Redeemable Platform Currencies

Kenneth Rogoff and Yang You *

September 6, 2019

Abstract

Can massive online retailers such as Amazon and Alibaba issue digital tokens that potentially compete with bank debit accounts? We explore whether a large platform’s ability to guarantee value and liquidity by issuing prototype digital tokens for in-platform purchases constitutes a significant advantage that could potentially be leveraged into wider use. Our central finding is that unless introducing tradability creates a significant convenience yield, platforms can potentially earn higher revenues by making tokens non-tradable. The analysis suggests that if platforms have any comparative advantage in issuing tradable tokens, it comes from other sources such as increasing returns to information collection.

1 Introduction

As big data blurs the lines between finance and tech firms, and as innovation in transactions technologies continues to disrupt markets, many large platforms are issuing, or considering issuing, their own currencies, most famously Facebook’s planned 2020 launch of

* krogoff@harvard.edu, yangyou@g.harvard.edu. Economics Department, Harvard University. We thank Robin Greenwood, Zoë Hitzig, Kathryn Holston, Shengwu Li, Laura Xiaolei Liu, Xiaosheng Mu, Julien Prat, Andrei Shleifer, Harald Uhlig, Jiaxi Wang, Glen Weyl, David Zhang, and seminar participants at Harvard Business School Finance Lunch, Guanghua Peking University, PBCSF Tsinghua University, University of WisconsinMadison and also the Molly and Dominic Ferrante Fund for research support.
its Libra coin1. One important advantage that some tech firms enjoy is an ability to ensure liquidity and value by guaranteeing that their tokens can be redeemed for within-platform purchases and, over the past few years, a number of digital currencies have appealed to this feature. Nevertheless, at this point, the theory of redeemable platform currencies remains relatively underdeveloped.

Here we present a simple, tractable model of redeemable platform tokens that allows one to explore a number of issues related to their design, features, and supply policy. In principle, such tokens might constitute a prototype currency if they are made tradable (as opposed to non-tradable). However, this does not mean aiming for a prototype currency is necessarily an optimal strategy unless the tokens generate a considerable convenience yield to consumers (compared to bank accounts). We show that maintaining tradability turns out to imply a number of issuance and pricing constraints that can limit a platform’s profits from token issuance. In addition, making tokens tradable limits the ability of a platform to offer richer token price/quantity menus or to incorporate memory features.

To be clear, our stylized framework is partial equilibrium, and takes both the platform’s customer base and their outside banking options as given. Nor is this a paper about pseudonymous crypto-currencies that can potentially be used for money laundering, tax evasion, and other illegal activities; implicitly we are aiming to look beyond the time when regulation sharply circumscribes such uses2. Nor do we explore the case where platform currencies supplant government fiat money as a unit of account; this is possible in theory but perhaps not in practice for well-known reasons, including the ability of the government to make fiat money legal tender, and to have all tax and government supplier payments (including to employees) set in fiat money3.

1Prior to Facebook, there have been many experiments on a smaller scale: for example, Tencent introduced QQ coins for consumers to purchase gaming and non-gaming service provided by Tencent QQ (https://en.wikipedia.org/wiki/Tencent_QQ);

2Regulators may also be concerned about potential vulnerabilities if and when crypto-currencies become more integral to the global financial system, see Budish (2018).

3For examples of the growing recent literature on Bitcoin and the potential for cryptocurrencies to compete with fiat money, see Biais et al (2018), Athey et al (2016), Sockin and Xiong (2018), as well as
Rather, we explore a narrower case where platforms issue redeemable digital tokens that are indexed to fiat currency. From the consumer’s perspective, such tokens may be attractive because they are either offered at a discount (the primary focus of our analysis), pay interest, provide a money-like convenience yield, or some combination of the three. For platforms, the advantages include being able to directly tap low-interest retail consumers, to reduce transactions costs, and potentially to benefit from an array of indirect advantages such as strengthening consumer loyalty; these advantages can in some cases be significant enough to compensate for having to sell the tokens at a discount that our model endogenizes.

In general, in trying to persuade consumers to hold a significant number of tokens (and thereby garner large seigniorage profits), the core dilemma is this: If the only transaction use of the currency is within-platform, then beyond a relatively modest amount, the coins will have to be sold at a discount that is increasing in the number of tokens sold, or alternatively pay a rate of interest that diminishes the platform’s surplus as well as exacerbate fragility issues if the necessary resources need to be held outside the platform’s core business. Perhaps most significantly, whether or not a token pays explicit interest can affect how it is taxed and regulated with significant differences across jurisdictions.

The first part of the paper presents our simple partial equilibrium model of platform tokens and their liquidity. We begin by using the model to explore simple strategies where all tokens are sold for the same price in an initial one-time auction, examining both the case of non-tradable and tradable (“prototype currency”) tokens. A central result is that the non-tradable tokens can be sold at a higher price (for any given quantity) and yield higher profits to the platform. Essentially, the prospect of tradability places constraints on what a platform can charge consumers to hold beyond a minimal amount, even if the platform is prepared to sell at a discount.

platforms use a price menu approach in their initial coin offering, that is, “buy more and save more”. The advantage of a price menu is that the platform can potentially exploit all the potential gains from inter-temporal trade. But again, such an approach only can only work if the token is non-tradable. Indeed, for tradable tokens, introducing a price menu adds nothing to the platform’s options.

We then go to look at the case where in addition to its “ICO” (initial coin offering), the firm commits to make “seasonal coin offerings” (SCO) sufficient to keep the outstanding stock of coins constant, that is replacing tokens that have been redeemed. Such an approach can enhance credibility, since the platform has an incentive to preserve its ongoing revenue stream. We show, however, that the prospect of future token sales again sharply discourages consumers from holding more than a very limited number of tokens, even if the issuer can credibly commit to its issuance policy (supported perhaps by a trigger strategy equilibrium.) Indeed, in this case there is actually no longer any advantage to making the tokens non-tradable.

The remainder of the paper goes on to relax a number of the simplifying assumptions of the core model, incorporating the possibility of runs, introducing non-zero cost to the platform input goods, and allowing for a convenience yield. The most significant extension is to the case of heterogeneous agents. Allowing for heterogeneity creates a number of subtle pricing and issuance questions, for example, should platform token pricing be designed to peel off the most active consumers? However, our main results, on tradability versus non-tradability, and on how appetite for token holdings can be extremely sensitive to future issuance policy, appear to generalize.

The final section concludes.

2 A Simple Model

In this section, we develop a simple model to capture how consumers value a token that is underpinned by future claims on platform consumption.
2.1 Consumer Demand

We assume that one unit of the (perishable) platform commodity costs one dollar (there is no inflation in the fiat currency), and provides one unit of consumption. In any given period \(t \), the consumer demands one unit of the platform commodity with probability \(p \), and zero units with probability \(1 - p \). All infinitely-lived consumers are homogeneous with time discount factor \(\beta \). The fact that \(p < 1 \) captures that the consumer may not need platform consumption every period. The normalization of a single period’s consumption to 1 captures limits to the consumer’s period demand, but can be varied to study platforms that involve large lumpy expenditures; indeed all the main results here will go through\(^4\).

Consumers are risk-neutral and have a utility function that is linear in the consumption of the platform commodity given by

\[
U_t = \sum_{s=t}^{\infty} \beta^{s-t} \theta_s C_s
\]

where \(\theta_s \) is the dummy of platform consumption shock in period \(s \): \(\theta_s = 1 \) with probability \(p \), and \(\theta_s = 0 \) with probability \(1 - p \). \(\theta_s \) is i.i.d.

2.2 Valuing the Marginal Claim

In all that follows, a critical issue is how a consumer values a credit that pays for her \(M^{th} \) unit of platform consumption, which will occur at some future date \(N \geq M \), depending on the exact timing of the consumer’s needs for the platform good. The probability that the consumer will use the \(M^{th} \) token in period \(N \) is given by

\[
X_{N,M} = \binom{N-1}{M-1} p^M (1 - p)^{N-M}
\]

\(^4\)Define \(\Pi \) as the fiat currency price of a platform good. The scale of a platform depends on \(\Pi \). In our analysis, the price of a unit good is normalized to one. But one can envision of a platform with low-frequency consumption (low \(p \)) but a high fiat currency price. One can easily show that all results go through with an arbitrary price of \(\Pi \) for the platform good. That is, platform scale is irrelevant, but only the consumption probability matters.
where \((\frac{N-1}{M-1})\) is the binomial coefficient \(\frac{(N-1)!}{(N-M!(M-1)!)}\). Given consumers’ linear utility function (1), expression (2) gives the value of the marginal claim which is a central input to how much a consumer is willing to pay for tokens.

2.3 Platform Currency and Issuance

We now introduce the possibility that platform can issue a “currency” in the form of non-interest-bearing tokens that can be converted to one unit of the platform commodity in any given period. Of course, given the assumed utility function, the consumer will never need more than one unit of the currency in any given period. Importantly, the consumer is not required to use the platform currency and can always pay one dollar of fiat currency (that is, one dollar). As with the consumer, the platform is risk-neutral.

The platform discounts the future at \(\beta^* < \beta\), to capture that as a large platform, it has better investment opportunities than do small consumers. This wedge is the sole source of gains from inter-temporal trade to justify token issuance in this paper. It immediately follows that in an efficient equilibrium, with no other liquidity, capital constraints or credibility issues, the consumers would purchase the entire present value of future platform consumption in the initial period, with the allocation of the welfare surplus from trade depending on the relative bargaining power of the two parties, for example depending on consumers’ outside options. As noted in the introduction, there may be many other reasons for gains from token issuance, but for the moment, we will focus exclusively on the discount wedge.

One critical issue is the extent to which the platform currency yields a flow of convenience services for transactions inside the platform, and potentially for trade outside, an assumption that is widely used to rationalize demand for currency that pays below the short-term market rate of interest\(^5\). For now, we assume the convenience yield is zero.

\(^5\)Digital currencies clearly can yield substantial convenience: consumers do not need to enter a security code and wait for verification when they pay with Amazon credit. Alipay’s convenience service makes Hangzhou a “cash-free” city, where 80% of people make payments with their smartphones, rather than cash or credit card.
in all transactions and that the token is only used for platform purchases, and does not effectively compete with fiat currency for trade outside the platform. We return to the convenience yield later.

2.4 Assumptions

Before proceeding to study token offerings, we initially make a number of assumptions to simplify the analysis, and later discuss what happens when we relax them.

1. Currency issuance does not affect consumer demand for platform consumption. This abstracts from a number of possible benefits, for example, if currency issuance increases consumer time spent on the platform.

2. Zero production cost. This assumption not only abstracts from the cost of producing platform intermediation services, but also from the cost the platform pays in purchasing commodities to sell to consumers.

3. No platform failure or bankruptcy (otherwise a default premium is built into the currency). Relatedly, if the platform issues tokens, these are assumed senior to any other debt the platform may issue.

4. The platform can make credible commitments to its future token issuance policy and to redeemability.

5. Any token issued by the platform is effectively a “stable coin” whose platform-use value is fixed in terms of fiat money, and we assume no inflation.

6. The platform currency is tradable among consumers only if the platform allows it.

These assumptions can be modified to get more general results. In particular, we later allow for a convenience yield (relax assumption 1), a proportional cost of goods (relax assumption 2), and especially importantly, relax the assumption that the platform can make credible commitments (assumption 4). Other extensions are possible.
3 Introduction of Platform Currency through ICOs and SCOs

We now proceed to study the pricing and issuance strategies for a platform that introduces tokens either through a once and for all “initial coin offering” (ICO)6 or through a combination of an ICO and ongoing “seasonal coin offerings” (SCO). Note that if the platform did not engage in any financial offerings, its value (per consumer) would simply be the expected present value of sales:

\[\frac{\beta^*}{1 - \beta^*p} \] \hspace{1cm} (3)

The first-best is that consumers transfer their entire willingness to pay to the platform in the first period. It is achievable by issuing a life-long membership which enables pay once and enjoy the free service for all time. The first-best discounted revenue:

\[\frac{\beta}{1 - \beta p} \] \hspace{1cm} (4)

The present value of revenue after token issuance is bounded by \[[\frac{\beta^*}{1 - \beta^*p}, \frac{\beta}{1 - \beta p}] \]. We consider a range of issuance policies and compare policies from the standpoint of the issuer.

3.1 Non-tradable Initial Coin Offering

We first consider the case where the tokens issued by the platform are not tradable, and in which the platform announces a fixed (per capita) quantity of tokens that it is going to sell, \(M \). Importantly, in order to sell the full quantity of tokens the platform has put up for sale, all the tokens must be priced at the value of marginal token \(M \), which is the last to be spent. Making use of equation (2), we can solve for7

\begin{align*}
\sum_{k \geq 0} \binom{M - 1 + k}{k} x^k &= \left(\frac{1}{1 - x} \right)^M \\
\text{where } x &= \beta(1 - p)
\end{align*}

6A more precise term would be “initial token offering”, however, we follow industry convention.

7The last equation uses a combinatorial identity where \(x = \beta(1 - p) \).
One may view \(\frac{\beta p}{1 - \beta (1 - p)} \) as the effective discount rate when the platform aims to issue an extra token. To sell an additional token, all tokens sold must depreciate \(\frac{\beta p}{1 - \beta (1 - p)} \) which yields higher surplus for consumers. Note that we have assumed platform sets the issuance quantity \(M \), but it could equivalently set the token price \(P \).

