)β − α̃+ εi < 0,

{0, 1} if (Xi + νi)β − α̃+ εi = 0.

In other words, if we let ũi := (νi, εi, ỹi) be the collection of all unobserved variables including

the counterfactual choice, the new support restriction can be written as

Γ̃(θ) = {(zi, ũi) : (−1)yi [(xi + νi)β − α+ εi] ≤ 0 and (−1)ỹi [(xi + νi)β − α̃+ εi] ≤ 0}.

Moreover, we can treat p̃ as one of the model primitives and view p̃ = E[1(Ỹ = 1)] as one

of the moment restrictions. That is, let θ̃ := (α, β, p̃) be the collection of all parameters

including the counterfactual parameter p̃. The new set of moment conditions can then be
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written as E[r̃(Ũ , Z; θ̃)] = 0, where

r̃(ũ, z; θ̃) =



1(ỹi = 1)− p̃
1(yi = 1, εi ≤ 0)

(
1(νi ≥ 0)− 1(νi ≤ 0)

)
1(yi = 1, εi ≥ 0)

(
1(νi ≥ 0)− 1(νi ≤ 0)

)
1(yi = 0, εi ≤ 0)

(
1(νi ≥ 0)− 1(νi ≤ 0)

)
1(yi = 0, εi ≥ 0)

(
1(νi ≥ 0)− 1(νi ≤ 0)

)
1(εi ≥ 0)− 1(εi ≤ 0)


. (35)

The moment function r̃ here is the result of combining E[1(Ỹ = 1)− p̃] = 0 with the existing

moment conditions in (18).

Theorem 2 then implies that the identi�ed set for θ̃ is characterized by Condition (16)

with (Γ, r) replaced by (Γ̃, r̃). In fact, when β 6= 0, one can show that, if Xi is a continuous

random variable and α̃ ≥ α,6 Condition (16) of model (Γ̃, r̃) can be simpli�ed to the following

two sets of moment inequalities,

E[Λ1Q] ≥ 0 and E[Λ2Q+ γp̃] ≥ 0, (36)

where Λ1 is a 2× 5 matrix de�ned by

Λ1 =

(
−1 3 1 1 1

1 1 3 3 −1

)
,

Λ2 is a 4× 5 matrix and γ is a 4× 1 vector, each of which is de�ned by

Λ2 =


−1 3 −1 3 3

1 1 −1 3 3

0 0 1 1 1

1 1 7 3 3

 , γ =


4

4

−1

−4

 ,

and Q is a 5× 1 vector of indicators de�ned by

Q =



1(Yi = 0, Xiβ − α > 0)

1(Yi = 0, Xiβ − α < 0)

1(Yi = 1, Xiβ − α > 0, Xiβ − α̃ > 0)

1(Yi = 1, Xiβ − α > 0, Xiβ − α̃ < 0)

1(Yi = 1, Xiβ − α < 0).


.

Note that the �rst part of (36), E[Λ1Q] ≥ 0, is actually equivalent to the moment inequalties

(19) we get in the original model without considering the counterfactual. The second part of

6Analogous moment inequalities also exists when α̃ ≤ α.
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the inequality in (36), E[Λ1Q + γp̃] ≥ 0, provides lower and upper bounds for the counter-

factual parameter p̃. With (36) in hand, one can then construct a con�dence region for the

structural parameter (α, β) and the counterfactual parameter p̃ jointly. Or, if one only cares

about the counterfactual parameter p̃, one can conduct subvector inference directly on p̃ and

treat (α, β) as nuisance parameters. �

In general, counterfactual analysis can be conducted in the following way. Let Ỹi denote

the counterfactual model prediction. Suppose the counterfactual parameter p̃ satis�es the

following moment conditions for some known function g,

E[g(Ỹi, Ui, Zi; θ, p̃)] = 0. (37)

This moment condition usually holds by the de�nition of p̃ itself as in the above example. In

general cases, p̃ could be a vector and function g could also be a vector function.

Given the unobservable and observed characteristics (ui, zi), de�ne C(ui, zi; θ) to be the

set of all counterfactual behaviors which are consistent with the model assumptions. Then,

the model restrictions on the counterfactual behaviors can be written as

P[Ỹi ∈ C(Ui, Zi; θ)] = 1.

De�ne Ũi := (Ui, Ỹi) to be the collection of all unobservables including the counterfactual

model prediction. We can now de�ne a new support restriction P[(Ũi, Zi) ∈ Γ̃(θ)] = 1 based

on the original restrictions as well as the restrictions on the counterfactuals, i.e.

Γ̃(θ) := {(ũi, zi) : (ui, zi) ∈ Γ(θ) and ỹi ∈ C(ui, zi; θ)}. (38)

Finally, let θ̃ := (θ, p̃) be the collection of both structural and counterfactual parameters.

Then, we can construct the new moment restriction E[r̃(Ũi, Zi; θ̃)] = 0 by combining the

original moment restriction E[r(Ui, Zi; θ)] = 0 with (37) and de�ning

r̃(ũi, zi; θ̃) =

(
g(ỹi, ui, zi; θ̃)

r(ui, zi; θ)

)
. (39)

One can then view θ̃ as a model primitive and apply the identi�cation method in Section 3

to (Γ̃, r̃). Depending on the goal of the empirical analysis, Condition (16) can be used to �nd

the sharp identi�ed set for θ and p̃ jointly or the projected identi�ed set only for p̃.

In contrast to the above procedure, the traditional simulation-based counterfactual anal-

ysis is usually conducted as follows: One �rst sets up an empirical model in which the dis-

tribution of all random variables can be point identi�ed. Then, the structural parameters

are estimated. Finally, one simulates the unobservables with the estimated distribution and

explicitly solves for model predictions with the simulated sample to recover the counterfactual
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parameters. Such approach only works if the distribution of unobservables is point identi-

�ed, but the point identi�cation of the distribution often hinges on stringent restrictions like

parametric assumptions on the distribution of unobservables, or large support assumptions

for the covariates.

The approach developed in this section works under very mild conditions. Instead of

simulating the unobervables, I directly utilize the restrictions on the unobservables in the

original data. Heuristically, if we were able to observe Ui in the data, counterfactual analysis

would be straightforward and there would be no need to simulate the unobservables. In

practice, we don't observe Ui in the data, but what we actually observe puts restrictions on

Ui, which further restricts the possible values of the counterfactuals. By exploiting these

restrictions, one can then derive bounds on the counterfactual parameters. This is the basic

intuition behind the construction of (Γ̃, r̃) and also the major distinction between my approach

and the traditional simulation based approach.

5 Core Determining Class

In general cases, condition (16) consists of a continuum of moment inequalities. Although one

could adopt the inference procedures in Chernozhukov, Lee and Rosen (2013) and Andrews

and Shi (2017) to do inference based on (16), these test procedures could be hard to implement

when the dimension of r is relative large. In this section, I propose one way to simplify (16)

into �nite dimensional moment inequalities with little or no loss of identi�cation power.

Let's �rst de�ne the notion of core determining class, which is �rst introduced in Galichon

and Henry (2011).

De�nition 6 (core determining class). We call a subset Λ in Rdr a core determining class

for model (Γ, r), if for any distribution F of Z and any θ ∈ Θ, the following two conditions,

∀λ ∈ Sdr, EF

[
sup

u∈Γ(Z;θ)
λ′r(u, Z; θ)

]
≥ 0 (40)

and

∀λ ∈ Λ, EF

[
sup

u∈Γ(Z;θ)
λ′r(u, Z; θ)

]
≥ 0. (41)

are equivalent. We call a subset Λ in Rdr a minimal core determining class if none of its

proper subsets are core determining classes.

Here, (40) is the same as (16) except the expectation is now taken with respect to an

arbitrary distribution F instead of the true distribution of Z.7 By de�nition, any set which

7One can also de�ne a FZ-speci�c core determining class by restricting the F in (40) to be FZ . Finding a minimal
FZ-speci�c core determining class would require a data-dependent procedure similar to the general moment selection
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contains the unit sphere Sdr is a core-determining class, but this is of little use. Ideally, one

would like to �nd a minimal core determining class.

However, in general, �nding a minimal core determining class can be hard. There are some

related results in Galichon and Henry (2011), Chesher, Rosen and Smolinski (2013), Chesher

and Rosen (2017) and Luo and Wang (2017), but the problem here is more challenging, as the

identi�cation condition in (16) involves a continuum of moment inequalities. Therefore, I take

a di�erent approach from the literature. Instead of �nding a minimal core determining class

for a general model, I �rst approximate a general model (Γ, r) by a discretized model (Γ, r†)

in which the moment function r† is discrete and only takes a �nite number of possible values.

Then, I develop a method to �nd a minimal core determining class Λ† for this discretized

model (Γ, r†). Finally, I show that one does not lose too much information by using Λ† in the

identi�cation conditions of the original model (Γ, r). This idea is formalized in the following

section.

5.1 Approximation

Let Λ̃† be a core determining class for model (Γ, r†). De�ne Λ† := {λ/ ‖λ‖ : λ ∈ Λ̃† and λ 6=
0}. After normalization, Λ† is a subset of Sdr and is still core determining for model (Γ, r†).

Suppose a model (Γ, r) can be approximated well enough by (Γ, r†). Then, the following

proposition shows that we lose little by using Λ† in model (Γ, r)'s identi�cation conditions.

Proposition 1. Suppose Conditions C1-C2 holds for all θ ∈ Θ in model (Γ, r) and (Γ, r†).

Suppose there exists some ε > 0 such that

∀θ ∈ Θ, ∀(u, z) ∈ Γ(θ),
∥∥∥r(u, z; θ)− r†(u, z; θ)∥∥∥ ≤ ε.

Let Λ† be some core determining class for model (Γ, r†) with Λ† ⊆ Sdr. De�ne Θ̃† to be the

set of θ which satis�es

∀λ ∈ Λ†, E

[
sup

u∈Γ(Z;θ)
λ′r(u, Z; θ)

]
≥ 0. (42)

Then, ΘI ⊆ Θ̃† ⊆ Θε
I , where Θε

I is de�ned in De�nition 3.

When Conditions C1-C4 or conditions in Corollary 1(ii) hold, Theorem 4 implies that Θε
I

converges to ΘI as ε converges to 0. As a result, Proposition 1 implies a trade o� between

the power of (42) and the computational complexity. the di�erence between Θ̃† and ΘI can

be made arbitrary small, by selecting r† to be a good enough approximation for r. At the

same time, as the approximation becomes �ner and �ner, it generally become more and more

computationally demanding to �nd a minimal core determining class for model (Γ, r†).

mechanism in Andrews and Soares (2010), which is beyond the scope of this paper.
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Given the result in Proposition 1, we only need to �nd minimal core determining classes

for a special class of models, which can approximate a general model and, at the same time,

whose minimal core determining class is easy to �nd. This is the topic of the next section.

5.2 Minimal Core Determining Classes in Discrete Models

In this section, I assume the moment function r can be written in the following form,

r(u, z; θ) = m(u, z; θ) + ψ(θ) (43)

where m(u, z; θ) is a discrete function and only takes a �nite number of possible values, and

ψ(θ) is a bounded function which only depends on θ. If we de�ne M := {m(u, z; θ) : θ ∈
Θ, (u, z) ∈ Γ(θ)} as the image ofm(u, z; θ), then the cardinality |M| ofM should be �nite. In

previous example, moment functions in (18) and (35) take this form. Models whose moment

function r takes the form of (43) can approximate any general model whose moment function

is bounded within the support of (U,Z) and the parameter space Θ.

Let's now start to solve a minimal core determining class. For each z and θ, de�ne

M(z; θ) := {m(u, z; θ) : u ∈ Γ(z; θ)}. By de�nition, we have

sup{λ′r(u, z; θ) : u ∈ Γ(z; θ)} = max{λ′t : t ∈M(z; θ)}+ λ′ψ(θ). (44)

Since M(z; θ) is a nonempty subset of M, M(z; θ) can take at most 2|M| − 1 di�erent

values. Enumerate all the possible values of M(z; θ) as {M1, ...,MK}, so that, for any z

and θ, we have M(z; θ) = Mk for some k ∈ {1, ...,K}. For any distribution F of Z, de�ne

pk,F (θ) := PF [M(Z; θ) = Mk]. Then, (44) implies that (40) is equivalent to the following

condition:

∀λ ∈ Sdr,
K∑
k=1

pk,F (θ) max{λ′t : t ∈Mk}+ λ′ψ(θ) ≥ 0. (45)

Since max{λ′t : t ∈Mk} is positively homogeneous with respect to λ, i.e.

∀α > 0,max{(αλ)′t : t ∈Mk} = αmax{λ′t : t ∈Mk},

we know that (45) is also equivalent to

∀λ ∈ [−1, 1]dr,

K∑
k=1

pk,F (θ) max{λ′t : t ∈Mk}+ λ′ψ(θ) ≥ 0.