3.2 Optimal issuance

To calculate optimal issuance, it is necessary to take into account both the gross profit the platform gets from the ICO and the present value of foregone sales. As an intermediate step, and to help intuition, it is useful to first calculate the level of currency issuance that would maximize revenue ignoring foregone sales, in which case the platform maximizes

\[
P_{ICO, Non-tradable} = \sum_{N \geq M} \beta^N X_{N,M} = \sum_{N \geq M} \beta^N \left(\frac{N - 1}{M - 1} \right) p^M (1 - p)^{N - M}
\]

\[
= (\beta p)^M \sum_{N \geq M} \beta^{N - M} \left(\frac{N - 1}{M - 1} \right) (1 - p)^{N - M}
\]

\[
= (\beta p)^M \sum_{k \geq 0} \beta^k \left(\frac{M - 1 + k}{k} \right) (1 - p)^k
\]

\[
= \left[\frac{\beta p}{1 - \beta (1 - p)} \right]^M
\]

One may view \(\frac{\beta p}{1 - \beta (1 - p)} \) as the effective discount rate when the platform aims to issue an extra token. To sell an additional token, all tokens sold must depreciate \(\frac{\beta p}{1 - \beta (1 - p)} \) which yields higher surplus for consumers. Note that we have assumed platform sets the issuance quantity \(M \), but it could equivalently set the token price \(P \).

3.2 Optimal issuance

To calculate optimal issuance, it is necessary to take into account both the gross profit the platform gets from the ICO and the present value of foregone sales. As an intermediate step, and to help intuition, it is useful to first calculate the level of currency issuance that would maximize revenue ignoring foregone sales, in which case the platform maximizes

\[
P_{ICO, Non-tradable} \cdot M, \text{ so that the first-order condition is given by.}
\]

\[
\left[\frac{\beta p}{1 - \beta (1 - p)} \right]^M + \ln \left(\frac{\beta p}{1 - \beta (1 - p)} \right) \left[\frac{\beta p}{1 - \beta (1 - p)} \right]^M M = 0
\]

which implies that

\[
M = \frac{1}{\ln \left(\frac{1 - \beta + \beta p}{\beta p} \right)}
\]

which depends positively on both \(\beta \) and \(p \). Notice that the platform’s discount rate \(\beta^* \) does not enter this formula.
Of course, the full maximization problem for the firm involves taking into account that if a consumer purchases \(M \) tokens, then she will use tokens for her first \(M \) purchases instead of paying in fiat currency. Thus the platform’s complete maximization problem is given by

\[
\max_M \left\{ M \left[\frac{\beta p}{1 - \beta (1 - p)} \right]^M - \sum_{i=1}^{M} \left[\frac{\beta^* p}{1 - \beta^*(1 - p)} \right]^i \right\}
\]

Token Revenue

Forgone Cash Revenue

Rewrite the firm’s profit of (non-tradable) token issuance as

\[
\text{Profit} = M \left[\frac{\beta p}{1 - \beta (1 - p)} \right]^M + \left(\frac{\beta^* p}{1 - \beta^*(1 - p)} \right)^M - \frac{\beta^* p}{1 - \beta^*} \tag{6}
\]

The first term in eq.(6) represents the revenue from token issuance, the second term the revenue from fiat money sales after all tokens are used, and the third term represents the value of the firm in the absence of currency issuance. \(M^* \) is a local optimal issuance if

\[
\left[\frac{\beta p}{1 - \beta (1 - p)} \right]^M \geq (M - 1) \left(\left[\frac{\beta p}{1 - \beta (1 - p)} \right]^{M-1} - \left[\frac{\beta p}{1 - \beta (1 - p)} \right]^M \right) + \left[\frac{\beta^* p}{1 - \beta^*(1 - p)} \right]^M \tag{7}
\]

and

\[
\left[\frac{\beta p}{1 - \beta (1 - p)} \right]^{M+1} < M \left(\left[\frac{\beta p}{1 - \beta (1 - p)} \right]^M - \left[\frac{\beta p}{1 - \beta (1 - p)} \right]^{M+1} \right) + \left[\frac{\beta^* p}{1 - \beta^*(1 - p)} \right]^{M+1} \tag{8}
\]

Figures 1 and Figure 2 illustrate inequalities (7) and (8). The gray areas represent the net gain and loss from issuing one less (more) token (assuming the optimal number is 3). The blue bars represent the present value of the of the forgone fiat money revenue from the \(M^{th} \) token issued (\(\frac{\beta^* p}{1 - \beta^*(1 - p)} \)). The dashed bars at the top represent the token price when \(M \) tokens are issued (\(\frac{\beta p}{1 - \beta (1 - p)} \)). For example, Figure 2 shows how if the platform
Figure 1 shows the gain and loss by reducing one token (from three to two). The issuer gains from the price increase, but loses from revenue from the marginal token. Given three tokens are optimal in this example, this figure corresponds to optimal issuance constraint eq.(7).

issues one token above the optimum of 3, it gains additional revenue from the extra token issued, but suffers from the price decline on other tokens, as well as the present value of the foregone fiat revenue on the marginal redemption.

A few observations: First, clearly optimal issuance level M is less than $\frac{1}{\ln \left(\frac{1 - \beta p}{\beta p} \right)}$, which maximizes the firm’s gross revenue from token issuance without taking into account the foregone future sales in fiat money. Second, it is straightforward to show that optimal issuance is monotonic in the key parameters β^* as long as the optimal issuance level M^* is larger than one. A low-β^* firm values today more and prefers to issue more tokens. (See
Figure 2 shows the gain and loss from increasing tokens issued from three (optimal) to four. The issuer gains from the price increase, but lose from token quantity reduction. The issuer loses from the price decrease, but gains from the extra token revenue. Given three tokens are optimal, this figure corresponds to optimal issuance constraint, eq.(8).

Appendix 2.1 for the proof)

Finally observe that with the pure ICO considered here, it does not matter if the platform announces a quantity or a price, since there is complete information, provided the firm is committed to selling all coins at the same price (perhaps because of regulation.) It is the very constraint that leaves consumers some surplus when $M > 1$, and allows them to enjoy some of the gains from token issuance.
3.3 Tradable ICO Token

We begin by noting that once all individuals are holding at most one token, the token price is governed by the willingness to pay of individuals who have fully depleted their token supply. If the price is higher than their willingness to pay (WTP), no one wants to buy, and selling pressure pushes the token price down. If the price is lower than the WTP, every consumer without a token wants to buy one and this bids up the price. Thus, the token price is unique when all individuals are holding at most one coin. Let \(\hat{P} \) denote this unique and steady-state price.

\[
\hat{P} = \beta p + \beta (1 - p) \hat{P}
\]

The first term on the right-hand side denotes the present value of being able to consume the coin in the next period, and second term denotes the present value of being able to sell it. But this equation can be rearranged to yield

\[
\hat{P} = \frac{\beta p}{1 - \beta (1 - p)}
\]

which is exactly the same as in the non-tradable case. Once all individuals have either zero or one token, there are no longer any gains from inter-consumer trade; a token has the same value to an individual whether she sells it or holds on until she has the first opportunity to use it. Inducing individuals to hold more than one coin, however, requires that they expect the price to appreciate at the rate \(\beta^{-1} \) every period, again assuming as we have been doing that the convenience yield is zero.

Now suppose the platform wants to sell \(M \) tokens in an ICO, but where tokens are tradable; what is the price? The key observation is that if there are \(M \) tokens, it will take \((M - 1)/p\) periods for the first \(M - 1 \) coins (per capita) to be depleted. (This is much faster than would be the case without trade.) In period \(1 + \frac{M - 1}{p} \), the price must reach its steady-state value of \(\hat{P} \). The ICO price for \(M \) tradable tokens must be given by
\[P_{ICO, Tradable} = \beta \frac{M-1}{p} \left(\frac{\beta p}{1 - \beta(1 - p)} \right) \] (9)

To compare the gross revenue from a non-traded ICO of \(M \) tokens with a traded ICO of the same size, we first observe that when \(M = 1 \), tradability does not matter since all agents are homogeneous. We then note from equation (5) that to issue one extra non-tradable token, the platform needs to discount token prices by \(\frac{\beta p}{1 - \beta(1 - p)} \) while in the case of tradable tokens, equation (9) implies it would need to discount its price by \(\beta^{\frac{1}{p}} \). Thus to compare the price of tradable tokens with that of non-tradable tokens (for any equivalent-size ICO), we need only to compare the two discount factors. Proposition 1 answers this question.

Proposition 1 (Effective Discount Factor Dominance): The effective discount factor is higher (close to 1) for non-tradable ICO tokens than for tradable ICO tokens (See Appendix for the proof)

\[\beta^{\frac{1}{p}} < \left(\frac{\beta p}{1 - \beta(1 - p)} \right) \] (10)

Comments: Proposition 1 implies that for any sale of \(M > 1 \) tokens in an ICO, the price will be higher if the tokens are non-tradable. What is the intuition for this result, given that the expected time to redemption of the marginal token is greater in the case of non-tradability? The answer has to do with the fact that the consumer’s utility function is convex in time of consumption mathematically. An alternative interpretation is in analogy to the Coase conjecture tradability creates a resale market which pushes the platform to...

\(^8\) We can immediately derive the ICO revenue maximizing \(M = \frac{1}{-log(\beta P)} \) for the tradable tokens case (ignoring the opportunity cost of lost future fiat money sales). Proposition 1 implies the optimal revenue-maximizing quantity of the tradable ICO is lower than that of non-tradable ICO.

\(^9\) The fact that additive utility functions are convex in time has been previously noted by DeJarnette et al. (2019)
compete with itself. The resale market introduces competition with the future and reduces the token price. As we shall see in later sections where we look at richer pricing strategies and memory functions, the potential advantages of non-tradable tokens runs much deeper than just this point. One might also ask how a tradable token can sell for less than a non-tradable token when the consumer always has the option of not trading it. The answer is that with tradability, the platform cannot command as high a price precisely because the consumer knows there is always an option of buying on the outside market in the future, and this drives the requirement that the market price of a tradable token must rise faster than the shadow price of a non-tradable token, as we have just proven.

Of course, the proceeds from the ICO do not capture the entire story, since whenever a consumer tenders a token for a later purchase, the platform has to forego fiat currency revenue that it would have enjoyed absent any token issuance. But, as we next demonstrate in Proposition 2, the present value of future fiat revenue sales is also higher when tokens are non-traded, so a non-traded token ICO is unambiguously more profitable than a traded token ICO.

Proposition 2 (Revenue Dominance): Tradability reduced the discounted revenue of the firm.

\[\text{Rev}_{ICO, \text{Non-tradable}} > \text{Rev}_{ICO, \text{Tradable}} \]

Proof of Proposition 2

The present value of firm revenue from a one-time tradable token ICO, including both the initial token sales revenue, and revenue from future fiat currency sales is given by
\[\text{Rev}_{\text{ICO, Tradable}} = M \times P_{\text{ICO, Tradable}} + \beta^* \frac{M-1}{p} \left(\frac{\beta^* p}{1 - \beta^* (1 - \rho)} \right) \left(\frac{\beta^* p}{1 - \beta^*} \right)^{M-1} p \beta^* (1 - \rho) = \text{Rev}_{\text{ICO, Non-tradable}} \]

This inequality \(\beta^* \frac{1}{1 - \beta^* (1 - p)} < \frac{\beta^* p}{1 - \beta^* (1 - p)} \) holds as the \(\beta^* \) version of the condition proved in the Proposition 1. The only case where tradability does not affect the discounted revenue is the cases where \(p = 1 \) or \(\beta = 1 \).

Comments: The logic is simple: The issuer starts to earn revenue in fiat money earlier with non-tradable tokens than with tradable tokens.\(^{10}\) For the first \(M \) periods, all agents under both types of ICOs have at least one token, and \(p \) percent of them use it each period. But starting after period \(M \), a rising fraction of agents in the non-tradable ICO have no coins, and thus need to use fiat money for platform consumption. Under the tradable ICO, agents who hit zero coins can buy coins from agents who have two tokens or more, in fact, all agents have at least one coin for the first \(M-1 \) periods. Thus revenue from fiat money is more backward loaded with tradable issuance than non-tradable issuance, and hence has a lower present value.

For only in-platform use, tradable tokens are strictly dominated by non-tradable tokens in both revenues from token issuance and from fiat money. To justify tradability, there must be additional benefits outside our model. Of course, it is true that in our setup, we are neglecting several potential merits of tradability. First, tradability makes the tokens liquid, and potentially would allow the platform to pay a lower return due to a liquidity premium, albeit one that is likely lower than on fiat currency. Second, we have been assuming risk

\(^{10}\)With tradable tokens, no consumer would pay fiat money to the platform until period \(M-1 \). If tokens are not tradable, a “lucky” consumer can spend all \(M \) tokens before period \(M-1 \) and pay fiat money for the platform consumption.
neutrality; if agents are risk-averse, there would again be gains to tradability. Third, we have eliminated the possibility that the tradable token can be used at other platforms or peer-to-peer transfer. There are many crypto-exchanges that provide services for token trading, for example, Coinbase or Bitpanda. If tradability allows broader use of the token, which might be translated into a higher p in our model, this again could be an advantage of tradability that is outside the scope of our model.

3.4 Non-tradable ICO with a Price Menu

We now consider the possibility that instead of selling all tokens at the same price, the platform is allowed to offer a menu that relates the total price paid to the number of tokens sold. Consumers are able to get a lower average price, the more tokens they buy. In this case, it is easy to show that the firm can garner more gains from trade and leave zero consumer surplus.

To derive the its optimal price menu, the firm makes use of eq. (2) which gives the marginal value of the M^{th} coin. For M tokens, it charges

$$
\sum_{i=1}^{M} \left[\frac{\beta p}{1 - \beta (1 - p)} \right]^i
$$

In this case, as $M \to \infty$, the platform gets the maximum possible discounted revenue (first-best) out of consumers

$$
\lim_{M \to \infty} \sum_{i=1}^{M} \left[\frac{\beta p}{1 - \beta (1 - p)} \right]^i = \frac{\beta p}{1 - \beta}
$$

Consumers get zero surplus since the platform would design a price menu so that consumers are indifferent along the menu. Thus, the design of price menu pushes up the average token price and therefore total platform revenue corresponding to any given token.
issuance.

$$P_{ICO,Price\text{-}menu} = \frac{\beta_p}{1 - \beta} [1 - (\frac{\beta_p}{1 - \beta(1-p)})^M] \frac{1}{M} \quad (12)$$

It is quite straightforward to prove that a price menu approach adds nothing when the tokens are tradeable: if the platform sells at a lower average price to bulk, token buyers, it cannot prevent the arbitrages from making a profit through resale. (Nor can it stop coalitions of consumers from buying in bulk to get a lower average price.).

3.5 Credibility of One-Time ICOs

It is important to emphasize that in the ICO case we have considered until now, the platform will be tempted to issue more tokens as the supply dwindles. Obviously, this could devalue the existing base in the case of tradable tokens, but the possibility also turns out to be relevant even in the non-tradable case. As we shall see in the next section, the consumer may regret having bought so many tokens in the ICO and wishes instead she had earned interest on her savings and purchased more tokens later. Put differently, expectations of future issuance affects the shadow price at which the implicit value of tokens will rise. Thus in both cases, traded and non-traded ICOs, expectations of future issuance affects the current value of tokens. Our analysis, therefore, assumes not only that the platform is credibly able to commit to the purchasing power of the tokens when tendered, but also to its issuance strategy.

As a private sector business subject to national laws and courts, a platform may have

\[11\] If consumers can share information efficiently and ship products at a low cost, one customer can arbitrage along the price menu by aggregating demand from other consumers, buying a large quantity from the issuer at a low price, and shipping products to others. In reality, customers are willing to accept price discrimination if it is costly to arbitrage in the product market or if the purchased service is not transferable at all. For example, users have to link the Uber account to their cell phone number. Thus the nature of some businesses makes a price menu approach feasible in reality. However, for some durable goods, say an iPhone, the shipment cost is quite small compared with the product value. The arbitrage along the price menu may limit the range of price-quantity pairs offered to the customers.

\[12\] $$\frac{\beta_p}{1 - \beta} [1 - (\frac{\beta_p}{1 - \beta(1-p)})^M] \frac{1}{M} > (\frac{\beta_p}{1 - \beta(1-p)})^M = P_{ICO,Non\text{-}tradable}$$
at its disposal some devices for enhancing credibility not available to a sovereign currency issuer. For example, it can be subordinated to a regulator who ensures that the platform’s “white paper” describing its token issuance policy cannot be violated with severe penalties. The ICO tokens can be made senior to other debt and any tokens issued in the future. Similarly, the platform is legally bound to honor the fiat currency value of its tokens, so the exchange rate is fixed. Obviously, many subtleties and nuances are surrounding all these issues, and the issue of credibility is fundamental.

In the next section, we consider a class of richer issuance strategies, beyond a one-time ICO, that helps illustrate some of these points.

3.6 Non-tradable/tradable ICO+SCO (Price Only)

Until now, we have considered one-time token issuance strategies that, over time, lead to a shrinking supply of tokens as consumers redeem them for in-platform purchases. A true prototype currency would not self-extinguish, particularly if one wants to maintain the possibility of eventual use outside the platform. In this section, we introduce the possibility that after the initial ICO, the platform commits to subsequently engaging in routine “SCO” (seasonal coin offerings) sufficient to maintain a constant steady-state supply of tokens. Although we are going to continue to assume that the platform can credibly commit to its issuance strategy, understanding how the expectation of ongoing sales affects the price of the initial ICO is also relevant to understanding how lack of credibility might affect initial issuance and price.

The issue of SCOs turns out to change the calculus of token issuance quite fundamentally. In particular, we will demonstrate here the strong result that if SCOs are used to maintain a constant token supply of tokens, then the maximum number of coins consumers will hold is one per person. This result is the same whether tokens are tradable or not, and in fact the tradable and non-tradable cases become equivalent. Importantly, this result applies only to the kind of “memoryless tokens we have been considering so far; later we will
introduce the possibility that that platform can condition future token sales to individuals on past purchases.

We begin with the case of non-tradable tokens. One new question in this scenario is how to set the price in the SCO. In principle, there are three issuance strategies. (1). A no information policy, in which all consumers are offered the same price in every SCO regardless of their history in purchasing tokens and spending them. In Section 5, we consider SCO issuance with memory (2). A history-dependent policy where the platform can charge a price for SCO tokens that is a function of the consumer’s entire history with the platform. (3). A Markov policy where issuance depends only on the consumer’s current account information (holdings of tokens) but is not path dependent. Policies (2) and (3) may seem very “un-money like” but actually incorporate the richer possibilities that digital currencies offer, ideas that are seldom discussed in normal discussions say, about how retail central bank digital currencies might replace paper currency.

In this section, we will focus on the “no information” policy that is perhaps most likely to be regulatory-compliant and least likely to run afoul of privacy concerns, though later we will consider the strategies with memory. The no information SCO strategy has very stark implications. The basic problem the platform faces is that for any steady state it tries to sustain, consumers will only be willing to hold excess coins – more tokens that can be spent in one period – if they anticipate that the price will be rising over time at the consumer’s implicit interest rate (β^{-1}). But this is only possible in equilibrium if the quantity of token is falling over time – which is a contradiction unless the excess coins yield sufficient transactions convenience services, which we are abstracting from throughout most of this paper. Thus, the only steady-state coin holding has each consumer entering each period with exactly one token. At the end of the period, the platform will offer p tokens per person at price

$$P_{ICO+SCO} = \frac{\beta p}{1 - \beta(1 - p)}$$ \hspace{1cm} (13)
which of course corresponds to the ICO price at $M = 1$. Note that the tokens will always be purchased by the agents who have just extinguished their coin for consumption, as these agents are willing to pay a higher price than agents who did not have the chance to consume in the period and still hold a coin. In a sense, we might refer to this equilibrium as a “token in advance” model. The same result holds with tradable tokens. The discounted revenue from the optimal (equilibrium) ICO + SCO (with no information) is given by

$$\text{Rev}_{ICO + SCO} = P_{ICO + SCO} + \sum_{i=1}^{\infty} \beta^i p P_{ICO + SCO} = \frac{1 - \beta^* (1 - p)}{1 - \beta (1 - p)} \frac{\beta p}{1 - \beta^*}$$

Proposition 3 (Token-in-advance Theorem): In any equilibrium with a constant supply M of coins, with memoryless issuance strategy, M equals to one regardless of tradability.

Proof of Proposition 3:

First, the token price needs to be constant in every period. If the token price is expected to appreciate indefinitely at the interest rate, one token will eventually worth more than the market value of the platform. However, the token price cannot exceed one because the value of underlying consumption is bounded (value at one by assumption). With a constant coin supply, the price must be constant, therefore consumers cannot get capital gains to substitute for explicit interest payments, and therefore the only equilibrium coin supply (per capita) cannot exceed one in both tradable and non-tradable issuance.

The issuer nevertheless gains a higher discounted revenue from issuing one token than no tokens.

$$\text{Rev}_{ICO + SCO} - \text{Rev}_{No Issuance} = \frac{(\beta - \beta^*) p}{(1 - \beta + \beta p)(1 - \beta^*)} > 0$$

\[13\] No consumer would buy the second token since any consumer would prefer to invest in the risk-free asset and buy a new token from the market or from the issuer until the next consumption shock arrives.
Comments: Despite being able to earn ongoing revenues, the platform can only sell one token in the first period. Of course, from the point of view of credibility, this ICO+SCO equilibrium is easier to implement than the ICO. Also, the “token in advance” model might be more viable in an environment where consumers face liquidity constraints.

3.7 Comparison of ICO+SCO with Non-tradable ICO

From a revenue perspective, an ICO+SCO allows the issuer to secure ongoing token revenue from all future SCOs, rather than only from the one-time initial ICO. Also important is the fact that by releasing tokens more slowly, the platform will be able to get a higher (undiscounted) average price, that is, garners a larger share of the gains from trade. The disadvantage, of course, will be the expectations of future SCO issuance limit the revenue the platform can front-load revenue into the initial ICO. A natural question is whether a non-tradable ICO issuance mechanism can beat the simple ICO+SCO with the “token-in-advance” constraint. This involves comparing the discounted revenue of the non-tradable ICO:

\[
Rev_{\text{ICO,Non-tradable}} = M \left(\frac{\beta p}{1 - \beta (1 - p)} \right)^M + \frac{\beta^* p}{1 - \beta^* (1 - p)} \left(\frac{\beta^* p}{1 - \beta^* (1 - p)} \right)^M
\]

with the discounted revenue of the ICO + SCO

\[
Rev_{\text{ICO+SCO}} = \frac{\beta p}{1 - \beta (1 - p)} + \frac{\beta^* p}{1 - \beta^* (1 - p)}
\]

Proposition 4 (ICO versus ICO+SCO Dominance): The non-tradable ICO dominates ICO+SCO if \(p \) is high and \(\beta^* \) is low. When the consumption probability \(p \) is low \((p \to 0) \) or \(\beta^* \) is high \((\beta^* \to \beta) \), ICO+SCO dominates the non-tradable ICO. (See Appendix for the proof)
Comment: Proposition 4 tells us that when the issuer’s discount factor β^* is close to the consumer’s discount factor β, the issuer may still prefer to do the ICO+SCO issuance mechanism because the issuer can benefit from “token-in-advance” in every future period while the issuer cannot benefit a lot from the large-quantity issuance in the ICO. For example, one can show that the ICO+SCO strictly dominates the non-tradable ICO in the parameter space that the optimal issuance quantity is 2 (two) under the non-tradable issuance.\(^{14}\) The non-tradable ICO may dominate the ICO+SCO when the issuer is impatient enough (β^* is small). The benefit of the front-loading cash flow can be sufficiently large to offset the loss of future SCO revenue.

Certainly, the ICO + SCO with a constant steady supply of tokens and a constant steady-state price is much simpler than the optimal one-time ICO. It is also straightforward to show that for reasonable parameters, it can be supported as a trigger strategy equilibrium if we relax the no commitment assumption. Indeed, if the platform lacks credibility, the equilibrium can devolve to the ICO + SCO case (“token-in-advance”). However, when p and β are both close to one, the one-time non-tradable token ICO is much more profitable.

4 Assumptions Revisited

4.1 Runs and Interest Payments

As the model is constructed, the platform tokens are not subject to runs because agents tender their tokens if and only if a consumption shock hits, and the good is assumed not storable. Of course, in reality, the offerings of platforms such as Alibaba and Amazon cover a wide range of durable goods, which opens the possibility of having a panic with

\(^{14}\) We compute the revenue of non-tradable ICO minus the revenue of ICO+SCO when the optimal token issuance is two under the non-tradable ICO. The revenue gap is strictly negative when $\beta^* < \beta$

Denote $a = \frac{\beta}{1 - \beta(1 - p)}$ and $a^* = \frac{\beta^*}{1 - \beta^*(1 - p)}$

$$h(\beta^*, \beta | M^* = 2) = 2a^2 + \frac{a^*}{1 - a^*} a^* a^2 - a^* a = a^* a^2 + \frac{a^*}{1 - a^*} (a^* - a) = \frac{a^*}{1 - a^*} (a^* - a) < 0$$
say, consumers using their tokens to buy durable they do not yet need despite storage costs. The platform can deal with runs in standard fashion, for example, by reserving the right to suspend sales temporarily, but the point is that even commodity-backed platform currencies are not immune to runs absent a fully-credible outside guarantee.\(^{15}\) Of course, in principle, the proceeds from token sales can be deposited in low return but highly liquid government securities. The platform could have a guaranteed refund in fiat currency if it were to temporarily stock out of goods in any given period; then it would much smaller profits from token issuance.\(^{16}\)

Some cryptocurrencies have indeed adopted a business model of setting a fixed exchange rate and claiming to hold all assets in treasuries, with the idea of making a profit by selling at par, paying zero interest, and then making a profit from the interest-bearing government assets. This approach, of course, also has its fragilities. First and foremost, once international government regulation requires these assets to be easily traceable by governments and fully compliant with tax evasion and anti-money laundering laws, it is not at all clear that consumers will recognize any “convenience yield.” Second, even the most efficient cryptocurrencies have considerable business costs to run. Last be not least, they are ultimately subject to the same kinds of fragilities as fixed exchange rate currencies and currency boards, where even slight temporary illiquidities or fiscal weakness can lead to an immediate attack. (See, for example, Obstfeld and Rogoff, 1995)\(^{17}\)

Another approach for the platform would be simply to create an outside bank to handle its tokens, aiming to combine or leverage its token issuance business with a standard bank-like lending business. This approach would thereby create a chaebol or keiretsu like structure which might allow the platform to use data across businesses to create synergies. The competition between tech companies and banks is a critical area but beyond the scope of this paper. Our narrow point here, though, is that the ability of chaebol and keiretsu to

\(^{15}\) The classic reference on pure multiple equilibrium bank runs is Diamond and Dybvig (1983)

\(^{16}\) The platform can also adopt a policy of suspending service in a stockout to discourage runs.

\(^{17}\) For a discussion of the fragility of crypto-currencies, see Rogoff (2016).
back tokens with platform goods does not necessarily constitute a significant advantage in itself.

Finally, we note that in principle, platform tokens can pay interest “in-kind” (in tokens) rather than in fiat currency. In particular, suppose tokens pay interest equal to $\frac{1-\beta}{\beta}$ on an ICO of $\frac{\beta p}{1-\beta}$ tokens, which could be tradable. This policy is sustainable since it involves paying out p tokens per period, exactly enough to replace tendered coins, assuming no runs. In a sense, this is a different implementation of lifetime memberships. Another important interpretation of the interest-bearing token we have just detailed is as an “security token” where effectively the consumer owns a share of the platform, with payments in services. We leave “security tokens” for future research.