De�ne vk := max{λ′t : t ∈ Mk}, v = (v1, ..., vK) and pF (θ) = (p1,F (θ), ..., pK,F (θ)). Then,

the above condition can be rewritten as the following inequality which involves a linear pro-
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gramming problem:

0 ≤ inf pF (θ)′v + λ′ψ(θ) (46)

s.t. vk ≥ λ′t, ∀k = 1, ...,K, ∀t ∈Mk,

λ ∈ [−1, 1]dr.

Up to now, I have established the equivalence between (40) and (46). To construct a core

determining class, let P stand for the following polyhedron,

P := {(v, λ) : λ ∈ [−1, 1]dr, vk ≥ λ′t,∀k = 1, ...,K, ∀t ∈Mk}. (47)

Note that P is constructed based on the knowledge ofM, and it does not depend on pF (θ)

or ψ(θ). Let V be the set of all extreme points of P. Since pk,F (θ) ≥ 0 for any k and F ,

we know the in�mum in (46) must be �nite. By the properties of linear programming, this

implies that the in�mum in (46) can always be achieved by points within V. Therefore, (40)
is equivalent to the following �nite collection of moment inequalities,

∀(v, λ) ∈ V, EF

[
K∑
k=1

1(M(Z; θ) =Mk)vk + λ′ψ(θ)

]
≥ 0. (48)

De�ne Vλ to be the projection of V onto the space of λ. Then, Vλ is a �nite core determining

class for model (Γ, r).

Let ∆K := {p ∈ RK :
∑

k pk = 1 and pk ≥ 0, ∀k = 1, ...,K} be the K-dimensional

simplex. Let Ψ := {ψ(θ) : θ ∈ Θ} be the image of ψ. Then, by the de�nition of pF (θ) and

γ(V), (48) is satis�ed if and only if

(
pF (θ), ψ(θ)

)
∈
{

(p, t) ∈ ∆K ×Ψ : p′v + t′λ ≥ 0,∀(v, λ) ∈ V
}
.

De�ne γ(V) := {(p, t) ∈ ∆K × Ψ : p′v + t′λ ≥ 0, ∀(v, λ) ∈ V}. If V is not a minimal core

determining class, one can �nd some redundant point (v′, λ′) in V so that γ(V) remains the

same after (v′, λ′) is removed, i.e., γ(V) = γ(V \ {(v′, λ′)}). One can keep removing these

redundant points until we �nd a minimal subset V∗ such that γ(V∗) = γ(V) and, for any

proper subset V ′ of V∗, γ(V ′) 6= γ(V). Then, V∗'s projection onto the space of λ is a minimal

core determining class.

The following proposition summarizes the the above derivation.

Proposition 2 (core determining class). Suppose Conditions C1-C2 holds for any θ in model

(Γ, r) and r is in the form of (43). For any subset V ′ of V, de�ne V ′λ as the projection of V ′

onto the space of λ. Then,

(i) if a subset V ′ of V satis�es γ(V ′) = γ(V), then V ′λ is a core determining class.
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(ii) if a subset V∗ of V is a minimal subset which satis�es γ(V∗) = γ(V), then V∗λ is a

minimal core determining class.

(iii) if a subset V ′ of V satis�es γ(V ′) = γ(V), then Condition (16) in Section 3.2 is equivalent

to

∀(v, λ) ∈ V ′, E

[
K∑
k=1

1(M(Z; θ) =Mk)vk + λ′ψ(θ)

]
≥ 0.

In practice, constructing a minimal core determining class based on Proposition 2 involves

two major steps: (i) �nd the set V of all extreme points in polyhedron P; and (ii) construct

V∗ from V by removing all redundant points.

In computational geometry, Step (i) is often called the vertex enumeration problem. Since

polyhedron P is unbounded, this problem is NP-hard as shown in Khachiyan, Boros, Borys,

Gurvich and Elbassioni (2009). Moreover, in the worst case, K could be as large as 2|M|− 1,

which makes the problem even harder. However, in some applications, K can be much smaller

than 2|M|− 1. For example, for r de�ned in (35), we have |M| = 27 and K = 5. In addition,

there exists several e�cient implementations of the vertex enumeration algorithms. For exam-

ple, see Parma Polyhedra Library in Bagnara, Hill and Za�anella (2008) for a single thread

implementation, and mplrs in Avis and Jordan (2018) for a multi-thread implementation.

When Ψ is a polyhedron as in (18) and (35), Step (ii) can be implemented by the algorithm

in Clarkson (1994). In the worst case, it needs to solve |V| linear programming problems,

where |V| is the cardinality of V. In practice, it often takes less time to complete Step (ii)

compared to Step (i). A good implementation can be found in Parma Polyhedra Library.

When Ψ is not a polyhedron, �nding a minimal core determining class is not easy. What we

can do in this case is to remove all redundant points in V so that there is no redundant linear

constrain on (p, t) in the following,

∀(v, λ) ∈ V, p′v + t′λ ≥ 0,

∀k = 1, ...,K, pk ≥ 0,

and
∑
k

pk = 1.

Let V† be the resulting minimal subset of V. Then, V†λ is always core determining, though it

may not be minimal.
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6 Applications

6.1 Exporting Decision with Limited Information

My �rst empirical example uses the setting in Dickstein and Morales (2018) (hereafter, "DM"),

which examines the export decisions of Chilean �rms with weak assumptions on �rms' in-

formation set. The goal here is two-fold. First of all, I study the sharp identi�ed set under

di�erent sets of assumptions. By comparing those results, we can see which key assumptions

have to be made to get informative empirical results. Secondly, I illustrate how counterfactual

analysis can be conducted using the method developed in previous sections.

The empirical model studied in DM is very similar to Example 1. In the benchmark

model, DM assume that the pro�t of exporter i exporting to country j at period t is

πijt = βXijt − α0 − α1distij + εijt,

where Xijt is �rm i's exporting revenue, βXijt stands for �rm i's exporting revenue net of

production costs, distij stands for the geographic distance between �rm i's home country and

country j, and εijt is the unobserved heterogeneity. DM normalize β = 0.2 and treat (α0, α1)

as parameters to be estimated. Firm i observes εijt and distij , but it does not observe Xijt

when making exporting decisions. Instead, �rm i forms a subjective expectation Es[Xijt|Iit]
based on its information set Iit at time t. Assume Es[πijt|Iit] ≥ 0 if �rm i exports, and

Es[πijt|Iit] ≤ 0 if it doesn't.

Following DM, I assume we do not observe Es[πijt|Iit] or Iit. Instead, we observe some

instrumentWijt within Iijt. In DM,Wijt includes �rm i's exporting revenue at time t−1, the

aggregate exports from �rm i's home country to country j at time t−1 and the distance distij .

As DM constructs Xijt from �rm j's sales revenue in its home country, Xijt is observable to

us for all �rms.

As in Example 1, let Yijt be the exporting decision, Zijt := (Yijt, Xijt, distij ,Wijt) be

the collection of the observables, νijt := Es[Xijt|Iit]−Xijt be �rm i's expectation error, and

Uijt = (νijt, εijt) be the collection of the unobservables. Whenever there is no confusion, I

omit i, j, t in the subscript for ease of notation.

In this example, the support restriction can be written as P[(Z,U) ∈ Γ(θ)] = 1, where

Γ(θ) = {(z, u) : (−1)y[(x+ ν)β − α0 − α1dist+ ε] ≤ 0}. (49)

I consider the moment restrictions under the following two sets of assumptions.

AS1: Assume (i) ν has zero median conditional on ε, E[X|I] and W , (ii) ε has zero median

conditional on W , and (iii) assume the sign of ε is independent of E[X|I] conditional on W .

Let A0 = (−∞, 0] and A1 = [0,∞). Since E[X|I] = X + ν by de�nition, we can write AS1
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as E[r1(U,Z; θ)|W ] = 0 where r1 = (r1,k,k′ : k, k′ ∈ {0, 1}) and

r1,k,k′(u, z; θ) =

 [1(ε ∈ Ak)− 0.5] · 1(x+ ν ∈ Ak′)
y · 1(ε ∈ Ak and x+ ν ∈ Ak′) · (1(ν ≥ 0)− 1(ν ≤ 0))

(1− y) · 1(ε ∈ Ak and x+ ν ∈ Ak′) · (1(ν ≥ 0)− 1(ν ≤ 0))

 . (50)

The �rst function in (50) stems from condition (ii) and (iii) inAS1, and the last two functions

are due to condition (i) in AS1.

AS2: Assume (i) ν has zero median conditional on ε, E[X|I] and W , (ii) ε has a Normal

distribution N(0, σ2), (iii) ε is independent of E[X|I] and W . Let K be some integer and

{B1, ...,BK} beK intervals which partition R. Then, AS2 implies E[r2(U,Z; θ)|W ] = 0 where

r2 = (r2,k,k′ : k, k′ ∈ {1, · · · ,K}) and

r2,k,k′(u, z; θ) =


[1(ε ∈ Bk)− pk] · 1(x+ ν ∈ Bk′)

y · 1(ε ∈ Bk and x+ ν ∈ Bk′) · (1(ν ≥ 0)− 1(ν ≤ 0))

(1− y) · 1(ε ∈ Bk and x+ ν ∈ Bk′) · (1(ν ≥ 0)− 1(ν ≤ 0))

1(x+ ν ∈ Bk′)(y − Φ[σ−1(β(x+ ν)− α0 − α1dist)])

 (51)

where pk is equal to PN(0,σ2)(ε ∈ Bk). The last function in (51) is due to the fact that the

conditional choice probability E[y|W,E(X|I)] equals Φ[σ−1(β(x + ν) − α0 − α1dist)] under

AS2. In the results reported below, I set K = 8.

The identi�cation conditions in DM build on the same assumptions as in AS2 except

that they assume ν has zero mean instead of zero median. I write their assumptions in the

following for comparison.

DM: Assume (i) ν has zero mean conditional on ε, E[X|I] and W (ii) ε is has a Normal

distribution N(0, σ2), (iii) ε is independent of E[X|I] and W . Under the assumptions, DM

derive the following moment inequalities,

E[m(Z; θ)] ≥ 0, where m(z; θ) =


y(1− Φ(∆))/Φ(∆)− (1− y)

(1− y)Φ(∆)/(1− Φ(∆))− y
−(1− y)∆ + yφ(∆)/Φ(∆)

y∆ + (1− y)φ(∆)/Φ(∆)

 , (52)

and where ∆ = σ−1(βx−α0−α1dist), and φ is the p.d.f. of the standard normal distribution.

Since I don't have access to the original data in DM, I simulate a sample based on the

data statistics and estimation results reported in DM. The simulation is designed as follows:

(a) In the simulation, I set the value of (α0, α1) and σ to the middle point of their reported

con�dence interval; (b) I assume there are two periods, period 0 and 1. (c) Fix t = 1,

the distribution of Xij,t−1 is the Fréchet distribution whose c.d.f. F (x) = exp(−Tx−γ). I set

γ = 4 and calibrate the value of T so that the resulting export probability matches that of the
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Chilean chemical industry in Year 2000, reported in Table 1 of DM; (d) Firm i's expectation

Es[Xijt|Iit] equals Xij,t−1; (e) ν follows the Normal distribution N(0, σ2
ν) where σν = 0.5σ.

(f ) The sample size is the same as than in DM. See Appendix H.1 for more details.

Table 1 summarizes the con�dence interval for the structural parameter (α0, α1, σ). The

results under Assumption AS1 and AS2 are based on the support restriction with Γ(θ)

de�ned in (49) and moment restrictions with r de�ned in (50) and (51) respectively. The

result based on DM's moment inequality (52) is reported in the last column. I construct the

con�dence interval for each parameter by projecting the con�dence region as in Andrews and

Soares (2010). See Appendix G for a way of computing the identi�ed set using support vector

machines.

Table 1: Con�dence Interval for Structural Parameters

Parameters True Value AS 1 AS 2 DM

α0 72.0 [0, 150.1] [0, 129.3] [0, 389.0]

α1 168.4 [55.6, 324.9] [91.6, 323.2] [0, 1071.7]

σ 100.5 − [64.6, 173.9] [0, 127.6]

Next, I consider a counterfactual exercise in which the �xed exporting cost increases by

$10, 000. In the following, I show how to construct an augmented model (Γ̃, r̃) to identify the

counterfactual export probability.

Let Ỹijt be the counterfactual export decision, and Ũijt = (νijt, εijt, Ỹijt) be the collection

of all unobservables including the counterfactuals. Then, the support restriction can now be

written as P[(Z, Ũ) ∈ Γ̃(θ)] = 1, where

Γ̃(θ) = {(z, ũ) : (−1)y[(x+ ν)β − α0 − α1dist+ ε] ≤ 0 (53)

(−1)ỹ[(x+ ν)β − α̃0 − α1dist+ ε] ≤ 0 }.

In this exercise, when estimating the counterfactual export probability, I only consider

exporters with export distance (distij) between 40% and 50% quantiles. For any interval C
of Xij,t−1, let p̃(C) the be counterfactual export probability for �rms whose Xij,t−1 is within

C. To ease the notation, I use X−1 to denote Xij,t−1. By the de�nition of p̃(C), we have

E[(Ỹ − p̃(C))1(X−1 ∈ C)] = 0 (54)

When imposing assumptions in AS1, I can now append (54) to the moment restrictions

de�ned in (50) as the new set of moment restrictions. When imposing assumptions in AS2,
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I append (54) and the following

E[1(X + ν ∈ Bk′)(Ỹ − Φ[σ−1(β(X + ν)− α̃0 − α1dist)])|W ] = 0

to the moment restrictions de�ned in (51). Finally, when imposing assumptions in AS3, DM

derive bounds for the counterfactual export probability in Theorem 3.

In Table 2, I report the con�dence interval for p̃(C) where C is intervals of 20% − 30%

quantiles, 50%− 60% quantiles and 70%− 80% quantiles of export revenues at t− 1.

This exercise has the following two implications: (i) By the results under AS1 and AS2

in Table 1 and 2, I �nd that the normality assumption on ε in AS2 plays a limited role in

the estimation of the structural parameters, but is essential to provide an informative lower

bound for the counterfactual export probability; (ii) The results generated by the moment

inequalities in DM are not very informative. One reason for this is that their identi�cation

conditions are not sharp. Another reason is that function m(z; θ) in (52) involves the ratio

between 1− Φ(∆) and Φ(∆) so that the variance of m(Z; θ) can be very large.8

Table 2: Con�dence Interval for Counterfactual Export Probability

quantiles of revenue Xij,t−1 True Value AS 1 AS 2 DM

20%− 30% quantile 0.23 [0.08, 0.26] [0.14, 0.26] [0, 1]

50%− 60% quantile 0.32 [0, 0.37] [0.16, 0.35] [0, 1]

70%− 80% quantile 0.41 [0, 0.47] [0.29, 0.45] [0, 1]

6.2 Entry Game with Complete Information

In this section, I revisit Example 2 to study the identi�cation conditions under semiparametric

assumptions and to compare the identi�ed set under the di�erent types of assumptions.

Example 2 (continued). Recall that, in Example 2, I've assumed the following support

restriction P[(Um, Zm) ∈ Γ(θ)] = 1 where

Γ(θ) := {(um, zm) : ∀i = 1, ..., I, (−1)yi,m(πi(y−i,m, xi,m; θ) + ui,m) ≤ 0} ,

and where yi,m is �rm i's entry decision in market m, xi,m is �rm i's observed characteristics

8In fact, one can show the variance of m(Z; θ) is in�nite if the distribution of export revenues is Pareto or any
other fat-tailed distribution. In the simulation setting, I let the export revenue follow the Fréchet distribution under
which the variance of m(Z; θ) is �nite in theory but is still very large in practice, especially with small values of σ.
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and ui,m is the unobserved heterogeneity of �rm i. Recall also that

πi(y−i,m, xi,m; θ) = x′i,mαi −
∑
k 6=i

∆k · yk,m.

is the mean utility of player i when choosing yi,m = 1. In addition, I impose the following

zero median assumptions on Um, that for each player i,

E[1(Ui,m ≥ 0)− 1(Ui,m ≤ 0)|Xm] = 0. (55)

Since the moment functions in (55) consist of indicator functions, Conditions C1-C4 are

satis�ed. Conditional on a value xm of Xm, Theorem 2 then implies that θ is in the identi�ed

set if and only if

∀λ ∈ Sdr, E

[
sup

u∈Γ(Z;θ)
λ′r(u, Z; θ)

∣∣∣ Xm = xm

]
≥ 0,

where dr equals the number of players and r = (ri : i = 1, ..., I) with ri(um, zm; θ) = 1(ui,m ≥
0) − 1(ui,m ≤ 0). One can further simplify the above conditions to the following moment

inequalities that for each player i = 1, ..., I and for almost every Xm,

E[1(Yi,m = 0, πi(Y−i,m, Xi,m; θ) > 0)− 0.5 | Xm] ≤ 0

E[1(Yi,m = 1, πi(Y−i,m, Xi,m; θ) < 0)− 0.5 | Xm] ≤ 0
. (56)

One nice property of (56) is that its evaluation does not require solving the set of all Nash

equilibria, whose computational complexity increases exponentially in the number of players.

This is in contrast to the identi�cation conditions under Normality assumptions. For example,

under the assumption that the conditional distribution of Um given Xm is N(0,Σ), Ciliberto

and Tamer (2009) derived that, for any y ∈ {0, 1}I and almost every Xm,∫
1({y} = NE(Xm, um)) dΦΣ(um)

≤ P(Ym = y|Xm) ≤
∫
1(y ∈ NE(Xm, um)) dΦΣ(um), (57)

where NE(xm, um) stands for the set of Nash equilibria given (xm, um) and ΦΣ is the prob-

ability measure of N(0,Σ).

Let ΘZC
I be the set of parameters which satis�es (56), and let ΘN

I be the set of parameters

which satis�es (57). To illustrate the di�erence between ΘZC
I and ΘN

I and to see the how

these assumptions and the data variation jointly shapes the identi�ed set, I design a simulation

experiment in which the data generating process (DGP) is the following:

(i) There are two players, i.e. I = 2.
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(ii) For each i = 1, 2, Ui,m follows a t-distribution with degree of freedom d.

(iii) For each i = 1, 2, Xi,m is scalar and the support of Xi,m is K evenly spaced points

within interval [0, 5]. In total, Xm has K2 support points.

(iv) U1,m, U2,m, X1,m and X2,m are mutually independent.

(v) When there is more than one pure-strategy Nash equilibrium, each equilibrium occurs

with equal probability.

(vi) For each i = 1, 2, I normalize αi = 1 and let ∆i = 1.

This DGP can be indexed by (d,K), where d changes the underlying distribution for Ui,m

and K controls how rich the data variation is. I compute the identi�ed set for ΘZC
I and ΘN

I

for di�erent DGPs. When computing both identi�ed sets, I normalize αi = 1. I also treat Σ

as a nuisance parameters when computing ΘN
I . Table 3 reports the identi�ed set for (∆1,∆2)

in ΘZC
I and ΘN

I .
9

Table 3: Identi�ed Set under Di�erent DGPs

DGP Settings ΘZC
I ΘN

I

d = 1 k = 2 [0.00, 5.00]2 ∅
d = 1 k = 20 [0.79, 1.32]2 ∅
d = 1 k = 100 [0.91, 1.16]2 ∅

d = 10 k = 2 [0.00, 5.00]2 ∅
d = 10 k = 20 [0.79, 1.05]2 ∅
d = 10 k = 100 [0.96, 1.01]2 ∅

d =∞ k = 2 [0.00, 5.00]2 {(1, 1)}
d =∞ k = 20 [0.79, 1.05]2 {(1, 1)}
d =∞ k = 100 [0.96, 1.01]2 {(1, 1)}

First, when d < ∞, Ui,m follows a t distribution instead of a Normal distribution. That

is, moment inequalities in (57) are misspeci�ed. Therefore, it is not surprising that ΘN
I is the

empty set when d <∞. However, ΘN
I becomes a singleton as long as d =∞, even if there is

very little data variation. Note that, when k = 2, Xi,m has the minimum data variation: it can

only take two possible values. This suggests that the identi�cation result hinges on whether

or not the Normality assumption is correct. When the Normality assumption is correct, the

model is point identi�ed even if there is little data variation. When the Normality assumption

9It is nontrivial to check whether ΘN
I is indeed empty or singleton. In Appendix H.2, I develop an algorithm to

handle this issue.
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is misspecifed, no parameter can rationalize the data. The extent of data variation seems to

play little role in this example.

Next, when k = 2, ΘZC
I is not very informative. It should not be surprising as there is

little data variation when k = 2. However, as k increases, the support of Xi,m becomes richer

and ΘZC
I gradually becomes more informative.

In practice, when one works with �nite sample size, the situation may be less startling. The

con�dence set of ΘN
I is less likely to be nonempty even if it is misspeci�ed. Also, the empirical

result under the zero median assumption may or may not be informative. However, given

the result in Table 3, it is interesting to study how the empirical results change over various

sets of semiparametric/parametric assumptions and see the tradeo� between robustness and

informativeness in the real data. I leave this for future work. �

7 Extension to Moment Inequality Restrictions

As illustrated in Example 3, the moment restrictions in some interesting applications some-

times take the form of inequalities instead of equalities. In this section, I extend the framework

in (1) to the following,

P[(U,Z) ∈ Γ(θ)] = 0, E[r1(U,Z; θ)] = 0, and E[r2(U,Z; θ)] ≥ 0. (58)

Let dr1 and dr2 be the dimension of r1 and r2 respectively.

One way to �nd the identi�cation conditions for models satisfying (58) is to introduce a

slackness variable V with V ∈ Rdr2+ . Let Ũ = (U, V ) and construct the moment function r̃ as

r̃(ũ, z; θ) =

(
r1(u, z; θ)

r2(u, z; θ)− v

)
. (59)

Moreover, construct the support restriction as P[(Ũ , Z) ∈ Γ̃(θ)] = 1 with Γ̃ de�ned as

Γ̃(θ) = {(ũ, z) : (u, z) ∈ Γ(θ) and v ≥ 0}. (60)

Then, the model in (58) is equivalent to P[(Ũ , Z) ∈ Γ̃(θ)] = 1 and E[r̃(Ũ , Z; θ)] = 0. De�ne

Sdr1,dr2 = {(λ1, λ2) ∈ Rdr1 × Rdr2+ : ‖(λ1, λ2)‖ = 1}. To derive its identi�cation conditions,

note that Condition (16) for (Γ̃, r̃) can be simpli�ed to

∀(λ1, λ2) ∈ Sdr1,dr2 , E

[
sup

u∈Γ(Z;θ)
λ′1r1(u, Z; θ) + λ′2r2(u, Z; θ)

]
≥ 0. (61)

Let r = (r1, r2). Condition (61) is very similar to Condition (16) for (Γ, r) with moment

equality constraints, except that the Lagrange multiplier λ2 for r2 only takes nonnegative
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values in (61).

Due to the presence of the slackness variables, Condition C4 does not hold for (Γ̃, r̃) even

if the norm of both r1 and r2 are bounded. Hence, Theorem 2 cannot be applied directly.

In the following, however, I establish the sharpness of (61) as a corollary of Theorem 3, the

proof of which can be found in Appendix F.

Corollary 2. Given the model in (58), de�ne its identi�ed set to be the identi�ed set of (Γ̃, r̃)

in De�nition 1. Let r = (r1, r2). Suppose all θ ∈ Θ satis�es Conditions C1 and C2 applied

to (Γ, r). Then, Condition (61) holds for any θ in the identi�ed set. Suppose, in addition, all

θ ∈ Θ satis�es Conditions C3 and C4 applied to (Γ, r). Then, θ is in the identi�ed set if and

only if θ satis�es Condition (61).

Corollary 2 can be viewed as a counterpart of Theorem 1 and 2 for models with moment

inequality restrictions. Under the conditions in Theorems 3 and 4, one could also establish

similar sharp identi�cation results for the model with moment inequality restrictions. Let us

now revisit Example 3.

Example 3 (continued). Recall that, the support restriction in Example 3 can be written

as P[(Ui, Zi) ∈ Γ(θ)] = 1, where

Γ(θ) =
{

(ui, zi) : ∀t = 1, ..., T, yit = arg max
j∈J

uijt

}
.

In addition, recall that under the same assumptions in Gao and Li (2018), the following

moment inequality restrictions hold: for any two time periods s and t, and any two nonempty

subsets J1 and J2 of choice set J ,

E

[
ρist(J1,J2; θ)

{
1

(
max
j∈J1

Uijs ≥ max
j∈J2

Uijs

)
− 1

(
max
j∈J1

Uijt ≥ max
j∈J2

Uijt

)} ∣∣∣∣∣Xi

]
≥ 0, (62)

where

Aist(θ) = {j ∈ J : X ′ijsθ ≥ X ′ijtθ}

Bist(θ) = {j ∈ J : X ′ijsθ ≤ X ′ijtθ}

ρist(J1,J2; θ) = 1
(
J1 ⊆ Aist(θ) and J2 ⊆ Bist(θ)

)
.

One can check that Conditions C1-C4 are satis�ed in this example. Let function r collect

all the moment functions in (62). Let S+
dr = {λ ∈ Rdr+ : ‖λ‖ = 1}. Conditional on one

value xi of Xi, Corollary 2 implies that the identi�ed set of model (Γ, r) in this example is

characterized by the following set of moment inequalities,

∀λ ∈ S+
dr, E

[
sup

ui∈Γ(Zi;θ)
λ′r(ui, Zi; θ)

∣∣∣∣∣ Xi = xi

]
≥ 0. (63)
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When T = 2, I show in Appendix H.4 that the above condition can be further simpli�ed into

the following moment inequalities,

∀s, t = 1, ..., T, E[1(Yis ∈ Aist(θ))− 1(Yit ∈ Aist(θ)) | Xi] ≥ 0. (64)

In other words, the moment inequality in (64) is a sharp identi�cation condition. When

T > 2, the conditions in (64) are still valid but the sharp identi�cation conditions could be

more complicated.