Why then, shouldn’t the platform always make its tokens interest-bearing, or perhaps security tokens per the above example? There are at least a couple of reasons. First, and perhaps of the greatest concern in practice, is that the taxation and regulation of interest-bearing tokens may be very different than non-interest bearing tokens, bringing the platform issuance under banking and/or securities market regulation, with different results in different jurisdictions. Second, in a more general model with uncertainty, the required interest rate will fluctuate. And if the token market is relatively illiquid, it may be difficult to calibrate the interest rate required to fulfill the platform’s initial pledge to pay market interest. Uncertainty and risk also make the pledge of paying market interest challenging to accomplish, potentially opening up the platform to legal issues if not fully protected by (currently-nonexistent) regulation. In general, paying interest generates a different class of credibility issues, which are some cases may be more difficult to navigate. In sum, if the platform can pay market interest, either in fiat currency (using resources outside the platform) or in-kind (using only platform resources), it can potentially issue a tradable token that avoids some of the pitfalls identified here. However, this approach also has its own challenges, but a comparison is beyond the scope of this paper, where we focus mainly on non-interest bearing tokens.
4.2 Non-zero Cost of Input Goods

Assumption 2 posits zero cost of goods so that the entire revenue converts into platform profit. We relax this assumption by allowing X proportion of platform sales to be attributable to the input cost of goods. In this case, potential token demand is equal to gross sales by the platform each period, and not just net revenues.

The logic is straightforward: Token issuance adds financial income at the scale of gross revenue, which can be much larger than the size of profit from net platform revenue. For example, if an online retailer platform has a profit margin of 5%; the platform can issue tokens with denomination 20 dollars for each one-dollar profit. If the platform can create an interest return wedge of 3%, the value-added from token issuance will be 0.6 dollars, which account for 60% increase in the platform profitability.

The pricing equations and issuance policy results remain the same as before when we relax the zero cost of goods assumption, except that token prices are proportional to gross consumer expenditure, not net platform profit. The token prices only depend on the consumption probability, the sale price of the commodity, and the effective discount rate. Thus the breakdown in cost and profit does not affect the willingness to pay (WTP) for tokens. Thus, the value-added of token issuance is wholly determined by the revenue and not affected by the cost of goods.

The only change to the analysis from introducing non-zero input costs is to leverage up the present value of the platform’s profits from token sales. We consider the maximum leverage effect from the benchmark platform value without token issuance to the first-best platform value.

The present value of platform without digital currency

$$\frac{\beta^*}{1 - \beta^* pX}$$
Under the first-best, the present value of platform profit is

\[
\frac{\beta}{1 - \beta^p} - \frac{\beta^*}{1 - \beta^*} p(1 - X)
\]

The value to the platform of being able to leverage token issuance can be as high as

\[
\text{Leverage}(X) = 1 + \frac{\beta - \beta^*}{\beta^*(1 - \beta)} \frac{1}{X}
\]

where \(\text{Leverage}(X)\) is monotonically decreasing in \(X\) and \(\beta^*\) (increasing in the platform investment return), and orthogonal to the consumption probability \(p\). A low \(X\) in practice makes the token issuance to be spectacularly attractive for the online platforms with voluminous transactions but low profitability. The token issuance has great potential when internet companies become financial service providers. The main downside is that the platform becomes more vulnerable to runs per our earlier discussion.

4.3 Convenience Yield

One important potential merit of platform tokens is in providing a convenience yield for the token holders\(^{18}\). In the money-in-the-utility (MIU) model (Sidrauski 1967), utility is increasing and strictly concave in the money balance. In our model, the convenience yield directly affects token price by changing the effective discount rate. A larger convenience for consumers clearly benefits the platform which can then discount its tokens by less.

Convenience yield might be able to justify the issuance of tradable tokens if tradability brings greater convenience for transactions. For example, tokens can be used as a digital unit to transfer money among consumers. In this case,

\[
\beta(M, \text{Non-tradable}) < \beta(M, \text{Tradable})
\]

\(^{18}\)For example: Payment with Amazon credit can be settled immediately, rather than going through credit card verification.
When the token is more convenient to use, token holders are effectively more patient when holding tokens and willing to pay more fiat money in exchange for them. Where government allows it, and where a single firm has dominant share across a large range of the economy, it is possible in principle that a platform currency could yield a significant enough convenience yield to compete with a government currency. For example, Alipay’s success in China, particularly in Hangzhou, brings together payments for online shopping, restaurants, investment funds - even public transportation - into one unified digital payment system. This convenience has persuaded the younger generation to start keeping a large proportion of their savings in their Alipay’s accounts. The tradable digital currency has great potential to be much more convenient than cash if the infrastructure is appropriately built.

Analytically, a convenience yield is quite straightforward to incorporate into our model if it is linear in token holdings (it simply modifies the consumer’s discount factor β. A more general treatment allowing for decreasing returns would be much more challenging. In any event, however, our read of the centuries-old history of money is that the government may initially allow or even foster private innovation in transaction technology, but eventually government regulates and appropriates.\(^{19}\)

5 Money Memory

Up until now, we have shown that for a given level of token sales M in a one-time ICO, a platform will earn a larger profit from a non-tradable token than from a tradable token, and a larger profit still with a “buy more, save more” pricing menu approach. If instead, the platform attempts to maintain a constant supply of outstanding coins with the ICO + SCO, the tradable and non-tradable cases turn out to be equivalent; whether or not the ICO + SCO can beat the one-time non-tradable ICO depends on β and p.

An important potential of a platform-backed currency – and potentially any digital

\(^{19}\text{Rogoff, 2016.}\)
asset – is memory. A platform can fully observe a consumer’s account information, the full history of the account, and even the entire transaction history for each token. Making use of this information, a platform can design a mechanism for the SCO that induces consumers to hold $M > 1$ despite knowing that there will be future SCOs to replenish their stock.

Even when the non-tradable ICO is more profitable than an ICO + SCO, the platform still wants to consider other mechanisms where revenues are not all front-loaded. This might be due to credibility issues (for example, the consumers to do not trust the platform not to engage in later SCOs, the expectation of which would undermine the initial price), or alternatively liquidity issues for consumers that limit how much the platform can charge upfront.

We show that profitability of the ICO + SCO can be considerably enhanced if the platform can impose restrictions that tie a consumer’s ability to purchase future SCO tokens at a favorable price to her past behavior. We consider in turn two simple mechanisms, one where the platform can design a SCO based on the full history of consumer’s actions (a history-dependent mechanism), and a second where the platform can only design a SCO using current account information (a Markov mechanism), that is, cannot price discriminate using the individual’s historical records. In practice, it might be hard to implement a full history-dependent mechanism for many reasons: costly data storage and processing, the complexity of the issuance design for each history, violation of privacy, or the consumer’s sense of fairness. A Markov mechanism might be easier to implement and also more acceptable for consumer.

In the extreme, the platform can sell one token in the initial ICO for $\frac{\beta \rho}{1 - \beta}$, which is the entire present value of future platform consumption to the consumer, but then commit to distributing free tokens to any agent who tenders their token for consumption in any given period. This is, of course, tantamount a membership system where the lifetime dues are paid once and for all upfront.\footnote{In the Appendix 2.2, we consider the rolling membership for limited time horizon and provide the closed-form solutions. We also show that the discounted revenue from rolling membership generates quantitatively}
Formally, consider a specific class of issuance policies in which a platform only issues tokens to consumers with \(M - 1 \) tokens in the SCO. Denote \(a \) as the ICO token price, \(b \) as the SCO token price, and define token issuance mechanism \((X, Y, a, b)\) where \(X \) is the amount of tokens in the account, \(Y \) is amount of tokens to buy. \(^{21}\) It is easy to check “Buy M tokens in the ICO, and buy one token after a consumption shock in SCO” is an equilibrium strategy for consumers. \(^{22}\) Using the account information, a platform can collect full future revenue with a finite amount of tokens.

5.1 History-dependent Issuance

In the context of token issuance, a platform can employ the entire history for issuance plan design. The history-dependent issuance is the first-best in the sense that a platform can punish any possible deviation from the issuance proposal. Under the case of perfect information, a history-dependent issuance policy enables the platform to gain full control of consumer choices.

We show that the history-dependent issuance allows the maximum flexibility in the cash flow arrangement. Consistent with Kocherlakota (1998), the memory currency expands the set of feasible allocations. To illustrate this point, we expand the Markov SCO price menu to a history-dependent SCO: If a consumer did not buy a token after a consumption shock before, the platform stops selling tokens to the consumer (that is \((x, y, a, \infty)\) for any \((x, y)\) pair); If a consumer buys token after each shock in the history, the platform offer one token at price \(b \) (that is, SCO: \((M - 1, 1, a, b), (x, y, a, \infty)\) if \(x \neq M - 1\) or \(y \neq 1\)). In a richer framework, a platform can design more sophisticated contingent issuance policies, but we leave this for future research.

\(^{21}\)The extreme case discussed above can be written as: The price scheme of the ICO is \((0, M, \frac{a}{1 - \beta}, b), (0, x, \infty, b)\) if \(x \neq M\). The price scheme of the SCO is \((M - 1, 1, a, 0), (x, y, a, \infty)\) if \(x \neq M - 1\) or \(y \neq 1\).

\(^{22}\)First, consumers are indifferent between buying M tokens or never buying tokens. Thus, consumers have no incentive to deviate to “Not buying at all”. Second, consumers cannot benefit from buying more or fewer tokens in the ICO since it costs more. Third, consumers would take free tokens in SCO. Otherwise, consumers need to pay fiat money for consumption.

similar revenue with the price menu of non-tradable tokens.
With history-dependent issuance, a consumer will be immediately excluded from the token market once she chooses not to purchase after any consumption shock\(^{23}\). Thus, the “now or never” inter-temporal constraint restricts consumers to buy one token right after a consumption shock if and only if

\[
(1 + \frac{\beta p}{1 - \beta})b \leq \left(\frac{\beta p}{1 - \beta(1 - p)}\right)^{M-1} \frac{\beta p}{1 - \beta}
\]

The constraint implies that the SCO token price cannot exceed the consumption value of the marginal \(M^{th}\) token:

\[
b \leq \left[\frac{\beta p}{1 - \beta(1 - p)}\right]^M
\]

The minimum ICO token price is equal to the price under information-free price menu.

\[
a = \frac{1}{M} \frac{\beta p}{1 - \beta} (1 - \left[\frac{\beta p}{1 - \beta(1 - p)}\right]^M)
\]

A history-dependent issuance essentially incorporates memory into each token issued to consumers. Each token is contingent on the sequence of past actions. The account history helps the platform to achieve all possible cash flow allocations. The digital currency with memory further improves the welfare of issuers; that is, data is extremely valuable for the issuer.

5.2 Markov Issuance (ICO+SCO)

Under a Markov issuance policy, the issuer can only design issuance based on the current account information, but cannot retrieve the full history of the consumer’s behavior. Consumers may gamble to procrastinate the purchase of the SCO token because the issuer cannot punish deviation based on the entire action history. To incentivize consumers to buy the SCO token after a consumption shock, the issuer must design an issuance policy satisfies a new “no procrastination” constraint:

\(^{23}\)With Markov policy, a consumer can still stay in the token market probability \(1 - p\).

\(^{24}\)It is impossible to set the SCO price higher than the consumption value. Otherwise, consumers would prefer to pay with fiat money rather than buying tokens.
\[(1 + \frac{\beta p}{1 - \beta})b \leq \beta [(1 - p)(1 + \frac{\beta p}{1 - \beta})b + p[\frac{\beta p}{1 - \beta(1 - p)}]^M - 1 \frac{\beta p}{1 - \beta}] \]

No Consumption Shock: Still Use Tokens

Consumption Shock Arrives: Return to Fiat Money

The left-hand side is to “purchase” a token at a price \(b \) right after a consumption shock. The right-hand side is the payoff of procrastinating one period: without another consumption shock (probability \(1 - p \)), a consumer can still purchase a token at the SCO price \(b \); if another consumption shock arrives (with probability \(p \)), a consumer can never buy any token in the future and make purchases with fiat money. The “no procrastination” constraint pins down the maximum SCO price.

The participation constraint

\[M a + \frac{\beta p}{1 - \beta}b \leq \frac{\beta p}{1 - \beta} \]

binds the minimum ICO price \(a \) with the maximum SCO price \(b \). The minimum ICO price must be higher than the ICO token price with price menu.

First, the Markov issuance policy provides additional value to the platform in two ways. Use of account information provides additional value to the platform in two ways. For example, the platform can commit if it cannot then, of course, it may be tempted to sell in later periods to consumers who choose not buy tokens initially. Note that the present value of future spending in fiat money is

\[\sum_{M}^\infty \frac{\beta p}{1 - \beta} = \left(\frac{\beta p}{1 - \beta(1 - p)} \right)^M \frac{1}{1 - \frac{\beta p}{1 - \beta(1 - p)}} = \left(\frac{\beta p}{1 - \beta(1 - p)} \right)^M - 1 \frac{\beta p}{1 - \beta} \]

The upper bound of the SCO price is lower than the consumption value of the \(M \)th token.

\[b \leq \frac{\beta - \beta p}{1 - \beta p} \left[\frac{\beta p}{1 - \beta(1 - p)} \right]^M < \left[\frac{\beta p}{1 - \beta(1 - p)} \right]^M \]

An important caveat is that the analysis here assumes the platform can commit, if it cannot then, of course, it may be tempted to sell in later periods to consumers who choose not buy tokens initially.
to boost the ICO price. The issuer cannot further lower the ICO price, but this only works if the platform can condition future sales on account information. Second, the platform can potentially benefit from cash flow re-allocation by enabling it to generate token sale revenue after every consumption shock.²⁹

6 Heterogeneous Agents

In our framework, the consumption probability \(p \) is the cornerstone for the token price. The assumption maps into the reality that many technology companies take “Daily active users” (DAU) as a significant parameter to focus on. In this section, we relax the assumption of homogeneity and address the following three questions: Does consumer heterogeneity encourage or discourage currency issuance? Is it more profitable to only cater to frequent consumers or to be more inclusive? Most importantly, does introducing heterogeneity overturn our conclusion that if tradability does not produce sufficient convenience yield, then platforms may find the issuance of non-tradable tokens more profitable?