To compare with Gao and Li (2018), given any Xi, de�ne γist(j; θ) for any j ∈ J and

any two time periods s, t by, γist(j; θ) = 1(X ′ijsθ ≥ X ′ijtθ and ∀k 6= j, X ′iksθ ≤ X ′iktθ).

The identi�cation condition in Gao and Li (2018) can be written as the following moment

inequalities,

∀j ∈ J , ∀s, t = 1, ..., T, E[γist(j; θ) (1(Yis = j)− 1(Yit = j)) |Xi] ≥ 0,

which is nested in (64). In fact, when X ′ijtθ changes across time for all choices, the identi-

�cation condition in Gao and Li (2018) is the same as (64) except that they only pick up

the cases when Aist(θ) is singleton, which does not exhaust all the information in the data

variation. �

8 Conclusion

In this paper, I developed a new identi�cation approach for structural models with semi-

parametric assumptions on the unobserved heterogeneity. It characterizes the identi�ed set

for both structural and counterfactual parameters using a set of moment inequalities. I also

derive the su�cient and necessary conditions for the sharpness of the procedure. In addition,

the results on the enlarged identi�ed set can be helpful to better understand existing results

in the literature.

The generality of the framework makes it possible to apply the method to various struc-

tural models. In this paper, I worked out the analytic identi�cation conditions for three

examples, which may be of independent interest. In the future, for instance, identi�cation

conditions in Example 1 could be extended to other structural models with similar information

structures. It is also worth revisiting Example 2 to investigate what kinds of semiparametric

assumptions achieve the balance between the informativeness and the robustness in practice.

The identi�cation constraints derived in Example 3 could also be applied to empirical analy-

sis. Also, the treatment on the monotonicity conditions in Example 3 could be extended to

other settings.

The main factor which limits the scope of the empirical applications is the computational

issue. The computational procedures in Section 5 can be further improved in the future.
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For example, it is unclear what is the best way to construct the discretized approximation.

Also, there might be ways to construct a minimal core determining class which is speci�c to

the joint distribution in the data. Although raising some challenging statistical issues, such

data dependent core determining classes could decrease the computational complexity even

further. Another possibility is to explore minimal core determining classes when (Γ, r) has

some special structure, as did in Galichon and Henry (2011) for models with monotonicity

structures.
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Appendices

A Basic Concepts of Random Set Theory

This section collects some basic concepts and results of random sets and measurable functions

used in the paper. Throughout the paper, the random set is de�ned on a �nite dimensional

Euclidean space. I follow the notation in Molchanov (2005) whenever possible.

De�nition A.1 (Random Set). Let (Ω,S , P ) be a probability space. A correspondence

Y : Ω ⇒ Rd is said to be a random closed set if (i) Y (ω) is closed almost surely; (ii) for each

compact set K in Rd, {ω ∈ Ω : Y (ω) ∩K 6= ∅} ∈ S .

Fix a complete probability space (Ω,S , P ). Let L1(Ω;Rd) denote the set of all integrable
functions f : Ω 7→ Rd. The following introduces the expectation concept of random set theory.

De�nition A.2 (integrable selections). If Y is a random closed set, then S1(Y ) denotes the

family of all integrable selections of Y . That is,

S1(Y ) := {f ∈ L1(Ω;Rd) : f(ω) ∈ Y (ω) almost surely}

De�nition A.3 (integration of random set). Let Y be a random closed set. Its Aumann

integral EIY is de�ned as the set of all expectations of integrable selections,

EIY := {Ef : f ∈ S1(Y )}

Its selection expectation EY is de�ned as the closure of EIY ,

EY := cl {Ef : f ∈ S1(Y )}

Finally, the following introduces a boundedness concept on random sets.

De�nition A.4 (integrable random set). A random closed set Y is called integrable if

S1(Y ) 6= ∅. A random closed set Y is called integrably bounded if ‖Y ‖ := sup{‖t‖ : t ∈ Y }
has �nite expectation, i.e. ‖Y ‖ ∈ L1(Ω;R).

The following lemma contains all the results I used to prove our theorems in the paper.

Lemma A.1. Let Y be a closed random set, whose realization is a subset of Rd.

(i) S1(Y ) 6= ∅ if and only if inf{‖t‖ : t ∈ Y } is integrable.

(ii) If Y is integrably bounded, EIY is a compact set and EY = EIY .
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(iii) If a function ζ : Rd 7→ R∪{±∞} is upper or lower semicontinous , then inf{ζ(t) : t ∈ Y }
is a random variable. Moreover, if S1(Y ) 6= ∅ and Eζ(f) is de�ned for all f ∈ S1(Y )

and Eζ(f) <∞ for at least one f ∈ S1(Y ), then

inf
f∈S1(Y )

Eζ(f) = E inf
t∈Y

ζ(t)

(iv) If S1(Y ) 6= ∅, then Eco (Y ) = co EY where co stands for the closure of the convex hull.

Proof. For results (i), (iii) and (iv), see Molchanov (2005), Theorem 1.7 (p.149), Theorem

1.10 (p. 150) and Theorem 1.17 (p. 154) respectively.

For result (ii), Theorem 1.24 on page 158 in Molchanov (2005) implies EIY is a closed

set. Moreover, since ‖v‖ ≤ E ‖Y ‖ , ∀v ∈ EIY , EIY is bounded. Since EIY ⊆ Rd, EIY is

compact.

B Selection Theorem

I also need a measurable selection theorem presented later in Lemma B.2.

De�nition B.1 (universally measurable set). Let S be a Polish space and let BS be its Borel

sigma algebra. A subset S′ of S is a universally measurable set if for any complete probability

space (S,F , F ) with BS ⊆ F , S′ ∈ F .

De�nition B.2 (universally measurable function). Let S be a Polish space and let BS be its

Borel sigma algebra, and T be some topological space. A function f : S 7→ T is universally

measurable if for any Borel set B of T , {s ∈ S : f(s) ∈ B} is universally measurable.

By de�nition, if a function is uniformly measurable, then it's also measurable in the com-

pletion of any Borel probability space. Some basic relation between Borel sets and universally

measurable sets are listed in the following lemma.

Lemma B.1.

(i) In a Polish space, every Borel set is universally measurable.

(ii) For a function f : S 7→ T between Polish spaces, the following statements are equivalent.

• f is Borel measurable

• Grf is a Borel subset of S × T , where Grf := {(s, f(s)) : s ∈ S} is the graph of f .

Proof. As for (i), see Corollary 12.27 and Theorem 12.41 in Aliprantis and Border (2007).

As for (ii), see Theorem 12.28 in Aliprantis and Border (2007)
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Given D ⊆ S × T , de�ne projS(D) := {s ∈ S : ∃t ∈ T, (s, t) ∈ D} and Ds := {t ∈ T :

(t, s) ∈ D}. The following lemma is a simpli�ed version of Proposition 7.50(b) in Bertsekas

and Shreve (1978).

Lemma B.2 (measurable selection). Let S and T be Polish spaces, let D ⊆ S×T be a Borel

set, and le f : D → R be a Borel measurable function. De�ne f∗ : projS(D)→ R ∪ {−∞} by

f∗(s) = inf
t∈Ds

f(s, t).

Suppose f∗(s) > −∞ for any s ∈ projS(D). Then, the set

I := {s ∈ projS(D) : ∃ts ∈ Ds, f(s, ts) = f∗(s)}

is universally measurable. And, for every ε > 0, there exists a universally measurable function

φ : projS(D) 7→ T such that (i) Gr(φ) ⊆ D; (ii) for all s ∈ projS(D), f(s, φ(s)) ≤ f∗(s) +

ε, ∀s ∈ S and, (iii) for all s ∈ I, f(s, φ(s)) = f∗(s).

Proof. Since

• every Borel set is an analytic set,

• every Polish space is a Borel space as de�ned in De�nition 7.7 in Bertsekas and Shreve

(1978) (page 118),

• every Borel measurable function is lower semianalytic function as de�ned in De�nition

7.21 in Bertsekas and Shreve (1978) (page 177),

the result follows from Proposition 7.50(b) on page 184 in Bertsekas and Shreve (1978).

C Proof Theorems 1, 2 and 4

The proof builds on the theory of random sets. Readers who are not familiar with those

concepts are invited to consult Appendix A.

We need the following extra notation: Given any topological space X, let BX denote all

Borel sets on X , and PX denote the set of all probability measures on measurable space

(X ,BX ). Recall that U and Z denote the space of U and Z respectively. Recall also that FZ

denote the distribution of Z identi�ed in the data. Let the probability space (Z,Z , FZ) be

the completion of (Z,BZ , FZ). Recall Γ(z; θ) := {u ∈ U : (u, z) ∈ Γ(θ)}. De�ne Υ(z; θ) as

the image of Γ(z; θ) by r, i.e.

Υ(z; θ) := {r(u, z; θ) : u ∈ Γ(z; θ)}.
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Then, (16) can be rewritten as

∀λ ∈ Sdr, E

[
sup

t∈Υ(Z;θ)
λ′t

]
≥ 0.

Finally, let Θ̃ be the set of all θ which satis�es (16).

In the following, I �rst prove Lemma C.1 which establishes some useful properties for

Υ(z; θ) as a random set. Then, I prove Theorem 4 �rst, and then Theorem 1 and �nally

Theorem 2.

C.1 Property of Υ(z; θ)

Lemma C.1. (i) Suppose Condition C1 holds. Then, cl Υ(·; θ) is a random closed set.

(ii) Suppose Conditions C1 and C2 hold. Then, cl Υ(·; θ) is an integrable random closed set.

(iii) Suppose Conditions C1 and C4 hold. Then, random closed set cl Υ(·; θ) is integrably

bounded.

Proof of Lemma C.1. (i) We �rst show cl Υ(·; θ) is a random closed set under Condition C1.

LetD = {t1, t2, ...} be a countable set dense in Rdr. For each ti ∈ D, consider the following

optimization problem ,

inf
u∈Γ(z;θ)

‖ti − r(u, z; θ)‖

We know that ‖ti − r(u, z; θ)‖ is a Borel measurable function of (u, z), that Γ(θ) is a Borel

set, and that Γ(z; θ) is nonempty almost surely, Lemma B.2 implies that, for any n ∈ N, there
exists a universally measurable function fi,n : Z 7→ U such that for any z ∈ Z, fi,n(z) ∈ Γ(z; θ)

and

‖ti − r(fi,n(z), z; θ)‖ ≤ 1

n
+ inf
u∈Γ(z;θ)

‖ti − r(u, z; θ)‖ .

See De�nition B.2 for the de�nition of a universal measurable function. Since (Z,Z , FZ) is

the completion of the Borel probability space (Z,BZ , FZ), by the de�nition of universally

measurable functions, fi,n(z) is also Z -measurable.

Fix an arbitrary z. Since, by construction, fi,n(z) ∈ Γ(z; θ), we know cl {r
(
fi,n(z), z

)
:

i, n ∈ N} ⊆ cl Υ(z; θ). On the other hand, for any t ∈ cl Υ(z; θ) and any ε > 0, there must

exists some ti ∈ D such that ‖t− ti‖ ≤ ε/3, and there must exists some n ∈ N such that

‖ti − r(fi,n(z), z; θ)‖ ≤ 2ε/3. Hence, for any t ∈ cl Υ(z; θ) and any ε > 0, there exists some

t̃ ∈ {r
(
fi,n(z), z

)
: i, n ∈ N} such that

∥∥t− t̃∥∥ ≤ ε. Hence, cl Υ(z; θ) = cl {r
(
fi,n(z), z

)
:

i, n ∈ N}. By Theorem 2.3 on page 26 of Molchanov (2005), cl Υ(z; θ) is a random closed set

in (Z,Z , FZ).

(ii) Suppose, in addition, Condition C2 holds. The fact that cl Υ(z; θ) is a random closed

set implies z 7→ inf{‖t‖ : t ∈ cl Υ(z; θ)} is measurable in (Z,Z ) (See result (iii) in Lemma
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A.1). Moreover, note that

inf{‖t‖ : t ∈ Υ(z; θ)} = inf{‖t‖ : t ∈ cl Υ(z; θ)}.

Condition C2 then implies z 7→ inf{‖t‖ : t ∈ cl Υ(z; θ)} is an integrable function. By

De�nition A.4 and Lemma A.1(i), cl Υ(·; θ) is integrable.
(iii) Finally, Condition C4 directly implies cl Υ(·; θ) is integrably bounded by de�nition.

C.2 Proof of Theorem 4

I �rst state the following two lemmas, the proof of which will be presented after I prove

Theorem 4.

Lemma C.2. If set A is a closed convex set in Rd, then 0 ∈ A if and only if

inf
λ∈Rd

sup{λ′t : t ∈ A} ≥ 0.

Lemma C.3. Suppose Conditions C1 and C2 hold. Then, 0 ∈ co Ecl Υ(Z; θ) implies θ ∈ Θ′I .

Proof of Theorem 4. First of all, Lemma C.1 implies that cl Υ(·; θ) is an integrable random

closed set.

Let's now show Θ̃ ⊆ Θ′I . Suppose there exists θ ∈ Θ̃ such that θ /∈ Θ′I . Then, by Lemma

C.3, 0 /∈ co Ecl Υ(Z; θ). Lemma C.2 then implies that the following inequality

inf
λ∈Rdr

sup{λ′t : t ∈ co Ecl Υ(Z; θ)} < 0

holds almost surely.

By Lemma A.1(iv), and the fact that co Υ(Z; θ) ⊆ co cl Υ(Z; θ), and that EIco Υ(Z; θ) ⊆
Eco Υ(Z; θ), we know

inf
λ∈Rdr

sup{λ′t : t ∈ EIco Υ(Z; θ)} < 0 (65)

Choose any λ̃ such that sup{λ̃′t : t ∈ EIco Υ(Z; θ)} < 0. Note that

sup{λ̃′t : t ∈ EIco Υ(Z; θ)} = − inf
f∈S1(co Υ(Z;θ))

E[−λ̃′f ] (66)

where S1 is de�ned in De�nition A.2. Applying Lemma A.1(iii) with ζ(t) = −λ′t, we know

− inf
f∈S1(co Υ(Z;θ))

E[−λ̃′f ]

= −E inf{−λ̃′t : t ∈ co Υ(Z; θ)}

= E sup{λ̃′t : t ∈ co Υ(Z; θ)}. (67)
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Combining equation (66) and (67), we know

E sup{λ̃′t : t ∈ co Υ(Z; θ)} = sup{λ̃′t : t ∈ EIco Υ(Z; θ)} < 0. (68)

In addition, since Υ(z; θ) ⊆ Rdr,

sup{λ̃′t : t ∈ co Υ(z; θ)} = sup{λ̃′t : t ∈ Υ(z; θ)}. (69)

Combine equation (68) and (69), we conclude

inf
λ∈Rdr

E sup{λ′t : t ∈ Υ(Z; θ)} < 0.

This contradicts θ ∈ Θ̃. This proves Θ̃ ⊆ Θ′I .

To show Θ′I ⊆ Θ̃. Fix any θ ∈ Θ′I and any ε > 0, there exists a distribution H of (U,Z)

such that (i) ‖Er(U,Z; θ)‖ ≤ ε; (ii) PH(U ∈ Γ(Z; θ)) = 1; (iii) the marginal distribution of H

on Z equals to FZ . For any λ ∈ Rdr with ‖λ‖ = 1, we have

−ε ≤ EH(λ′r(U,Z; θ))

≤ EH

{
sup

u∈Γ(Z;θ)
λ′r(u, Z; θ)

}

= EFZ

{
sup

u∈Γ(Z;θ)
λ′r(u, Z; θ)

}

where the �rst inequality comes from Cauchy-Schwarz inequality, the second inequality comes

form PH(U ∈ Γ(Z; θ)) = 1, and the last equality follows from the fact that sup{λ′r(u, z; θ) :

u ∈ Γ(z; θ)} only depends on z. Hence,

−ε ≤ inf

{
EFZ

[
sup

u∈Γ(Z;θ)
λ′r(u, Z; θ)

]
: λ ∈ Rdr, ‖λ‖ = 1

}
.

Since these holds with any ε > 0, we conclude

0 ≤ inf

{
EFZ

[
sup

u∈Γ(Z;θ)
λ′r(u, Z; θ)

]
: λ ∈ Rdr, ‖λ‖ = 1

}
.

Since η(0, Z; θ) ≡ 0, we conclude that θ ∈ Θ̃.

Proof of Lemma C.2. If 0 ∈ A, we know sup{λ′t : t ∈ A} ≥ 0 for any λ. Hence, 0 ∈ A implies

inf
λ∈Rd

sup{λ′t : t ∈ A} ≥ 0.

Suppose 0 /∈ A, the strict hyperplane separation theorem implies there exists some λ 6= 0
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and c ∈ R, such that

λ · 0 > c > λ′t, ∀t ∈ A.

Therefore, 0 /∈ A implies

inf
λ∈Rd

sup{λ′t : t ∈ A} < 0.

This completes the proof.

Proof of Lemma C.3. Let probability space (Z,Z , FZ) denote the completion of Borel prob-

ability space (Z,BZ , FZ). Under Condition C1 and C2, cl Υ(Z; θ) is an integrable random

closed set in (Z,Z , FZ). Suppose 0 ∈ co Ecl Υ(Z; θ) is true, we want to prove that θ ∈ Θ′I .

(In the rest of proof, we write E for EFZ whenever there is no possible confusion.)

Fix an arbitrary ε > 0. By the fact that co A = co cl A for any subset A in �nite dimen-

sional Euclidean space, and that Ecl Υ(Z; θ) = cl (EIcl Υ(Z; θ)) by De�nition A.4, we know

0 ∈ co Ecl Υ(Z; θ) implies 0 ∈ co EIcl Υ(Z; θ). Hence, there exists some v ∈ co EIcl Υ(Z; θ)

such that ‖v‖ ≤ ε. By Carathéodory's theorem, there must exists p0, p1, ..., pdr ∈ [0, 1] and

v0, ..., vdr ∈ EIcl Υ(Z; θ) such that
∑dr

j=0 pj = 1 and v =
∑dr

j=0 pjvj .For each j = 0, ..., dr,

there exists fj ∈ S1(cl Υ(Z; θ)) such that vj = Efj(Z). Hence,∥∥∥∥∥∥
dr∑
j=0

pjEfj(Z)

∥∥∥∥∥∥ ≤ ε.
By the de�nition of S1(cl Υ(Z; θ)), each fj is measure and integrable in (Z,Z , FZ).

Let T be a random variable independent with Z, which is supported on {0, 1, ..., dr} and
is distributed as the following,

P(T = j) = pj , ∀j ∈ {0, 1, ..., dr}.

Construct random variable R ∈ Rdr from T and Z as

R =
dr∑
j=0

1{T = j}fj(Z).

Let H ′ denote the joint distribution of (Z,R) in measurable space (Z×Rdr,BZ×Rdr). By
construction, H ′'s marginal distribution for Z equals FZ , and

PH′(R ∈ cl Υ(Z; θ)) = 1.

Also,

‖EH′R‖ =

∥∥∥∥∫ EH′ [R|Z = z] dFZ

∥∥∥∥ =

∥∥∥∥∥∥E
dr∑
j=0

pjfj(Z)

∥∥∥∥∥∥ =

∥∥∥∥∥∥
dr∑
j=0

pjEfj(Z)

∥∥∥∥∥∥ ≤ ε.
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Now consider H ′ as in the completion of probability space (Z × Rdr,BZ×Rdr , H ′). Since
PH′(R ∈ cl Υ(Z; θ)) = 1, we know, by the de�nition of Υ(Z; θ),

PH′
(

inf
u∈Γ(Z;θ)

‖r(u, Z; θ)−R‖ = 0
)

= 1

Since {(z, u) : u ∈ Γ(z)} × Rdr is a Borel set, and that (u, z, t) 7→ ‖r(u, z; θ)− t‖ is a Borel

measurable function in U × Z × Rdr, Lemma B.2 in Appendix B implies that there exists a

universally measurable function g : Z × Rdr 7→ U , such that for any t ∈ Rdr and any z ∈ Z,
g(z, t) ∈ Γ(z; θ) and

∥∥r(g(z, t), z
)
− t
∥∥ ≤ ε+ inf

u∈Γ(z)
‖r(u, z; θ)− t‖ .

Construct random variable U = g(Z,R). Let H be the joint distribution of (U,Z) in the

measurable space (U × Z,BU×Z). Then, PH(U ∈ Γ(Z; θ)) = 1 and

PH(‖r(U,Z; θ)−R‖ ≤ ε) = 1,

so that

‖EHr(U,Z; θ)‖ ≤ ε+ ‖EHR‖ ≤ 2ε

This completes the proof that θ ∈ Θ′I .

C.3 Proof of Theorem 1

By the de�nition of ΘI and Θ′I , we know ΘI ⊆ Θ′I . Theorem 4 then implies Theorem 1.

C.4 Proof of Theorem 2

Before the main proof, we need an extra lemma, the proof of which is presented after the

proof of Theorem 2.

Lemma C.4. Suppose Conditions C1-C4 hold. Then, 0 ∈ co Ecl Υ(Z; θ) implies θ ∈ ΘI .

Proof of Theorem 2. Since we've already proven ΘI ⊆ Θ̃ in Theorem 1, we only need to prove

Θ̃ ⊆ ΘI . To show Θ̃ ⊆ ΘI , suppose, for the purpose of contradiction, there exists some θ ∈ Θ̃

such that θ /∈ ΘI . Then, by Lemma C.4, 0 /∈ co Ecl Υ(Z; θ). Yet, as shown in the proof of

Theorem 4, this contradicts the fact that θ ∈ Θ̃.

Proof of Lemma C.4. The proof of this lemma is similar to that of Lemma C.3. One only

needs to notice that under Conditions C1-C4, 0 ∈ co Ecl Υ(Z; θ) not only implies 0 ∈
co EIcl Υ(Z; θ) but also implies 0 ∈ co EIΥ(Z; θ). For clarity, I provide the entire proof.
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Suppose 0 ∈ co Ecl Υ(Z; θ), we want to show θ ∈ ΘI . First of all, note that 0 ∈
co Ecl Υ(Z; θ) is equivalent to 0 ∈ co EΥ(Z; θ) under Condition C3. Moreover, Condition

C4 together with Lemma C.1 also implies Υ(Z; θ) is an integrably bounded random closed

set. By Lemma A.1(ii), we know that EΥ(Z; θ) is a compact set and EΥ(Z; θ) = EIΥ(Z; θ).

Since EΥ(Z; θ) ⊆ Rdr, Carathéodory's theorem implies co EΥ(Z; θ) is also compact. Hence,

0 ∈ co Ecl Υ(Z; θ) implies 0 ∈ co EIΥ(Z; θ).

Given 0 ∈ co EIΥ(Z; θ), Carathéodory's theorem also implies that there must exists

p0, p1, ..., pdr ∈ [0, 1] and v0, ..., vdr ∈ EIΥ(Z; θ) such that
∑dr

j=0 pj = 1 and
∑dr

j=0 pjvj = 0.

For each j = 0, ..., dr, there exists fj ∈ S1(Υ(Z; θ)) such that vj = Efj(Z). Hence,

dr∑
j=0

pjEfj(Z) = 0.

Let (Z,Z , FZ) denote the completion of Borel probability space (Z,BZ , FZ). By the de�ni-

tion of S1(Υ(Z; θ)), each fj is measure and integrable in (Z,Z , FZ).

The remainder of the proof is similar to that in Lemma C.3. Let T be a random variable

independent of Z, which is supported on {0, 1, ..., dr} and is distributed as the following,

P(T = j) = pj , ∀j ∈ {0, 1, ..., dr}.

Construct random variable R ∈ Rdr from T and Z as

R =
dr∑
j=0

1{T = j}fj(Z)

Let H ′ denote the joint distribution of (Z,R) in measurable space (Z×Rdr,BZ×Rdr). By
construction, H ′'s marginal distribution for Z equals FZ , and

PH′(R ∈ Υ(Z; θ)) = 1,

and

EH′R =

∫
EH′ [R|Z = z] dFZ(z) = E

dr∑
j=0

pjfj(Z) =
dr∑
j=0

pjEfj(Z) = 0.

Now consider H ′ as in the completion of probability space (Z × Rdr,BZ×Rdr , H ′). Since
PH′(R ∈ Υ(Z; θ)) = 1, we know, by the de�nition of Υ(Z; θ),

PH
(

min
u∈Γ(Z)

‖r(u, Z; θ)−R‖ = 0
)

= 1.

Since {(z, u) : u ∈ Γ(z)} × Rdr is a Borel set, and (u, z, t) 7→ ‖r(u, z; θ)− t‖ is a Borel

measurable function in U × Z × Rdr, Lemma B.2 in Appendix B implies that there exists a
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universally measurable function g : Z × Rdr 7→ U , such that, for any z ∈ Z and t ∈ Rdr,
g(z, t) ∈ Γ(z; θ). In addition, for any z ∈ Z and t ∈ Rdr which satis�es

inf
u∈Γ(Z)

‖r(u, z; θ)− t‖ = min
u∈Γ(z)

‖r(u, z; θ)− t‖ ,

we have

‖r(g(z, t), z)− t‖ = min
u∈Γ(z)

‖r(u, z; θ)− t‖ .

Construct random variable U = g(Z,R). Let H be the joint distribution of (U,Z) in the

measurable space (U × Z,BU×Z). Then, PH(U ∈ Γ(Z; θ)) = 1 and

PH(r(U,Z; θ) = R) = 1,

so that

EHr(U,Z; θ) = EHR = 0

This completes the proof that θ ∈ ΘI .

D Proof of Theorem 3

Proof. I �rst prove Result(i). Fix any θ ∈ ΘI and one of its corresponding distributions H

in De�nition 1. For each k > 0, de�ne Υk(z; θ) := {r(u, z; θ) : (u, z) ∈ Γk(θ)}. As (Γk, r)

is a regularized model, we know, by Lemma C.1, Υk(Z; θ) is an integrably bounded random

closed set. Therefore, there exists some integrable function t1(z) such that t1(z) ∈ Υ1(z; θ).