Heterogeneity raises a number of issues including for example, how a platform can price discriminate. Our illustrative analysis suggests that in principle, however, heterogeneity will not overturn our core results, though again we acknowledge that there are many issues and further research is needed. In our framework, heterogeneity reduces the benefits of token issuance if the platform cannot price discriminate consumers based on their consumption probability.

For simplicity, we assume a society consisting of half frequent buyers \(p_H \) and half infrequent buyers \(p_L \). A platform aims to issue \(M \) tokens in total to all consumers, \(M_L \) to infrequent consumers at price \(P_L \) and \(M_H \) to frequent consumers at \(P_H \) respectively. We define a pooling equilibrium (both types of buyers purchase a positive number of tokens at the same price) as the case where \(P_H = P_L \). In separating equilibrium (or price

²⁹If we write down the token sale revenue after each consumption shock, the amount of tokens purchased in ICO and SCO is \(M, 0, \ldots, 0, M, 0, \ldots, 0 \) with “no information” issuance of price menu. The Markov issuance policy allows the platform to front-load cash flow in all SCO periods by \(M, 1, 1, 1, 1, \ldots \).
discrimination equilibrium) that two types of consumers buy tokens at different prices (or one type of consumers stay out the token market entirely). The issuance quantity and consumption frequency follows

\[\frac{M_L + M_H}{2} = M \]

\[\frac{p_L + p_H}{2} = p \]

6.1 Non-tradable ICO with Price Only

If a platform cannot price discriminate, all consumers coordinate in a pooling equilibrium where price \(P_{\text{ICO,Non-tradable,Hetero}} \) is the same for everyone. The willingness to pay for the last token equals to the

\[(\frac{\beta p_i}{1 - \beta(1 - p_i)})^{M_i} = P_{\text{ICO,Non-tradable,Hetero}} \quad i \in \{H, L\} \]

To issue \(M \) tokens, the corresponding price \(P \) must satisfy:

\[\frac{\log(P_{\text{ICO,non-tradable,Hetero}})}{\log(\frac{\beta p_L}{1 - \beta(1 - p_L)})} + \frac{\log(P_{\text{ICO,non-tradable,Hetero}})}{\log(\frac{\beta p_H}{1 - \beta(1 - p_H)})} = 2M \]

Proposition 5 (Heterogeneity of Non-tradable Tokens): \(P_{\text{ICO,Non-tradable,Hetero}} < P_{\text{ICO,Non-tradable,Homo}} \) The token price with agent heterogeneity is lower than the token price with homogeneous consumers of the same average consumption probability. (See Appendix for the proof)

Comments: Proposition 5 illustrates that agent heterogeneity leads to a lower average price for the same token issuance. We note, however, that the magnitude of price sacrifice caused by heterogeneity is not necessarily large since the curvature of function \(\log(\frac{\beta p}{1 - \beta(1 - p)}) \) is small for \(\beta \) and \(p \) near one (since \(\log(x) \) is approximately linear around \(x=1 \)). The effect
of heterogeneity on revenue from fiat currency revenue (after the consumer uses up all her tokens) is ambiguous. Regardless, the magnitude of impact on cash revenue is only a second-order effect.\footnote{Cash revenue with heterogeneity:}

Corresponding to our discussion of the homogeneous case, we next extend our analysis to the impact of agent heterogeneity on the following four mechanisms: a non-tradable ICO, a tradable ICO, a non-tradable ICO+SCO, and a tradable ICO+SCO. Lastly, we study a price menu mechanism.

6.2 Tradable ICO

With tradability, all consumers accept the same token price in the ICO since the token price must be expected to appreciate to generate the risk-free return required to induce agents of either type to hold more than one token. The frequent consumers gain more welfare surplus since they are more likely to use the tokens. The token price under heterogeneity is (See Appendix 2.3 for the derivation of the closed-form solution):

$$P_{ICO,\text{Tradable, Hetero}} = \beta \frac{M-1}{p} (1 - \beta^\gamma (1 - P_L)^\gamma) \frac{\beta p_L}{1 - \beta (1 - p_L)} + \beta^\gamma (1 - P_L)^\gamma \frac{\beta p_H}{1 - \beta (1 - p_H)}$$

where

$$\gamma = - \left\lfloor \frac{\log(1 + \frac{p_H}{2 p_L})}{\log\left(1 - \frac{1}{2} p_L\right)} \right\rfloor$$

\footnote{Cash revenue with heterogeneity:}

$$\frac{1}{2} \beta^* \frac{(p_H (\beta^* p_H)}{1 - \beta^*(1 - p_H))^{M_H} + p_L (\frac{\beta^* p_L}{1 - \beta^*(1 - p_L))^{M_L}}$$

Cash revenue with homogeneity (where $p = \frac{p_L + p_H}{2}$):

$$\frac{\beta^*}{1 - \beta^* p} \left(1 - \beta^*(1 - p)\right)^M$$

To quantify the impact of heterogeneity, we pick a set of parameters $p_H = 0.8, p_L = 0.4, \beta = 0.9, \beta^* = 0.8$ and plot the difference. The cash revenue difference is no more than 0.0005, while the total discounted revenue is 4 without token issuance. The difference from cash revenue is less than 1.25 basis points. We conclude that heterogeneity mildly discourages the token issuance with modest importance.
One can show two results: First, similar to the non-tradable case, heterogeneity reduces the token price for tradable tokens. With tradability, the token price must appreciate at the rate of interest regardless of the distribution of consumption probabilities.

Proposition 6 (Heterogeneity of Non-tradable Tokens): When $M = 1$, the token price with heterogeneity is lower than the price with homogeneity (See Appendix for the proof).

$$P_{ICO, Tradable, Hetero} < P_{ICO, Tradable, Homo}$$

Comments: Proposition 6 reveals that the token price under heterogeneity must be lower than the token price under homogeneity when only one token per person left in the economy. Heterogeneity can be viewed as a “friction” that limits the power of the platform to extract consumer surplus; frequent consumers retain positive surplus under token issuance. From the platform’s perspective, revenue from token issuance is reduced by the consumer surplus if price discrimination is not feasible. We will return to the price discrimination later.

Second, the token price of the tradable ICO is still lower than non-tradable ICO with heterogeneity, even if prices are both lower than the case of agent homogeneity. Propositions 7 and 8 speak to the point that our conclusion about tradability is robust to the agent heterogeneity.

Proposition 7 (Effective Discount Factor Dominance with Heterogeneity): Under heterogeneity, the effective discount rate of non-tradable ICO tokens is still higher than that of tradable ICO tokens (See Appendix for the proof).

$$\beta^\frac{1}{T} < e^{\frac{2}{T}f(p_L) + f(p_H)}$$

Proposition 8 (ICO Price Dominance with Heterogeneity): When $M = 1$, token price with tradability is lower than the non-tradable token price under heterogeneity
Comments: Proposition 7 is parallel to the Proposition 1 under the agent heterogeneity, implying that the tradable ICO token price discounts faster than the non-tradable ICO tokens as increase in the quantity of token issuance. Proposition 8 proves that the tradable token price is lower than the non-tradable token price when $M = 1$ (Recall that token prices are the same for tradable and non-tradable when $M = 1$ under homogeneity). Proposition 8 is unique to the agent heterogeneity case since trading still occurs between high-type and low-type when less than one token circulates in the economy. Thus, similar to the homogeneity case, the tradable token price is lower for any possible quantity of token issuance. Our core tradability result is robust to heterogeneity of consumption probabilities.

6.3 Tradable/ Non-tradable ICO+SCO

Similarly to the homogeneity cases, with tradability, there is no way to improve on a “token-in-advance” policy (selling a tokens one period ahead). Frequent consumers are willing to pay $\frac{\beta p_H}{1-\beta(1-p_H)}$ and infrequent consumers are willing to pay $\frac{\beta p_L}{1-\beta(1-p_L)}$. The platform has to choose the price to issue. The new element here is having to choose between issuing to frequent consumers with a high price and issuing to everyone with a low price.

Pooling Equilibrium: Low price, broad consumer base: If the platform wants everyone to buy its tokens, the price needs to be $\frac{\beta p_L}{1-\beta(1-p_L)}$.

31 With tradability, the effective discount rate is always $\beta^\frac{1}{\gamma}$ regardless of the consumption probabilities. Without tradability, the effective discount of is lower with consumption heterogeneity as shown in Proposition 6. Thus, Proposition 7 is a tighter inequality than Proposition 1.

32 In the pooling equilibrium case, the platform may not want to issue the token one period ahead if
Under a pooling equilibrium, consumption heterogeneity makes the issuer worse off since the infrequent consumers drag down the token price.

\[
\frac{\beta p_L}{1 - \beta(1 - p_L)} < \frac{\beta p}{1 - \beta(1 - p)}
\]

Separating Equilibrium: **High price, narrow consumer base**: If the issuer only wants to cater frequent consumers only, the token price will be offered at \(\frac{\beta p_H}{1 - \beta(1 - p_H)}\)

Intuitively, the platform should cater to frequent consumers (set a high price that only frequent consumers take up) only when there is a significant gap between the probabilities for high and low types. The issuer chooses the separating equilibrium if and only if

\[
\frac{\beta p_L}{1 - \beta(1 - p_L)} < \frac{1}{2} \left(\frac{\beta p_H}{1 - \beta(1 - p_H)} + \frac{\beta^* p_L}{1 - \beta^*(1 - p_L)} \right)
\]

Proposition 9 (ICO+SCO Revenue Dominance with Heterogeneity): Heterogeneity reduces the discounted revenue of ICO+SCO issuance (See Appendix for the proof).

\[
Rev_{ICO+SCO,Hetero} < Rev_{ICO+SCO,Homo}
\]

Comments: Proposition 9 verifies that the consumption probability heterogeneity makes the issuer earns strictly less revenue regardless of the issuance policy. Under a pooling equilibrium, infrequent consumers reduce the token price and make issuers unable to extract

\[
\frac{\beta p_L}{1 - \beta(1 - p_L)} < \frac{1}{2} \left(\frac{\beta p_H}{1 - \beta(1 - p_H)} + \frac{\beta^* p_L}{1 - \beta^*(1 - p_L)} \right)
\]

The welfare gain from token issuance is only from frequent consumers,

\[
\frac{1}{2} \left(\frac{\beta p_H}{1 - \beta(1 - p_H)} - \frac{\beta^* p_H}{1 - \beta^*(1 - p_H)} \right)
\]

The revenue under separating equilibrium is

\[
g(p_H, p_L) = \frac{1}{2} \left(\frac{1 - \beta^*(1 - p_H)}{1 - \beta(1 - p_H)} \frac{\beta p_H}{1 - \beta(1 - p_H)} + \frac{\beta^* p_L}{1 - \beta^*(1 - p_L)} \right)
\]

Frequent Consumers with tokens Infrequent Consumers without tokens
surplus from frequent consumers. Under a separating equilibrium, the issuer has to forgo half population in the token issuance and gain less from token issuance.

6.4 Price Menu Policies

The price menu mechanism enables the separating equilibrium where frequent consumers buy more tokens at a higher average price, and infrequent consumers buy fewer tokens at a lower average price (or even excluded in the token market when \(p_L \) is small enough). The optimal issuance policy can involve a separating equilibrium if the price discrimination provides sufficient profit in the token revenue. We provide the condition for the separating equilibrium existence and its derivation in Appendix 2.4.

7 Conclusion

In this paper, we have studied to what extent large retailer platforms might have an advantage in issuing non-interest bearing digital tokens (currencies) by leveraging the fact that there are many consumers who are regular buyers, and who might find in-platform tokens appealing and convenient, while potentially both saving the platform fees paid to financial intermediaries as well as generating revenues of their own through a net interest margin.

Our core finding is that it many cases, it may be advantageous to the platform to issue non-tradable tokens rather than tradable ones, even if that means foregoing ideas of creating a prototype currency, unless the prototype currency can be expected to create significant convenience yield. Non-traded tokens give the platform the ability to implement more sophisticated pricing strategies (for example a price menu approach), or to incorporate memory features.

\[\text{34Korcherlakota, 1998 emphasizes that today's fiat currency has only very limited memory features.}\]
It is important to recognize that at the end of the day, a great deal depends on regulation, taxation, and other policy choices affecting not only technology companies but financial firms. As Demirgüç-Kunt and Huizinga (2000) show bank data across 80 countries, the net interest margin banks are able to earn (the difference between their deposit and lending rates) depends on an enormous range of factors, including both explicit and implicit taxation, leverage, market concentration, deposit insurance regulation, macroeconomic conditions and many other factors. But the potential in digital platform currencies will also depend on questions such as the future of data regulation, anti-trust policy, etc. Nevertheless, the simple benefit for platforms we look at here (net interest margin) is certainly an important one, especially if, as we assume, digital tokens give retailer platforms access to some of the same kind of low interest-rate lenders that banks have so long profited from.

Importantly, our analysis has focused mainly on non-interest bearing tokens; if tokens can pay market interest, this can solve many of the problems we have analyzed, and this is certainly one solution. However, as discussed in the text, a pledge to pay market interest has its own issues, with implications for taxation, regulation, credibility, governance, and implementation. We have also illustrated the possibility of paying a market return by issuing security tokens, an important topic for future research.