For each k ≥ 1, construct gk : U × Z 7→ Rdr as

gk(u, z) =

{
r(u, z; θ) if (u, z) ∈ Γk(z; θ)

t1(z) if (u, z) /∈ Γk(z; θ).

By construction, for each λ ∈ Sdr, we have supu∈Γk(z;θ) λ
′r(u, z; θ) = supu∈Γ(z;θ) λ

′gk(u, z; θ).

Since (Γk, r) converges to (Γ, r), we know gk converges to r everywhere. Moreover, for

each k,

EH [‖gk(U,Z)− r(U,Z; θ)‖] ≤ E[2 ‖r(U,Z; θ)‖+ ‖t(Z)‖] < +∞.

Therefore, by the dominated convergence theorem, τk := E ‖gk(U,Z)− r(U,Z)‖ converges to
0 as k →∞.

For any λ ∈ Sdr, EH [λ′r(U,Z; θ)] = 0 so that E[λ′(gk(U,Z) − r(U,Z))] = E[λ′gk(U,Z)].
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Then, we have

−τk ≤ EH [λ′gk(U,Z)]

≤ E

[
sup

u∈Γ(Z;θ)
λ′gk(U,Z)

]

= E

[
sup

u∈Γk(Z;θ)
λ′r(U,Z; θ)

]
,

where the �rst inequality comes from Cauchy�Schwarz inequality and ‖λ‖ = 1, and the last

equality follows from the construction of gk.

Since τk does not depend on λ, we have

−τk ≤ inf
λ∈Sdr

E

[
sup

u∈Γk(Z;θ)
λ′r(U,Z; θ)

]
.

Let k →∞ and we've proved Result (i).

Finally, Result (ii) follows trivially from Theorem 2 and the fact that ΘI(Γk, r) ⊆ ΘI(Γ, r).

E Results Related to the Entropy Based Approach

In the following, I need some extra notation. Let Θ̃µ be the set of all θ which satis�es (32).

For any probability measure G, let L1(G) denotes the set of all Borel measurable functions

which are integrable with respect to G.

E.1 Θ′I,µ is µ-dependent

In the following, I provide a simple example which illustrates Condition (iv) in De�nition 4

is in fact necessary for Schennach (2014)'s identi�cation result. This example also illustrates

that Θ′I,µ could depend on user speci�ed dominating measure µ.

Suppose both U and Z are scalars in R. Let Γ(z; θ) := [z−1, z+1], r(u, z; θ) := 1(z = u)−θ
and FZ equals standard normal distribution. It's easy to see ΘI = Θ′I = [0, 1].

In this example, one can construct the following dominating measure µ. For each θ, µθ's

marginal distribution for Z equals FZ . Conditional on each z, µθ's conditional distribution

for U equals the uniform distribution on interval [z − 1, z + 1]. By construction, µθ remains

the same for all θ. With such µ, one can show Θ′I,µ = Θ̃µ = {0}. Recall Θ̃µ is the set of θ

which satis�es (32).

Alternatively, we can construct another dominating measure µ′ as follows. For each θ,

the marginal distribution of µ′θ for Z equals FZ . Moreover, conditional on each z, let the
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conditional distribution of µ′θ for U equal the Dirac measure δz de�ned as

∀A ∈ BU , δz(A) = 1(z ∈ A).

where BU is the set of all Borel sets in U . By construction, µ′θ remains the same for all θ.

With such µ′, one can show Θ′I,µ′ = Θ̃µ′ = {1}.
Finally, if we construct dominating measure µ′′ as µ′′θ := 0.5µθ + 0.5µ′θ, then Θ′I,µ′′ =

Θ̃µ′′ = [0, 1].

E.2 Proof of Theorem 5

To prove Theorem 5, I need to introduce another de�nition. Let H and G be two probabil-

ity measures. The relative entropy D(H‖G) between probability H and G, also known as

Kullback-Leibler divergence, is de�ned as

D(H‖G) =

{ ∫
h log(h) dG if H � G

+∞ if H 6� G

where h is H's Radon�Nikodym derivative with respect to G.

De�nition 7. Given any dominating measure µθ which satis�es Assumption S and any ε > 0,

de�ne Θε
KL,µ as the set of all θ ∈ Θ such that there exists a probability measure H of (U,Z)

which satis�es

(i) PH [(U,Z) ∈ Γ(θ)) = 1,

(ii) ‖EHr(U,Z; θ)‖ ≤ ε,

(iii) H's marginal distribution for Z equals FZ ,

(iv) D(H‖µθ) <∞.

Moreover, de�ne Θ′KL,µ :=
⋂
ε>0 Θε

KL,µ.

Condition (iv) in De�nition 7 might look slightly stronger than Condition (iv) in De�nition

4, but Θ′KL,µ and Θ′I,µ are in fact the same according to the following lemma.

Lemma E.1. Suppose Condition C1-C2 holds for each θ ∈ Θ. Then, for any dominating

measure µ which satis�es Assumption S, Θ′KL,µ = Θ′I,µ.

Proof. Since D(H‖µθ) < ∞ implies H � µθ, we know Θ′KL,µ ⊆ Θ′I,µ. Therefore, we only

need to show that Θ′I,µ ⊆ Θ′KL,µ.

For any ε > 0 and any θ ∈ Θε
I,µ, let H be a probability measure which satis�es Conditions

(i)-(iv) in De�nition 4. Let h be H's Radon�Nikodym derivative with respect to G. For any
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k > 0, de�ne h̃k(u, z) as

h̃k(u, z) :=

{
h(u, z) if h(u, z) ≤ k
0 if h(u, z) > k

and hk(u, z) as hk(u, z) := h̃k(u, z) + (Eµθ [h(U,Z)|Z = z] − Eµθ [h̃k(U,Z)|Z = z]). Let Hk

be the measure whose density with respect to µθ is hk. Then, Hk satis�es Condition (i), (iii)

and (iv) by construction. By the monotone convergence theorem, Eµθ [h̃k(U,Z)|Z = z] →
Eµθ [h(U,Z)|Z = z] almost surely as k → ∞, which implies that hk → h almost surely.

Moreover, since hk ≤ h+ 1, the dominated convergence theorem implies that as k →∞,

‖EHr(U,Z; θ)− EHkr(U,Z; θ)‖ → 0.

Therefore, there exists a large enough K such that for any k ≥ K,

‖EHkr(U,Z; θ)‖ ≤ 2ε.

This implies that for any ε > 0, Θε
I,µ ⊆ Θ2ε

KL,µ. Hence, Θ′I,µ ⊆ Θ′KL,µ.

Proof of Theorem 5. Recall Θ̃µ := {θ ∈ Θ : (32) is satisifed}. By Lemma E.1, we only need

to prove that Θ′KL,µ = Θ̃µ.

First of all, we show Θ̃µ ⊆ Θ′KL,µ. Fix an arbitrary θ in Θ̃µ. For any ε > 0, there exists

some λ ∈ Rdr such that ∥∥EHλ,θr(U,Z; θ)
∥∥ ≤ ε

which implies Hλ,θ satis�es Condition (ii) in De�nition 7. Moreover, by construction, Hλ,θ

satis�es Condition (i) and (iii) in De�nition 7. Finally, note

D(Hλ,θ‖µθ)

=

∫
log(hλ,θ) dHλ,θ

=

∫
λ′r dHλ,θ −

∫
log
(
Eµθ [exp(λ′r(U, z; θ))|Z = z]

)
dHλ,θ

= λ′EHλ,θ [r(U,Z; θ)]−
∫

log
(
Eµθ [exp(λ′r(U, z; θ))|Z = z]

)
dFZ

where hλ,θ is the density of Hλ,θ with respect to µθ, and the last equality follows from Hλ,θ

satisfying Condition (iii) in De�nition 7. Since dominating measure µ satis�es Assumption S,∫
log
(
Eµθ [exp(λ′r(U, z; θ))|Z = z]

)
dFZ

is �nite. This result together with the fact that
∥∥EHλ,θ [r(U,Z; θ)]

∥∥ ≤ ε, we know D(Hλ,θ‖µθ)
must be �nite. Hence, Condition (iv) in De�nition 7 is also satis�ed. Therefore, θ ∈ Θ′KL,µ.
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Since θ is an arbitrary element in Θ̃µ, we conclude Θ̃µ ⊆ Θ′KL,µ.

Next, we show Θ′KL,µ ⊆ Θ̃µ. Recall that L1(µθ) stands for the set of all measurable

functions de�ned on U × Z which is integrable with respect to µθ. De�ne M to be the set

of all functions h ∈ L1(µθ) such that (i) h(u, z) ≥ 0 for µθ almost every (u, z); (ii) for any

q ∈ L1(FZ), Eµθ [q(Z)h(U,Z) − q(Z)] = 0. By construction, for any probability distribution

H with H � µθ, H satis�es Condition (i) and (iii) in De�nition 7 if and only if H's density

with respect to µθ belongs toM.

Recall function r maps U × Z to Rdr, and we can write r as

r(u, z) = (r1(u, z), ..., rdr(u, z)).

For each i = 1, ..., dr, let Ri be the nonnegative �nite measure whose density with respect to

µθ equals |ri|. Let L := L1(µθ) × L1(R1) × · · · × L1(Rdr) and de�ne mapping A : L 7→ Rdr

where, for any (h, h̃1, ..., h̃dr) ∈ L,

A(h, h̃1, ..., h̃dr) :=

(∫
r1h̃1 dµθ, · · · ,

∫
rdrh̃dr dµθ

)
∈ Rdr. (70)

Note, for each i,
∫
rih̃i dµθ is well de�ned and �nite for any h̃i ∈ L1(Ri). It's easy to see

A is linear and continuous. By construction, for any probability H absolutely continuous

with respect to µθ, H satis�es Condition (ii) in De�nition 7 if and only if its density h ∈
L1(µθ) ∩ L1(R1) ∩ · · · ∩ L1(Rdr) and ‖A(h, h, ..., h)‖ ≤ ε.

De�ne function f : L 7→ R ∪ {+∞} as

f(h, h̃1, ..., h̃dr) :=

{
Eµθh log(h) if h ∈M and ∀i = 1, ..., dr, h = h̃i, a.s

+∞ if otherwise
(71)

And, for any ε > 0, de�ne gε : Rdr 7→ R ∪ {+∞} as

gε(λ) :=

{
0 if ‖λ‖ ≤ ε
+∞ if ‖λ‖ > ε

(72)

By the construction of f and gε, for any θ ∈ Θ′KL,µ and any ε > 0,

inf
{
f(h, h̃1, ..., h̃dr) + gε

(
A(h, h̃1, ..., h̃dr)

)
: (h, h̃1, ..., h̃dr) ∈ L

}
< +∞. (73)

We are going to study the Fenchel duality of the in�mum in (73). For any (h, h̃1, ..., h̃dr) ∈
L, de�ne its norm as ‖h‖1 +

∑dr
i=1 ‖h̃i‖1 where ‖h‖1 is h's L1 norm in L1(µθ) and ‖h̃i‖1 is

h̃i's L1 norm in L1(Ri). Under this norm, L is a Banach space. Also, it's easy to see

that gε is continuous on {λ ∈ Rdr : ‖λ‖ < ε}. Moreover, for any θ ∈ Θ′KL,µ, we know

A( dom f) ∩ {b ∈ Rdr : ‖b‖ < ε} is nonempty. By Fenchel's duality theorem, (see, for
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example, Theorem 4.4.3 in Borwein and Zhu (2005)), we know the in�mum in (73) equals

sup
{
− f∗(A∗λ)− g∗(−λ) : λ ∈ Rdr

}
(74)

where A∗ stands for the adjoint of A, and f∗ and g∗ are the convex conjugate of f and g

respectively. Moreover, Fenchel's duality theorem also implies the supremum in (74) can be

achieved by some λ∗ ∈ Rdr when θ ∈ Θ′KL,µ.

By Lemma E.2 stated and proved below,

sup
{
− f∗(A∗λ)− g∗ε (−λ) : λ ∈ Rdr

}
= − inf

λ∈Rdr
φε(λ)

where

φε(λ) :=

∫
log
(
Eµθ [exp(λ′r(U, z; θ))|Z = z]

)
dFZ + ε ‖λ‖ .

Lemma E.2 also implies function φε is a convex function. In addition, λ
∗ achieves the in�mum

inf φε(λ) when θ ∈ Θ′KL,µ.

Fix any θ ∈ Θ′KL,µ Since µ satis�es Assumption S, the domain of φε equals Rdr so that its
subgradient exists at any λ ∈ Rdr. Let ∂φ(λ∗) be the subgradient of φ at λ∗. By Condition

(ii) in Assumption S, we know

∂φ(λ∗) = EHλ∗,θr + ε · ∂(‖λ∗‖)

where ∂(‖λ∗‖) is the subgradient of ‖λ‖ at λ∗. Since λ∗ minimizes φ(λ), we know

0 ∈ ∂φε(λ∗)

which is equivalent to

−EHλ∗,θr ∈ ε · ∂(‖λ∗‖).