As for other possible future research topics, the model presented here allows one to analyze a hierarchy of platforms depending on the frequency with which the consumer accesses them, and potentially also the size of transactions, and therefore how such differences might affect platform strategies when it comes to token/coin issuance. The huge range of cryptocurrencies that have been issued to date, with ties to everything from social networking to real estate provide fertile ground for empirical analysis. The last part of our paper introduces a number of issues related to heterogeneity, but this is a topic warranting much deeper analysis.
Reference

Appendix: Proposition Proofs

Proof of Proposition 1: The effective discount factor of non-tradable ICO token is higher that of tradable ICO token

\[\beta_{\text{non-tradable}} > \frac{\beta p}{1 - \beta (1 - p)} \]

Rewrite the equation, we need to show

\[\iff \beta p > \beta \frac{1}{p} - \beta \frac{1}{p} (1 - p) \quad p \geq 0 \]

Define a function

\[f(\beta) = \beta p - \beta \frac{1}{p} + \beta \frac{1}{p} (1 - p) \]

and note that \(f(0) = 0 \) and \(f(1) = 0 \).

\[f'(\beta) = p - \frac{1}{p} \beta \frac{1}{p}^{-1} + (1 + \frac{1}{p}) \beta \frac{1}{p} (1 - p) \]

\[f''(\beta) = \frac{1}{p} (\frac{1}{p} - 1) \beta \frac{1}{p} - 2 + (1 + \frac{1}{p}) \frac{1}{p} \beta \frac{1}{p - 1} (1 - p) = \beta \frac{1}{p} - 2 \frac{1}{p} (\frac{1}{p} - 1)((1 + \frac{1}{p}) \beta p - 1) \]

Note that when \(\beta < \frac{1}{1+p} \), then \(f'(\beta) \) is monotonically decreasing, but increasing when \(\beta > \frac{1}{1+p} \). \(f'(0) = p > 0 \) and \(f'(1) = 0 \). Thus there exists a unique \(\hat{\beta} \) such that \(f'(\hat{\beta}) = 0 \).

Since \(f'(0) > 0 \), there must be a small interval around 0 where \(f > 0 \). We can then prove that \(f(\beta) > 0 \) in the interval \(\beta \). If there is another root \(\beta \in (0,1) \), then we can find a pair \(\beta_1, \beta_2 \in (0,1) \) such that \(f'(\beta_1) = f'(\beta_2) = 0 \). But this violates the uniqueness of \(\beta \). Thus \(f(\beta) > 0 \) holds when \(\beta \in (0,1) \).
Proof of Proposition 4: Non-tradable ICO dominance over ICO+SCO

For notational simplicity, denote \(a = \frac{\beta p}{1 - \beta(1-p)} \), \(a^* = \frac{\beta^* p}{1 - \beta^*(1-p)} \)

First, we define

\[
M = \left\lfloor -1 + \frac{\sqrt{1 + 8}}{2 - a} \right\rfloor \implies a \in \left[\frac{M^2 + M - 2}{M^2 + M}, \frac{(M + 1)^2 + (M + 1) - 2}{(M + 1)^2 + (M + 1)} \right]
\]

A sufficiently large platform has consumption probability \(p \) so that \(M \geq 3 \) (Note that \(M \) is a function of \(\beta \) and \(p \)).

Then, we only consider \(\beta^* \in (0, \tilde{\beta}^*_1) \) so that

\[
a^* < \min_{M \in \{1, 2, ..., M, M+1\}} (Ma^M - (M - 1)a^{M-1})^\frac{1}{M}
\]

We show that \(\tilde{\beta}^*_1 > 0 \), that is for any \(M \in \{1, 2, ..., M, M+1\} \),

\[
Ma^M - (M - 1)a^{M-1} = Ma^{M-1}(a - \frac{M - 1}{M}) > Ma^{M-1}(a - \frac{M - 1}{M}) \\
\geq Ma^{M-1}(\frac{M^2 + M - 2}{M^2 + M} - \frac{M}{M + 1}) = Ma^{M-1}\frac{M - 2}{M^2 + M} > 0
\]

Second, we use show \(h(\beta^*, \beta) = Rev_{Non-tradableICO} - Rev_{ICO+SCO} \) is monotonically decreasing on \((0, \tilde{\beta}^*_1)\) and the existence of \(\beta^* \leq \tilde{\beta}^*_1 \) so that \(h(\beta^*, \beta) > 0 \) is positive on \((0, \beta^*)\)

Recall the optimality necessary conditions eq. (7) and (8) in Section 3.2:

\(M \) tokens are weakly better than \(M - 1 \) tokens: \(a^M \geq (M - 1)(a^{M-1} - a^M) + a^M \)

\(M + 1 \) tokens are weakly worse than \(M \) tokens: \(a^{M+1} \leq M(a^M - a^{M+1}) + a^{M+1} \)

Rewrite the conditions as bounds of \(a^* \)

\[
a^* \leq Ma^M - (M - 1)a^{M-1}
\]
\[a^{M+1} \geq (M + 1)a^{M+1} - Ma^M \]

By the definition of \(M, 1, 2, ..., M \) cannot be any local optimum. Thus, \(M^* \geq M + 1 \).

The Envelope Theorem implies that

\[
\frac{\partial h(\beta, \beta^*)}{\partial \beta^*} | M = M^* = \frac{p}{(1 - \beta^*)^2} \left(\frac{\beta^* p}{1 - \beta^*(1 - p)} \right)^M + \frac{\beta^* p}{1 - \beta^*(1 - p)} \left(\frac{M - 1}{M} \right) \frac{p}{(1 - \beta^*(1 - p))^2}
\]

\[
= \frac{p}{(1 - \beta^*)^2} \left(\frac{\beta^* p}{1 - \beta^*(1 - p)} \right)^M (1 + M) \frac{1 - \beta^*}{1 - \beta^*(1 - p)} - \frac{\beta p}{1 - \beta(1 - p)}
\]

\[
\frac{\partial h(\beta, \beta^*)}{\partial \beta^*} = a^{M^*} (1 + M^*(1 - a^*)) - a = (M^* + 1)a^{M^*} - M^*a^{M^*+1} - a
\]

This derivative function is monotonically increasing in \(a^* \)

\[
a \frac{\partial h(\beta, \beta^*)}{\partial \beta^*} = (M^* + 1)a^{M^*+1} - M^*a^{M^*+1} - a > 0
\]

Then we apply the optimality conditions into the \(\frac{\partial h(\beta, \beta^*)}{\partial \beta^*} \)

\[
\frac{\partial h(\beta, \beta^*)}{\partial \beta^*} \leq (M^* + 1)(M^*a^{M^*} - (M^* - 1)a^{M^*+1}) - M^*((M^* + 1)a^{M^*+1} - M^*a^{M^*}) - a
\]

\[
= -(M^* + 1)M^*a^{M^*+1} + (2M^* + 1)M^*a^{M^*} - (M^* - 1)(M^* + 1)a^{M^*+1} - a
\]

\[
= -a(a - 1)((M^* + 1)M^*a^{M^*+1} - M^*a^{M^*+1} - 1) - \sum_{i=0}^{i=M^*-3} a^i
\]

We apply the restriction on \(M \) to the last term:
\[(M^* + 1)M^*a^{M^*-1} - M^*2a^{M^*-2} - \sum_{i=0}^{i=M^*-3} a^i \leq (M^* + 1)M^*a^{M^*-1} - (M^*2 + M^* - 2)a^{M^*-2} \]

\[= (M^* + 1)M^*a^{M^*-2}(a - \frac{M^*2 + M^* - 2}{M^*2 + M^*}) < 0 \]

where \(M^* \geq M + 1\) implies \(a - \frac{M^*2 + M^* - 2}{M^*2 + M^*} \leq a - \frac{(M+1)^2+(M+1)-2}{(M+1)^2+(M+1)} < 0\)

Thus, \(\frac{\partial h(\beta, \beta^*)}{\partial \beta^*} < 0\) at the optimal choice of \(M = M^*\) in the interval \((0, \tilde{\beta}^*_1)\). We can easily show that

\[h(\beta^*, \beta)|\{\beta^* = 0\} = \max_M Ma^M - a > M^a|\{M = 1\} - a = a - a = 0\]

If \(h(\beta^*, \beta)|\{\beta^* = \tilde{\beta}^*_1\} \geq 0\), then \(\tilde{\beta}^* = \tilde{\beta}^*_1\).

If \(h(\beta^*, \beta)|\{\beta^* = \tilde{\beta}^*_1\} < 0\), the monotonicity implies a unique \(\tilde{\beta}^* > 0\) so that \(h(\tilde{\beta}^*, \beta) > 0\) in the interval \(\beta^* \in [0, \tilde{\beta}^*_1]\).

We can show non-tradable ICO dominates ICO+SCO for an issuer with \(\beta^*\) is small enough, \(M \geq 3\) and \(\beta^* \in (0, \tilde{\beta}^*_1)\),

Then, we consider two corner cases. When the consumption probability \(p \to 0\) or \(\beta^* \to \beta\), the optimal ICO token issuance is one. In this case, the ICO+SCO dominates the non-tradable ICO.

Proof of Proposition 5: Negative Value of Heterogeneity in Non-Tradable ICO (Convexity)

In this section, we prove that convexity underlies why heterogeneity leads to a lower average price for the same token issuance. See Section 6.1.

Denote \(f(x) = \frac{1}{g(x)}\) and \(g(x) = \log\left(\frac{\beta x}{1-\beta(1-x)}\right)\)

We can show that \(f''(x) = -\frac{g''(x)g(x)^2 - 2g'(x)^2g(x)}{g(x)^4}\). \(g(x) < 0\) \(g'(x) = \frac{1-\beta}{x(1-\beta+\beta x)}\) \(g''(x) = -\frac{(1-\beta)(1-\beta+2\beta x)}{x^2(1-\beta+\beta x)^2} < 0\)

45
Then, we show $f''(x) > 0$:

$$f''(x) \propto g''(x)g(x) - 2g'(x)^2 \propto -(1 - \beta + 2\beta x)\log\left(\frac{\beta x}{1 - \beta + \beta x}\right) - 2(1 - \beta)$$

which is equivalent to showing

$$-\log\left(\frac{\beta x}{1 - \beta + \beta x}\right) > \frac{2(1 - \beta)}{1 - \beta + 2\beta x}$$

First, we show that for $x = 1$

$$-\log\beta > \frac{2(1 - \beta)}{1 + \beta}$$

It is easy to derive:

$$\left(\frac{2(1 - \beta)}{1 + \beta} + \log\beta\right)' = \frac{(1 + \beta)^2}{(1 + \beta)^2} > 0$$

$$\frac{2(1 - \beta)}{1 + \beta} + \log\beta < \left(\frac{2(1 - \beta)}{1 + \beta} + \log\beta\right)|_{\beta=1} = 0$$

Then, we show the following function is monotonically increasing

$$\frac{d}{dx}\frac{2(1 - \beta)}{1 - \beta + 2\beta x} + \log\left(\frac{\beta x}{1 - \beta + \beta x}\right) = \frac{(1 - \beta)^3}{(1 - \beta + 2\beta x)^2(1 - \beta + \beta x)} > 0$$

Thus

$$\frac{2(1 - \beta)}{1 - \beta + 2\beta x} + \log\left(\frac{\beta x}{1 - \beta + \beta x}\right) < \frac{2(1 - \beta)}{1 + \beta} + \log\beta < 0$$

$f(x)$ is a convex function on $p \in [0, 1]$. Applying the convexity of $f(x)$, we have

$$P_{Non-tradableICO,Hetero} = (e^{\frac{2}{T_{PL} + T_{PH}}})^M < \left(\frac{\beta p}{1 - \beta(1 - p)}\right)^M = P_{Non-tradableICO,Homo}$$
Proof of Proposition 6: Negative Value of Heterogeneity in Tradable ICO

In this appendix section, we demonstrate that it is also true that heterogeneity lower token prices when tokens are tradable. This proposition serves the analysis in Section 6.2.

\[
(1 - \beta(1 - P_L)) \frac{\log(1 + \frac{P_L}{2p_H})}{\log(1 - \frac{1}{2p_L})} \beta p_L + \beta(1 - P_L) \frac{\log(1 + \frac{P_L}{2p_H})}{\log(1 - \frac{1}{2p_L})} \beta p_H < \frac{\beta p}{1 - \beta(1 - p)}
\]

Define \(p_H - p = p - p_L = \epsilon \)

\[
\iff \beta(1 - p_L) \frac{\log(1 + \frac{P_L}{2p_H})}{\log(1 - \frac{1}{2p_L})} \beta (1 - \beta) \epsilon < \frac{\beta (1 - \beta) \epsilon}{(1 - \beta(1 - p))(1 - \beta(1 - p_L))}
\]

\[
\iff 2\beta (1 - p_L) \frac{\log(1 + \frac{P_L}{2p_H})}{\log(1 - \frac{1}{2p_L})} < 1 + \frac{\beta \epsilon}{1 - \beta(1 - p)}
\]

\[
\iff \log 2 - \log(\beta(1 - p_L)) \frac{\log(1 + \frac{p_L}{2p_H})}{\log(1 - \frac{1}{2p_H})} < \log(1 + \frac{\beta \epsilon}{1 - \beta(1 - p)})
\]

We define a function

\[
w(\beta, p_L, p_H) = \log(\beta(1 - p_L)) \frac{\log(1 + \frac{p_L}{2p_H})}{\log(1 - \frac{1}{2p_L})} + \log(1 + \frac{\beta \epsilon}{1 - \beta(1 - p)})
\]

First, we show \(w \) is monotonically decreasing in \(\beta \).

\[
\frac{\partial w}{\partial \beta} = \frac{1}{\beta \log(1 - \frac{1}{2p_L})} \left(\frac{\beta^2 \epsilon}{(1 - \beta(1 - p))(1 - \beta(1 - p_H))} \right) < \frac{1}{\beta} \left(-\frac{1}{p + \epsilon} + \frac{\beta^2 \epsilon}{\beta^2 p(p + \epsilon)} \right) < 0
\]

Thus \(w(\beta, p_L, p_H) > w(1, p_L, p_H) = \log(1 - p_L) \frac{\log(1 + \frac{p_L}{2p_H})}{\log(1 - \frac{1}{2p_H})} + \log(1 + \frac{\epsilon}{p}) \)

Step 2: we show \(w \) is monotonically increasing in \(p_H \), that is, equivalently we prove the
following equation holds:

\[
\frac{\partial w}{\partial p_H} = -\frac{\log(1 - p_L)}{\log(1 - \frac{p_L}{2})} \frac{p_L}{(2p_H + p_L)p_H} + \frac{p_L}{(p_H + p_L)p_H} > 0
\]

\[\iff \frac{\log(1 - p_L)}{\log(1 - \frac{p_L}{2})} > \frac{2p_H + p_L}{p_H + p_L}\]

We know \(\frac{2p_H + p_L}{p_H + p_L}\) is monotonically increasing. The positive first-order derivative is equivalent to proving:

\[
\frac{\log(1 - p_L)}{\log(1 - \frac{p_L}{2})} > \frac{2 + p_L}{1 + p_L}
\]

\[\iff (1 + p_L)\log(1 - p_L) - (2 + p_L)\log(1 - \frac{p_L}{2}) > 0\]

Take the first-order derivative,

\[
[\log(1 - p_L) - \frac{1 + p_L}{1 - p_L}] - [\log(1 - \frac{p_L}{2}) - \frac{1 + \frac{p_L}{2}}{1 - \frac{p_L}{2}}]
\]

We show \(h(x) = \log(1 - x) - \frac{1 + x}{1 - x}, x \in [0, 1]\)

\[h'(x) = -\frac{1}{1 - x} - \frac{2}{(1 - x)^2} < 0\]

\(h(p_L) > h(\frac{p_L}{2})\) implies that the first-order derivative is positive, thus, \(w\) is monotonically increasing in \(p_H\). We only need to show the inequality holds when \(p_H \to p_L\):

\[
w(1, p_L, p_H) \geq w(1, p_L, p_L) = \log(1 - p_L) \frac{\log(\frac{3}{2})}{\log(1 - \frac{1}{2p_L})}
\]

Step 3: we show \(\frac{\log(1 - p_L)}{\log(1 - \frac{p_L}{2})}\) is monotonically increasing in \(p_L\).
\[
\frac{1}{1 - \frac{pL}{2}} \log(1 - p_L) > \frac{1}{1 - p_L} \log(1 - \frac{pL}{2})
\]

\[\iff (1 - p_L) \log(1 - p_L) > \frac{1 - \frac{pL}{2}}{2} \log(1 - \frac{pL}{2})\]

We show \(k(x) = \frac{(1-xp_L)}{x} \log(1 - xp_L)\) is monotonically increasing in \(x \in [0, 1]\),

\[k'(x) = -\frac{1}{x^2} \log(1 - xp_L) - \frac{pL}{x} > \frac{xpL}{x^2} - \frac{pL}{x} = 0\]

\(k(1) > k(\frac{1}{2})\) implies the monotonicity of function \(\frac{\log(1-p_L)}{\log(1-p_L/2)}\),

\[\frac{\log(1-p_L)}{\log(1-p_L/2)} > \lim_{pL \to 0} \frac{\log(1-p_L)}{\log(1-p_L/2)} = \frac{1 - pL}{1 - \frac{pL}{2}} = 2\]

Then,

\[w(1, p_L, p_L) \geq 2 \log \left(\frac{3}{2}\right) = \log \left(\frac{9}{4}\right) > \log(2)\]

Given the three steps, \(w(\beta, p_L, p_H) > \log(2)\), eq.(16) holds, which is equivalent to showing the tradable ICO token price with heterogeneity is lower than the price with homogeneity.

Proof of Proposition 7: Effective Discount Factor Dominance with Heterogeneity

This appendix section revisits the discount factor relation in Proposition 1 and proves that the effective discount factor is still lower when tokens are tradable. This proposition serves to support the analysis in Section 6.2.

\[\beta^{\frac{1}{2}} < e^{-(p_L)^2 + (p_H)}\]
The right-hand side is the effective discount factor under agent heterogeneity while the left-hand side the discount factor of tradable token.

When \(p < 0.5 \), the convexity of \(f(x) \) as shown in Proposition 6 implies that the discount factor is higher than the case where \(p_L = 0, p_H = 2p \).

\[
e^{-\frac{2\beta p}{1 - \beta(1 - 2p)}} \geq e^{2log\left(\frac{\beta}{1 - \beta(1 - 2p)}\right)} = \left(\frac{2\beta p}{1 - \beta(1 - 2p)}\right)^2
\]

Applying the formula in Proposition 1,

\[
\left(\frac{2\beta p}{1 - \beta(1 - 2p)}\right)^2 > (\beta^{\frac{1}{2p}})^2 = \beta^{\frac{1}{p}}
\]

When \(p \geq 0.5 \), the discount factor is higher than \(p_L = 2p - 1, p_H = 1 \)

\[
e^{-\frac{2}{f(2p - 1) + f(1)}} \geq e^{-\frac{2}{f(2p - 1) + f(1)}}
\]

After taking logs, we need to prove:

\[
\frac{2}{f(2p - 1) + f(1)} > \frac{1}{p} log\beta
\]

\[\iff (2p - 1) log\left(\frac{\beta(2p - 1)}{1 - \beta + \beta(2p - 1)}\right) > log\beta \]

Similarly, applying the formula in Proposition 1,

\[(2p - 1) log\left(\frac{\beta(2p - 1)}{1 - \beta + \beta(2p - 1)}\right) > (2p - 1) log\left(\beta^{\frac{1}{2p - 1}}\right) = log\beta \]

For \(p_L, p_H \in [0, 1] \) and \(p = \frac{p_L + p_H}{2} \), the discount factor of tradable tokens is lower with agent heterogeneity, that is

\[
\beta^{\frac{1}{p}} < e^{-\frac{2}{f(p_L) + f(p_H)}}
\]
Proof of Proposition 8: ICO Price Dominance with Heterogeneity

This appendix section compares the tradable and non-tradable ICO price when the quantity of tokens outstanding is one. This proposition serves the analysis in Section 6.2.

\[
(1 - \beta(1 - p_L) - \frac{\log(1 + \frac{p_L}{\beta p_L})}{\log(1 - \frac{1}{2} p_L)}) + \beta(1 - p_L) - \frac{\log(1 + \frac{p_L}{\beta p_L})}{1 - \beta(1 - p_H)} < e^{\frac{2}{\beta(1 - p_L)} + \frac{2}{\beta(1 - p_H)}}
\]

Define \(x = \frac{p_L}{1 - \beta(1 - p_L)}\) and \(y = \frac{p_H}{1 - \beta(1 - p_H)}\). We know \(0 < x < y < \beta < 1\).

To rewrite the inequality as a function of \(x, y, \beta\), \(p_L = \frac{1 - \beta}{\beta} \cdot \frac{x}{1 - x}\), \(p_H = \frac{1 - \beta}{\beta} \cdot \frac{y}{1 - y}\), \(p_L = \frac{x(1 - y)}{(1 - x)y}\).

Then, we can rewrite the inequality as

\[
\iff x + \beta(1 - p_L) - \frac{\log(1 + \frac{p_L}{\beta p_L})}{\log(1 - \frac{1}{2} p_L)} (y - x) < e^{\frac{2}{\beta(1 - p_L)} + \frac{2}{\beta(1 - p_H)}}
\]

We only need to prove the following inequality holds for any pair of \((x, y)\).

\[
\iff \frac{\log(\beta(1 - \frac{1 - \beta}{\beta} \cdot \frac{x}{1 - x}))}{\log(1 - \frac{1}{2} \frac{1 - \beta}{\beta} \cdot \frac{x}{1 - x})} > \frac{\log(y - x) - \log(e^{\frac{2}{\log(y)}} \frac{1}{\log(y)} - x)}{\log(1 + \frac{1}{2} \frac{1 - y}{1 - x} y)}
\]

The LHS (left-hand side of the above inequality) is a function of \((\beta, x)\) and the RHS (right-hand side of the above inequality) is a function of \((x, y)\). Then, we show the RHS is monotonically increasing in \(y\). However, it is hard to show it with algebra. We use a graphical proof with the three-dimensional surface in Appendix Figure 1 and the two-dimensional plots in Appendix Figure 2.
The lower bound of RHS is reached with $y \to x$

$$\lim_{y \to x} \frac{\log(y - x) - \log(e^{\frac{2}{\log(y)}} + \log(y) - x)}{\log(1 + \frac{1}{2}(1-x)^2) e^{\frac{1}{\log(y)} - x} \log(y)} = \lim_{y \to x} \frac{\frac{y-x}{2}}{e^{\frac{1}{\log(y)}} - x}$$

$$= \lim_{y \to x} \frac{\log(\frac{y-x}{2})}{\log(\frac{y}{2})} = \log(2) \frac{1}{\log(\frac{y}{2})}$$

The LHS is only about p_L and the minimum of the LHS is achieved at p^*_L where p^*_L satisfies the F.O.C:

$$\frac{1}{\beta(1 - p^*_L)} \beta \log(1 - 0.5p^*_L) = \frac{0.5}{(1 - 0.5p^*_L)} \log(\beta(1 - p^*_L)) \rightarrow \frac{\log(\beta(1 - p^*_L))}{\log(1 - 0.5p^*_L)} = \frac{2 - p^*_L}{1 - p^*_L}$$

We substitute the F.O.C into the LHS:

$$\frac{\log(\beta(1 - 1 - \frac{1-\beta}{\beta^{1-x}}))}{\log(1 - \frac{1-\beta}{\beta^{1-x}})} = \frac{\log(\beta(1 - p_L))}{\log(1 - 0.5p_L)} \geq \frac{\log(\beta(1 - p^*_L))}{\log(1 - 0.5p^*_L)} = \frac{2 - p^*_L}{1 - p^*_L} \geq 2$$

$$\frac{9}{4} > 2 \rightarrow 2\log\left(\frac{3}{2}\right) > \log(2) \rightarrow 2 > \frac{\log(2)}{\log\left(\frac{3}{2}\right)}$$

$$LHS \geq 2 > \frac{\log(2)}{\log\left(\frac{3}{2}\right)} = \lim_{y \to x} RHS \geq RHS$$

This inequality holds for any pair (p_L, p_H), which implies that the tradable ICO token price is still lower than the non-tradable ICO token price with agent heterogeneity.
Appendix Figure 1

Appendix Figure 2
Proof of Proposition 9: ICO+SCO Revenue Dominance with Heterogeneity

This appendix section shows that the platform earns less revenue with agent heterogeneity regardless of issuance policy. This proposition serves the analysis in Section 6.3.

Consider a small perturbation

\[
g(p_H + \epsilon, p_L - \epsilon) - g(p_H, p_L) \propto \frac{1 - \beta^*(1 - p_H)}{1 - \beta(1 - p_H)} \beta - \beta^* > \frac{1 - \beta^*(1 - 2)}{1 - \beta(1 - 2)} \beta - \beta^* = \frac{\beta - \beta^*}{1 + \beta} > 0
\]

That says, given only catering to frequent consumers, a platform would prefer a more widespread consumption probabilities.

\[
g(p_H, p_L) < g(2p, 0) = \frac{1 - \beta^*(1 - 2p)}{1 - \beta(1 - 2p)} \frac{\beta p}{1 - \beta^*} < \frac{1 - \beta^*(1 - p)}{1 - \beta(1 - p)} \frac{\beta p}{1 - \beta^*}
\]

The revenue from “High price, narrow consumer base” is strictly lower than the revenue when agents are homogeneous. As we already showed, the issuer also earns a lower revenue from the “Low price, broad consumer base”. Thus, the issuer is worse off with consumption frequency heterogeneity.
Appendix 2: Other Derivations

Appendix 2.1: Monotonicity of Non-tradable ICO Optimal Issuance

This section shows that the optimal issuance M^* of non-tradable ICO tokens is weakly decreasing in β^* when the optimal issuance is larger than one.

We consider a local optimum M_{local} which satisfies the equations (7) and (8), where M^* is a local optimum that achieves the largest discounted revenue.

We first show $F(M) = Ma^M - (M-1)a^{M-1}$ is monotonically decreasing for any integer in the range $M \in [1, \bar{M}]$ where $F(M) \geq 0$\footnote{\textit{F}(M) > 0 says that issuing an extra token can bring positive token revenue without considering the loss from fiat money revenue. $F(M) > 0$ pins down the relevant choice set of M.}. Consider:

\[
F(M) - F(M-1) = a^{M-2}[Ma^2 - 2(M-1)a + (M-2)] = a^{M-2}[Ma - (M-2)](a-1)
\]

In the range of $F(\bar{M}) \geq 0$ (that is $a \geq \frac{\bar{M}-1}{\bar{M}}$), we can show

\[
[Ma - (M-2)] \geq M\frac{\bar{M} - 1}{\bar{M}} - (M-2) \geq M\frac{M - 1}{M} - (M-2) = 1 > 0
\]

Also, $(a-1) < 0$ by definition. We know $F(M) < F(M-1)$ for any $M \in [1, \bar{M}]$. Then, we can define $a = \frac{\beta^*p}{1 - \beta^*(1-p)}$, the equations (7) and (8) can be rewritten as

\[
F(M_{local}) > [\frac{\beta^*p}{1 - \beta^*(1-p)}]^{M_{local}}
\]
\[
F(M_{local} + 1) < [\frac{\beta^*p}{1 - \beta^*(1-p)}]^{M_{local}+1}
\]

For any lower β^*, the equation (7) must still holds. The equation (8) might be violated. If equation (8) holds, M is still an local optimum. With a lower β^*, equation (8) can be violated, that is, issuing an extra token ($M_{local} + 1$ tokens in total) is desirable. We also
know that, when $M \to \infty$,

$$F(M) < 0 = \lim_{M \to \infty} \left[\frac{\beta^* p}{1 - \beta^*(1 - p)} \right]^M$$

There must exist a $\hat{M}_{local} \geq M_{local} + 1$ so that

$$F(\hat{M}_{local}) > \left[\frac{\beta^* p}{1 - \beta^*(1 - p)} \right]^{\hat{M}_{local}}$$

$$F(\hat{M}_{local} + 1) < \left[\frac{\beta^* p}{1 - \beta^*(1 - p)} \right]^{\hat{M}_{local} + 1}$$

When β^* decreases, we can always find a larger new optimum for any local optimum. Thus, a lower β^* (better outside investments) incentivizes the platform to issue more tokens.