Since for any γ ∈ ∂(‖λ∗‖), we have ‖γ‖ ≤ 1. Therefore,∥∥∥EHλ∗,θr∥∥∥ ≤ ε.
Since ε can be any positive number, this implies, θ ∈ Θ̃µ. Since the above result holds for

any θ ∈ Θ′KL,µ, we conclude Θ′KL,µ ⊆ Θ̃µ.

Lemma E.2. Assume all conditions in Theorem 5 hold. Let A, f and gε be de�ned as in

equation (70), (71) and (72) respectively. Let A∗, f∗ and g∗ε be the adjoint of A, convex

conjugate of f and gε respectively. Then, for any λ ∈ Rdr,

f∗(A∗λ) =

∫
log
(
Eµθ [exp(λ′r(U, z; θ))|Z = z]

)
dFZ

g∗ε (−λ) = ε ‖λ‖
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Proof. By de�nition of f∗(A∗λ), we know,

f∗(A∗λ) = sup

{∫ ( dr∑
i=1

λirih̃i

)
dµθ − f(h, h̃1, ..., h̃dr) : (h, h̃1, ..., h̃dr) ∈ L

}

= sup

{∫ ( dr∑
i=1

λirih
)

dµθ −
∫
h log(h) dµθ : h ∈M∩L1(R1) ∩ · · · ∩ L1(Rdr)

}

where the second equality comes from the de�nition of f . Let hλ,θ be as de�ned in (33).

Then, by the fact that µ satis�es Assumption S and by the construction of hλ,θ, we know

hλ,θ ∈M∩L1(R1) ∩ · · · ∩ L1(Rdr), so that

f∗(A∗λ) ≥
∫ ( dr∑

i=1

λirihλ,θ

)
dµθ −

∫
hλ,θ log(hλ,θ) dµθ

=

∫
log
(
Eµθ [exp(λ′r(U, z; θ))|Z = z]

)
dFZ (75)

where the last equality can be derived after substituting hλ,θ with the formula in (33). We're

going to show the reverse of the above inequality also holds.

De�ne L̃ := L1(µ) ∩ L1(R1) ∩ · · · ∩ L1(Rdr). Note that

f∗(A∗λ)

= sup

{∫ ( dr∑
i=1

λirih
)

dµθ −
∫
h log(h) dµθ : h ∈M∩L1(R1) ∩ · · · ∩ L1(Rdr)

}

= sup
h∈L̃, h≥0

∫
{(u,z):u∈Γ(z;θ)}

( dr∑
i=1

λiri − log(h)
)
h dµθ

s.t. ∀ϕ ∈ L1(FZ),

∫
1(u ∈ Γ(z; θ))ϕh dµθ =

∫
ϕ dFZ

= sup
h∈L̃, h≥0

inf
ϕ∈L1(FZ)

∫
{(u,z):u∈Γ(z;θ)}

( dr∑
i=1

λiri − log(h) + ϕ
)
h dµθ −

∫
ϕ dµθ

≤ inf
ϕ∈L1(FZ)

sup
h∈L̃, h≥0

∫
{(u,z):u∈Γ(z;θ)}

( dr∑
i=1

λiri − log(h) + ϕ
)
h dµθ −

∫
ϕ dµθ

≤ inf
ϕ∈L1(FZ)

∫
{(u,z):u∈Γ(z;θ)}

[
sup

h∈R, h≥0

( dr∑
i=1

λiri − log(h) + ϕ
)
h

]
dµθ −

∫
ϕ dµθ

Also, note that

sup
h∈R, h≥0

( dr∑
i=1

λiri(u, z; θ)− log(h) + ϕ(z)
)
h = exp(λ′r(u, z; θ) + ϕ(z)− 1)
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Hence,

f∗(A∗λ) ≤ inf
ϕ∈L1(FZ)

∫ [
exp(λ′r(u, z; θ) + ϕ(z)− 1)− ϕ(z)

]
dµθ

= inf
ϕ∈L1(FZ)

∫ [
exp(ϕ(z)− 1) · Eµθ

[
exp(λ′r(U, z; θ))|Z = z

]
− ϕ(z)

]
dFZ

Let ϕ̃(z) := 1− log(Eµθ [exp(λ′r(U, z; θ))|Z = z]). Then, it's easy to show for FZ almost all z,

ϕ̃(z) = arg min
ϕ∈R

[
exp(ϕ− 1) · Eµθ

[
exp(λ′r(U, z; θ))|Z = z

]
− ϕ

]
. (76)

Also, since µ satis�es Assumption S, we know ϕ̃ ∈ L1(FZ). Hence,

∫ [
exp(ϕ̃(z)− 1) · Eµθ

[
exp(λ′r(U, z; θ))|Z = z

]
− ϕ̃(z)

]
dFZ

≥ inf
ϕ∈L1(FZ)

∫ [
exp(ϕ(z)− 1) · Eµθ

[
exp(λ′r(U, z; θ))|Z = z

]
− ϕ(z)

]
dFZ

≥
∫

inf
ϕ∈R

[
exp(ϕ− 1) · Eµθ

[
exp(λ′r(U, z; θ))|Z = z

]
− ϕ

]
dFZ

≥
∫ [

exp(ϕ̃(z)− 1) · Eµθ
[
exp(λ′r(U, z; θ))|Z = z

]
− ϕ̃(z)

]
dFZ

where the �rst inequality comes from the fact that ϕ̃ ∈ L1(FZ) and the last inequality comes

from (76). Therefore,

f∗(A∗λ) ≤
∫ [

exp(ϕ̃(z)− 1) · Eµθ
[
exp(λ′r(U, z; θ))|Z = z

]
− ϕ̃(z)

]
dFZ

=

∫
log
(
Eµθ [exp(λ′r(U, z; θ))|Z = z]

)
dFZ

Combine the above result with (75), we conclude

f∗(A∗λ) =

∫
log
(
Eµθ [exp(λ′r(U, z; θ))|Z = z]

)
dFZ .

Finally, it's easy to see that

g∗ε (−λ) = sup
γ∈Rdr

−γ′λ− gε(γ)

= sup
γ∈Rdr,‖γ‖≤ε

−γ′λ

= ε ‖λ‖
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This completes the proof.

F Proof of Corollary 2

Let r = (r1, r2), and let Γ̃ be de�ned as in (60) and r̃ be de�ned as in (59). Corollary 2 is an

immediate result of the following three lemmas.

Lemma F.1. Suppose all θ ∈ Θ satis�es Conditions C1 and C2 for (Γ, r). Then, all θ ∈ Θ

satis�es Conditions C1 and C2 for model (Γ̃, r̃).

Lemma F.2. Suppose all θ ∈ Θ satis�es Conditions C1 and C2 for (Γ, r). Then, (61) is

equivalent to

∀λ ∈ Sdr1+dr2 , E

[
sup

ũ∈Γ̃(Z;θ)

λ′r̃(ũ, Z; θ)

]
≥ 0. (77)

Lemma F.3. Suppose all θ ∈ Θ satis�es Conditions C1-C4 for (Γ, r). Then, θ ∈ ΘI(Γ̃, r̃) if

and only if (77) holds.

Proof of Corollary 2. I �rst prove the �rst part of the theorem. Suppose all θ ∈ Θ satis�es

Conditions C1 and C2 for (Γ, r). Then, by Lemma F.1, F.2 and Theorem 1, any θ in the

identi�ed set must satis�es (61).

Next, I prove the second part of the theorem. Suppose all θ ∈ Θ satis�es Conditions

C1-C4 for model (Γ, r). Then, by Lemma F.2, F.3 and Theorem 2, we know that θ is in the

identi�ed set if and only if θ satisfy (61).

Proof of Lemma F.1. The proof of Lemma F.1 is straightforward, as long as one notes that

‖r̃(ũ, z; θ)‖ ≤ ‖r(u, z; θ)‖+ ‖v‖

so that

inf{‖r̃(ũ, z; θ)‖ : ũ ∈ Γ̃(z; θ)} ≤ inf{‖r(u, z; θ)‖ : u ∈ Γ(z; θ)}.

Proof of Lemma F.2. First, V ≥ 0 implies that for any λ ∈ Sdr1,dr2 ,

E

[
sup

u∈Γ(Z;θ)
λ′1r1(u, Z; θ) + λ′2r2(u, Z; θ)

]
= E

[
sup

ũ∈Γ̃(Z;θ)

λ′r̃(ũ, Z; θ)

]
.

Second, note that for any λ ∈ Sdr1+dr2\Sdr1,dr2 and almost every Z,

sup
ũ∈Γ̃(Z;θ)

λ′r̃(ũ, Z; θ) = +∞.
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Hence, for any λ ∈ Sdr1+dr2\Sdr1,dr2 , we have

E

[
sup

ũ∈Γ̃(Z;θ)

λ′r̃(ũ, Z; θ)

]
= +∞.

This implies that (61) are equivalent to (77).

Proof of Lemma F.3. I prove this lemma by applying Corollary 1. Suppose all θ ∈ Θ satis�es

Conditions C1-C4 for (Γ, r). De�ne Θ̃(Γ̃, r̃) to be the set of θ which satisfy (77). Given

Lemma F.1 and Theorem 1, I only need to show Θ̃(Γ̃, r̃) ⊆ ΘI(Γ̃, r̃).

Fix any θ ∈ Θ̃(Γ̃, r̃). For any k ≥ 0, de�ne Γ̃k(θ) = Γ̃(θ) ∩ {(ũ, v) : ‖v‖ ≤ k}. Since

Conditions C1-C4 hold for (Γ, r), (Γ̃k, r̃) is a sequence of regularized models. Note that, for

any λ ∈ Sdr1,dr2 , we have

E

[
sup

ũ∈Γ̃(Z;θ)

λ′r̃(ũ, Z; θ)

]
= E

[
sup

ũ∈Γ̃k(Z;θ)

λ′r̃(ũ, Z; θ)

]
.

For any λ2, de�ne λ
+
2 and λ−2 by λ+

2,j = max(0, λ2,j) and λ
−
2,j = max(0,−λ2,j), for any

j = 1, ..., dr2. Then, for any λ = (λ1, λ2) ∈ Sdr1+dr2\Sdr1,dr2 , we have

E

[
sup

ũ∈Γ̃k(Z;θ)

λ′r̃(ũ, Z; θ)

]

= E

[
sup

u∈Γ(Z;θ)
λ′1r1(u, Z; θ) + λ′2r2(u, Z; θ)

]
+
∥∥λ−2 ∥∥ k

≥ E

[
sup

u∈Γ(Z;θ)
λ′1r1(u, Z; θ) + λ+′

2 r2(u, Z; θ)

]
−
∥∥λ−2 ∥∥ · E

[
sup

u∈Γ(Z;θ)
‖r2(u, Z; θ)‖

]
+
∥∥λ−2 ∥∥ k.

Note also that, by Condition C4, there exists some integrable function g(z; θ) such that

g(z; θ) ≥ sup{‖r2(u, z; θ)‖ : u ∈ Γ(z; θ)}. Therefore, for any λ = (λ1, λ2) ∈ Sdr1+dr2\Sdr1,dr2 ,
we have

E

[
sup

ũ∈Γ̃k(Z;θ)

λ′r̃(ũ, Z; θ)

]
≥ E

[
sup

u∈Γ(Z;θ)
[λ′1r1(u, Z; θ) + λ+′

2 r2(u, Z; θ)]

]
+
∥∥λ−2 ∥∥ (k−E[g(Z; θ)]).

Since θ ∈ Θ̃(Γ̃, r̃), we know

E

[
sup

u∈Γ(Z;θ)
[λ′1r1(u, Z; θ) + λ+′

2 r2(u, Z; θ)]

]
≥ 0.
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Therefore, for any k ≥ E[g(Z; θ)] and any λ ∈ Sdr1+dr2\Sdr1,dr2 , we have

E

[
sup

ũ∈Γ̃k(Z;θ)

λ′r̃(ũ, Z; θ)

]
≥ 0.

By Corollary 1, this implies θ ∈ ΘI(Γ̃, r̃). This completes the proof.

G Support Vector Machine and Boundaries of Con-

�dence Set

In this section, I describe the way I used to �nd the boundaries of the con�dence region of

parameters, when the con�dence region is constructed by inverting a test. Although I was

not aware of it at the time, the method I used is similar to that proposed by Bar and Molinari

(2018).

Let t : Θ ∈ {0, 1} be a test function. For any θ ∈ Θ, t(θ) = 0 if this θ is rejected by the

test, and t(θ) = 1 otherwise. Let γ be some known vector which has the same dimension as

θ. Consider the following optimization problem,

κ(γ) = sup γ′θ

s.t. t(θ) = 1.

For example, when γ = (1, 0, · · · , 0), κ(γ) solves the upper bound of the con�dence interval

of the �rst element of θ.

To compute κ(γ), I use the following algorithm. Let q be some some prespeci�ed value

between (0, 1) and M be some large integer.

Step 1 Find some parameter θ1 such that t(θ1) = 1, and �nd some parameter θ2 such that

t(θ2) = 0.

Step 2 Randomly draw M − 2 parameters, θ3, ..., θM , inside Θ.

Step 3 Let ΞM = {(θm, t(θm)) : m = 1, 2, ...,M}. Take ΞM as input and train a support vector

machine whose prediction for θ is t̃M (θ).

Step 4 With probability q, �nd κ̃M = sup{γ′θ : t̃M (θ) = 1} and let θ̃M+1 be the parameter

which achieves κ̃M , i.e. κ̃M = γ′θ̃M+1 and t̃M (θ̃M+1) = 1. With probability 1− q, draw
θ̃M+1 randomly from the parameter space Θ.

Step 5 Compute t(θ̃M+1).

Step 6 Let ΞM+1 = ΞM ∪ {(θ̃M , t(θ̃M ))}. Repeat Steps 3, 4 and 5 with ΞM replaced by ΞM+1

and M = M + 1. Stop when M > M .

Step 7 Then, κ(γ) can be approximated by max{γ′θ : (t(θ), θ) ∈ ΞM and t(θ) = 1}.
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H Details in Examples 1-3

H.1 Example 1: Simulation Design

The result reported in Table 1 is based on a simulated sample constructed as follows:

(a) DM report the con�dence interval for parameters (α0, α1) and σ in the Table 2 of their

paper. Based on the odds-based and revealed-preference based moment inequalities,

they report that the con�dence intervals for α0, α1 and σ in the chemical industry are

[62.8, 81.1], [142.5, 194.2] and [85.1, 115.9] respectively. In the simulation, I set α0, α1

and σ to be the middle point of their reported con�dence intervals.

(b) The distribution of ν is the normal distribution N(0, σ2
ν), where σν = 0.5σ.

(c) The distribution of Es[X|I] is the Fréchet distribution whose c.d.f. F (x) = exp(−Tx−γ).

I set γ = 4 and calibrate the value of T so that the resulting export probability matches

that of the Chilean chemical industry in the Year 2000, as reported in Table 1 of DM.

(d) By the de�nition of ν, I set X = Es[X|I]− ν.

(e) The distribution of dist is drawn from the uniform distribution between d and d. The

d is set to be the geographic distance between Chile and Brazil, and the d is set to be

the geographic distance between Chile and Japan. Based on the CEPII database, I set

d = 1, 128km and d = 17, 247km.

(f) Es[X|I], ν, ε and dist are mutually independent.

(g) For any τ ∈ [0, 1], de�ne q1(τ) and q2(τ) to be the τ -quantiles of dist and Es[X|I]

respectively. Let M = 10. For any m = 0, 1, ...,M − 1, de�ne δ1,m = 1(dist ∈
[q1(m/M), q1((m + 1)/M)] and δ2,m = 1(Es[X|I] ∈ [q2(m/M), q2((m + 1)/M)]). I

construct the instrument W = (δ1,m · δ2,m′ : m,m′ = 0, 1, ...,M − 1). The total number

of instruments is M2.

(h) The sample size is set to 58,520, which is the same as that in DM.

H.2 Example 2: Solving ΘN
I in Table 3

In this section, I suppress the m subscript to ease the notation. ΘN
I is de�ned to be the set

of all (∆1,∆2) ∈ R2 such that there exits a covariance matrix Σ which satis�es the following

(in)equalities for each x ∈ X ,

p(0, 0, x) = PΣ(xi + Ui ≤ 0,∀i) (78)

p(1, 1, x) = PΣ(xi −∆i + Ui ≥ 0, ∀i) (79)

p(1, 0, x) ≤ PΣ(x1 −∆1 + U1 ≥ 0, X2 + U2 ≤ 0) (80)

p(0, 1, x) ≤ PΣ(x2 −∆2 + U2 ≥ 0, X1 + U1 ≤ 0) (81)
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where p(y1, y2, x) denotes P(Y = (y1, y2)|X) in DGP, and PΣ denotes the probability with

respect to normal distribution N(0,Σ) of U .

Generally speaking, �nding all solution of nonlinear (in)equalities (78)-(81) is nontrivial

in practice. Hence, special e�ort is needed to ensure the numerical robustness of the result of

ΘN
I in Table 3.

Let σi be the standard error of Ui, and ρ be the correlation between U1 and U2. Then,

Σ :=

[
σ2

1 σ1σ2ρ

σ1σ2ρ σ2
2

]

I state the following lemma, whose proof is straightforward.

Lemma H.1.

(i) When x = (0, 0), PΣ(xi + Ui ≤ 0,∀i) only depends on ρ and is strictly increasing in ρ.

(ii) When x = (x1, 0) with x1 6= 0, PΣ(xi + Ui ≤ 0, ∀i) only depends on ρ and σ1 and is

strictly increasing in σ1 given each ρ.

(iii) When x = (0, x2) with x2 6= 0, PΣ(xi + Ui ≤ 0,∀i) only depends on ρ and σ2 and is

strictly increasing in σ2 given each ρ.

(iv) Given x, Σ and ∆1 (or ∆2), PΣ(xi −∆i + Ui ≥ 0,∀i) is strictly decreasing in ∆2 (or

∆1). Moreover, if both (∆1,∆2) and (∆′1,∆
′
2) solve equation (79) given x and Σ, then

∆1 < ∆′1 if and only if ∆2 > ∆′2.

Based on the �rst three results in Lemma H.1, we know, for each k and m, if equation (78)

admits covariance matrix Σ as a solution, such solution is unique and can be found easily.

Suppose such covariance matrix Σ is found. For our purpose, we need an algorithm whose

result Θ̃N
I has the following property:

(1) Θ̃N
I is empty if and only if ΘN

I is empty.

(2) Θ̃N
I is singleton if and only if ΘN

I is singleton. In this case, Θ̃N
I = ΘN

I .

Given Σ, by the last result in Lemma H.1, equation (79) de�nes an implicit function

∆1(∆2, x,Σ) and ∆2(∆1, x,Σ) for each x as long as equation (79) admits a solution. Moreover,

such function ∆1(∆2, x,Σ) (or, ∆2(∆1, x,Σ) ) is strictly decreasing in ∆2 (or, ∆1). This

suggests the following iterative algorithm.

Algorithm H.1. Suppose we have initial bounds {(∆(0)
i ,∆

(0)
i ) : i = 1, 2} such that

ΘN
I ⊆ ×2

i=1[∆
(0)
i ,∆

(0)
i ] := {∆ : ∆

(0)
i ≤ ∆i ≤ ∆

(0)
i ,∀i}.

Return Θ̃N
I = ∅, if equations (78) doesn't have a solution. If there is a solution, denote it Σ

and conduct the following iterative steps.
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In Step j, update bounds {(∆(j)
i ,∆

(j)
i ) : i = 1, 2} as follows,

∆
(j)
1 = min

{
∆

(j−1)
1 , inf

x∈X
∆1(∆

(j−1)
2 , x,Σ)

}
∆

(j)
2 = min

{
∆

(j−1)
2 , inf

x∈X
∆2(∆

(j−1)
1 , x,Σ)

}
∆

(j)
1 = max

{
∆

(j−1)
1 , sup

x∈X
∆1(∆

(j)
2 , x,Σ)

}
∆

(j)
2 = max

{
∆

(j−1)
2 , sup

x∈X
∆2(∆

(j)
1 , x,Σ)

}
.

If ∆
(j)
i > ∆

(j)
i for some i, then return Θ̃N

I = ∅; If ∆
(j)
i = ∆

(j−1)
i and ∆

(j)
i = ∆

(j−1)
i for all i,

then return Θ̃N
I = ×2

i=1[∆
(j)
i ,∆

(j)
i ]; Otherwise, repeat step with j + 1.

When calculating results in Table 3, I �rst solve ΘN
I using grid search. Then, use the

bounds in ΘN
I as the initial bounds for Algorithm H.1. By Lemma H.1, the Θ̃N

I generated by

Algorithm H.1 satis�es Conditions (1) and (2).

H.3 Example 3: Derivation of Moment Restriction (7)

Given all the assumptions in Example 3, and for any two subsets J1 and J2 of J , moment

inequalities in (7) hold trivially if J1 is not included in Aist(θ) or J2 is not included in Bist(θ).
Now, suppose J1 ⊆ Aist(θ) and J2 ⊆ Bist(θ). Then, we have

E
[
1

(
max
j∈J1

Uijs ≥ max
j∈J2

Uijs

) ∣∣∣νi, Xi

]
= E

[
1

(
max
j∈J1

π(X ′ijsθ, νij , εijs) ≥ max
j∈J2

π(X ′ijsθ, νij , εijs)

) ∣∣∣νi, Xi

]
= E

[
1

(
max
j∈J1

π(X ′ijsθ, νij , εijt) ≥ max
j∈J2

π(X ′ijsθ, νij , εijt)

) ∣∣∣νi, Xi

]
≥ E

[
1

(
max
j∈J1

π(X ′ijtθ, νij , εijt) ≥ max
j∈J2

π(X ′ijtθ, νij , εijt)

) ∣∣∣νi, Xi

]
= E

[
1

(
max
j∈J1

Uijt ≥ max
j∈J2

Uijt

) ∣∣∣νi, Xi

]
where the �rst equality follows from the de�nition of Uijs, and the second equality follows

from the assumption that the distribution of εit conditional on (Ai, Xi) does not depend

on t. And, the next inequality comes from the fact that J1 ⊆ Aist(θ) and J2 ⊆ Bist(θ), the
de�nition of Aist(θ) and Bist(θ) and the assumption that π is weakly increasing in its �rst

argument. Finally, the last equality follows form the de�nition of Uijt. The law of iterated

expectation then implies (7).
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H.4 Example 3: Establishing the Equivalence between (63) and

(64) when T = 2

First, I show (64) implies (63) when T = 2. Fix any θ ∈ Θ. Since T = 2, it is without loss

of generality to let s = 1 and t = 2. Conditional on a value xi of Xi, let A = Aist(θ) and

B = Bist(θ). For any zi = (yi, xi), de�ne u
′
ijs(zi) by

u′ijs(zi) =


1 if j = yis,

0 if j 6= yis and j ∈ A,
−1 otherwise.

De�ne u′ijt by

u′ijt(zi) =


1 if j = yit,

0 if j 6= yit and j ∈ B,
−1 otherwise.

Let u′i(zi) = (u′ijs(zi), u
′
ijt(zi) : j ∈ J ). Then, by construction, (u′i(zi), zi) ∈ Γ(θ), or equiva-

lently, u′i(zi) ∈ Γ(zi; θ). Hence, for any zi and any λ ∈ S+
dr,

sup
ui∈Γ(zi;θ)

λ′r(ui, zi; θ) ≥ λ′r(u′i(zi), zi; θ).

Therefore,

∀λ ∈ S+
dr, E[λ′r(u′i(Zi), Zi; θ)|Xi = xi] ≥ 0 (82)

implies (63). As a result, I only need to show (64) implies (82). To prove this, let λst(J1,J2)

be the corresponding Lagrange multiplier for moment restriction in (62) for any nonempty

subset J1 of A and any nonempty subset J2 of B. Then,

λ′r(u′i(zi), zi; θ)

=
∑
J1,J2

λst(J1,J2)

[
1

(
max
j∈J1

u′ijs(zi) ≥ max
j∈J2

u′ijs(zi)

)
− 1

(
max
j∈J1

u′ijt(zi) ≥ max
j∈J2

u′ijt(zi)

)]
,

where J1 and J2 in the summation ranges over all the nonempty set of A and B respectively.

By the construction of u′i(zi), we have

1

(
max
j∈J1

u′ijs(zi) ≥ max
j∈J2

u′ijs(zi)

)
= 1− 1(yis ∈ J2\J1)

1

(
max
j∈J1

u′ijt(zi) ≥ max
j∈J2

u′ijt(zi)

)
= 1(yit ∈ J1)
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Therefore, (82) is equivalent to that for any nonempty subset J1 of A and any nonempty

subset J2 of B,
E[1− 1(Yis ∈ J2\J1)− 1(Yit ∈ J1)|Xi = xi] ≥ 0. (83)

By the fact that J1 is a subset of A and J2 is a subset of B, we have 1− 1(Yis ∈ J2\J1) ≥
1(Yis ∈ A) and 1(yit ∈ J1) ≤ 1(Yit ∈ A). Therefore, (83) is implied by

E[1(Yis ∈ A)− 1(Yit ∈ A)|Xi = xi] ≥ 0

which proves that (64) implies (82), hence, (63).

Next, I show that (63) implies (64). By Theorem 2, (63) is equivalent to (62). Let

J1 = Aist and J2 = Bist. Then, (62) implies

E
[
1

(
max
j∈Aist

Uijs ≥ max
j∈Bist

Uijs

)
− 1

(
max
j∈Aist

Uijt ≥ max
j∈Bist

Uijt

) ∣∣∣Xi = xi

]
≥ 0.

One can then verify that

1

(
max
j∈Aist

Uijs ≥ max
j∈Bist

Uijs

)
= 1(Yis ∈ Aist)

1

(
max
j∈Aist

Uijt ≥ max
j∈Bist

Uijt

)
= 1(Yit ∈ Aist).

Hence, (63) implies (64).
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