Appendix 2.2: Rolling membership

In our framework, membership, as a long-term commitment, can be used to back a platform currency. The membership currency allows token holders to consume unit commodities within the membership period. We have already considered the case of life membership, which allows the platform to extract the maximum surplus from the consumer, but potentially entails credibility issues. In this section, we consider shorter membership periods. A familiar example is Spotify. Spotify buys copyrights from music producers and provides membership to consumers. Consumers can listen to a range of music whenever they want within a limited period. One major advantage of membership currencies is that a platform can lock in consumption for a certain period without having to provide an implicit interest rate in the form of a rising price. We show that membership issuance policy has similar properties to a price menu ICO mechanism, albeit with certain differences we shall detail below.
The value of membership currency can be written down in marginal claims as well:

\[
P_{ICO,\text{Membership}} = \sum_{n=1}^{N} \sum_{M \leq n} P_{n,M} = \sum_{n=1}^{N} \sum_{M \leq n} \beta^n \left(\frac{n-1}{M-1} \right) p^M (1-p)^{n-M} = \sum_{n=1}^{N} \beta^n p = \beta p \frac{1 - \beta^N}{1 - \beta}
\]

(17)

One unit of membership currency can satisfy all individual demand for \(N \) periods.

To make the price comparable with the ICO and the ICO + SCO discussed above, we consider two cases: a. A one-time fixed, finite-term ICO membership token, that is to issue membership tokens available for \(\frac{M}{p} \) periods (\(M \) unit commodities are consumed under membership) and then switch back to fiat money after. b. ICO+SCO membership token, that is to issue membership tokens available for \(\frac{M}{p} \) periods and then issue again whenever senior tokens expire.

For the ICO membership issuance, the discounted revenue is

\[
Rev_{ICO,\text{Membership}} = \beta p \frac{1 - \beta^N}{1 - \beta} + \beta^M p \frac{1 - \beta^M}{1 - \beta^*}
\]

For the SCO membership issuance, the discount revenue is

\[
Rev_{ICO+SCO,\text{Membership}} = P_{N,\infty} \frac{1 - \beta^M}{1 - \beta^*} = \beta p \frac{1 - \beta^M}{1 - \beta^*} \frac{1 - \beta^M}{1 - \beta^*}
\]

The discounted values of ICO / ICO+SCO membership issuance are close to the non-tradable ICO / ICO+SCO that employ a price menu mechanism correspondingly. With the ICO issuance, the membership token gains slightly more revenue from the token issuance, but slightly less revenue in fiat money.\(^36\) With the ICO+SCO issuance, the revenue ratio

\(^36\)\(P_{ICO,\text{Membership}} \) represents the price of the ICO membership currency valid for \(N \) periods.

\(^37\)We compute the revenue difference:

\[
Rev_{ICO,\text{Membership}} - Rev_{ICO,\text{Price-Menu}} = [\frac{\beta^M p}{1 - \beta^* (1-p)} - \beta^* p (1 - \beta^M)] p \left[\frac{\beta^M p}{1 - \beta^*(1-p)} - \beta^* p (1 - \beta^M) \right] \frac{1 - \beta^M}{1 - \beta}
\]

Define \(h(\beta) = \frac{\beta^M p}{1 - \beta^* (1-p)} - \beta^* p (1 - \beta^M) \) and pick \(p = 0.5 \) and \(m = 10 \). The range of \(h(\beta) \) is \((-0.015, 0]\). In
of the membership issuance to the price-menu issuance is approximately one.

\[\text{Rev}_{ICO,\text{Membership}} \approx \text{Rev}_{ICO,\text{Price-menu}} \]

\[\text{Rev}_{ICO+SCO,\text{Membership}} \approx \text{Rev}_{ICO+SCO,\text{Price-menu}} \]

The most prominent advantage of membership is the simplicity: a single price is sufficient to claim the entire surplus from consumers. Tradability does not matter in this scenario since everyone shares the same willingness to pay to depend solely on the valid periods remaining. The main caveat is the moral hazard; that is, consumers may over-consume with the membership or claim the goods and resale to other consumers without the membership. The membership currency is only applicable to industries with modest or zero marginal cost or non-transferable products, e.g., music and movies.

Appendix 2.3: Solution of Tradable ICO Price with Heterogeneity

This section solves the closed-form solution for the tradable ICO token price under heterogeneity as the section 6.2. The price path would be the following: Before period \(\frac{M-1}{p} \), the token price appreciates at the interest rate. From period \(\frac{M-1}{p} \) to the period when only frequent consumers hold tokens, infrequent consumers have at most one token left in hands and start to pay for the platform consumption with fiat money (The token usage speed also slows down). When only frequent consumers hold tokens (\(\frac{1}{2} \) tokens remain this case, the revenue gap is no more than 1.5 percent of the total revenue difference between the first-best (\(\frac{\beta p}{1-\beta^*} \)) and the revenue with no token issuance (\(\frac{\beta^* p}{1-\beta^*} \)).

We calculate the revenue ratio of the ICO + SCO tokens:

\[
\frac{\text{Rev}_{ICO+SCO,\text{Membership}}} {\text{Rev}_{ICO+SCO,\text{Price-menu}}} = \frac{1 - \beta M}{1 - \beta^* M} > 1 - \beta^{*}\frac{M}{1-\beta(1-p)}
\]

The ratio \(\frac{\text{Rev}_{ICO+SCO,\text{Membership}}} {\text{Rev}_{ICO+SCO,\text{Price-menu}}} \approx 1 \). Define a function \(g(\beta) = \frac{\frac{\beta p}{1-\beta^*} M}{\beta p} \). For example, we pick \(p = 0.5 \) and \(m = 10 \), the ratio ranges from 1 to 1.02 when \(\beta \in (0,1) \). The narrow range of \(g(\beta) \) bounds close to 1.
in the economy), the token price will be \(\frac{\beta p_H}{1-\beta(1-p_H)} \). The price path described above is the unique equilibrium for stable tokens under agent heterogeneity.\(^{39}\)

From period \(\frac{M-1}{p} \) to the period when only frequent consumers hold tokens, infrequent consumers are indifferent between selling the token to frequent consumers or hold the token for future personal consumption, that is,

\[P_t = \beta[(1 - p_L)P_{t+1} + p_L] \tag{18} \]

The next question is to compute the number of periods for the \(\frac{1}{2} \) tokens are depleted so that no infrequent consumer holds any token. Define \(x(t) \in (0.5, 1) \) is the quantity of tokens left in the economy. As long as there are any tokens being held by infrequent consumers, there must be \(\frac{1}{2} \) hold by frequent consumers and \(x(t) - \frac{1}{2} \) left in the hands of infrequent consumers (Otherwise, an infrequent consumer will sell her token to a frequent consumer in the trading phase).

In period \(\frac{M-1}{p} \), the quantity of tokens outstanding \(x(0) = 1 \). From period \(t \) to \(t + 1 \), there are \(\frac{1}{2}p_H + \frac{1}{2}(x(t) - \frac{1}{2})p_L \) being used in this period. Thus,

\[x(t + 1) = x(t) - \frac{1}{2}p_H - \frac{1}{2}[x(t) - \frac{1}{2}]p_L \]

We can solve the expression of \(x(t) \),

\[x(t + 1) + \frac{p_H}{p_L} - \frac{1}{2} = (1 - \frac{1}{2}p_L)(x(t) + \frac{p_H}{p_L} - \frac{1}{2}) \]

\(^{39}\)The infrequent consumers do not sell the last token to the frequent consumers before the period \(\frac{M-1}{p} \) because they know the token will appreciate at the interest rate and they can get an extra benefit if a consumption shock hits in the next period. As long as the token is tradable, there is no reason for any consumer to stay out of the market. In the period \(\frac{M-1}{p} \), is it possible that infrequent consumers have already sent frequent consumers? This is not an equilibrium either. When an infrequent consumer knows at least one frequent consumer is holding another token, she knows that the token price will continue to appreciate by the interest rate over the next period. The infrequent consumer would prefer to keep the last token today since they would gain the interest rate plus the value of consumption lottery. Thus, the only equilibrium is one where infrequent consumers are indifferent between holding the last token or not. The frequent consumers would only buy a token from the market whenever she runs out of the token.
\[x(t) = (1 - \frac{1}{2}p_L)^t (\frac{p_H}{p_L} + \frac{1}{2}) - \frac{p_H}{p_L} + \frac{1}{2} \]

Denote \(\gamma \) is the number of periods to deplete tokens among infrequent consumers. Then \(\gamma \) should be the smallest integer so that

\[x(\gamma) \leq \frac{1}{2} \]

\[\gamma = -\left\lfloor \frac{\log(1 + \frac{p_L}{2p_H})}{\log(1 - \frac{1}{2}p_L)} \right\rfloor \quad (19) \]

Combining eq.(18) and eq.(19), we can write the price in period \(P_{\frac{M-1}{p}} \) as a weighted average WTP of frequent and infrequent consumers:

\[P_{\frac{M-1}{p}} = (1 - \beta^\gamma (1 - p_L)^\gamma) \frac{\beta p_L}{1 - \beta (1 - p_L)} + \beta^\gamma (1 - p_L)^\gamma \frac{\beta p_H}{1 - \beta (1 - p_H)} \]

Where \(\gamma \) represents the number of periods until only frequent consumers hold tokens solved above. The token price under heterogeneity is

\[P_{ICO, Tradable, Hetero} = \beta \frac{M-1}{p} [(1 - \beta^\gamma (1 - p_L)^\gamma) \frac{\beta p_L}{1 - \beta (1 - p_L)} + \beta^\gamma (1 - p_L)^\gamma \frac{\beta p_H}{1 - \beta (1 - p_H)}] \]

Appendix 2.4: Separating Equilibrium of Price Menu with Heterogeneity

This appendix section formalizes our discussion in Section 6.4 and derives the condition when a separating equilibrium strictly dominates the pooling equilibrium; that is, if price menu is allowed, the platform offers a price menu so that frequent consumer buy more tokens at a higher price while the infrequent consumers buy fewer tokens at a lower price, rather than the same price and quantity.

To maintain a separating equilibrium, the following two incentive constraints and two
participation constraints need to be satisfied:

For frequent consumers,

$$\sum_{i=1}^{M_H} \left(\frac{\beta p_H}{1 - \beta(1 - p_H)} \right)^i - M_H P_H \geq \sum_{i=1}^{M_L} \left(\frac{\beta p_H}{1 - \beta(1 - p_H)} \right)^i - M_L P_L \quad (IC)$$

WTP for M_H Tokens \quad WTP for M_L Tokens

$$M_H P_H \leq \sum_{i=1}^{M_H} \left(\frac{\beta p_H}{1 - \beta(1 - p_H)} \right)^i \quad (PC)$$

For infrequent consumers,

$$\sum_{i=1}^{M_L} \left(\frac{\beta p_L}{1 - \beta(1 - p_L)} \right)^{M_L} - M_L P_L \geq \sum_{i=1}^{M_H} \left(\frac{\beta p_L}{1 - \beta(1 - p_L)} \right)^i - M_H P_H \quad (IC)$$

WTP for M_L Tokens \quad WTP for M_M Tokens

$$M_L P_L \leq \sum_{i=1}^{M_L} \left(\frac{\beta p_L}{1 - \beta(1 - p_L)} \right)^i \quad (PC)$$

The total discounted revenue is

$$Rev = \frac{1}{2} \left[M_H P_H + M_L P_L + \frac{\beta^* p_H}{1 - \beta^*} \left(\frac{\beta^* p_H}{1 - \beta^*(1 - p_H)} \right)^{M_H} + \frac{\beta^* p_L}{1 - \beta^*} \left(\frac{\beta^* p_L}{1 - \beta^*(1 - p_L)} \right)^{M_L} \right]$$

Token Revenue \quad Fiat Money Revenue

The optimal token prices for frequent and infrequent consumers are

$$P_H = \frac{M_L P_L + \sum_{i=M_L+1}^{M_H} \left(\frac{\beta p_H}{1 - \beta(1 - p_H)} \right)^i}{M_H}$$

$$P_L = \frac{\sum_{i=1}^{M_L} \left(\frac{\beta p_L}{1 - \beta(1 - p_L)} \right)^i}{M_L}$$
We plug in \(M_H = 2M - M_L \) and rewrite the revenue as a function of \(M_L \):

\[
\text{Rev}(M_L) = 2 \sum_{i=1}^{M_L} \left(\frac{\beta p_L}{1 - \beta(1 - p_L)} \right)^i + \sum_{i=M_L+1}^{2M-M_L} \left(\frac{\beta p_H}{1 - \beta(1 - p_H)} \right)^i + \frac{\beta^* p_H}{1 - \beta^*} \left(\frac{\beta^* p_H}{1 - \beta^*(1 - p_H)} \right)^{2M-M_L} + \frac{\beta^* p_L}{1 - \beta^*} \left(\frac{\beta^* p_L}{1 - \beta^*(1 - p_L)} \right)^{M_L}
\]

If we neglect the discrete choice of \(M_L \) and \(M_H \), we write the first-order derivative at point \(M_L = M_H = M \). The first term is the loss of token issuance by pooling two types in a pooling equilibrium. The second term is the gain in fiat money revenue by persuading infrequent consumers to buy more tokens (that is, the platform can get cash from frequent consumers sooner).

\[
\frac{d\text{Rev}(M_L)}{dM_L} \bigg|_{M_L=M} = 2\left[\left(\frac{\beta p_L}{1 - \beta(1 - p_L)} \right)^M - \left(\frac{\beta p_H}{1 - \beta(1 - p_H)} \right)^M \right] + \left[\left(\frac{\beta^* p_H}{1 - \beta^*(1 - p_H)} \right)^M - \left(\frac{\beta^* p_L}{1 - \beta^*(1 - p_L)} \right)^M \right]
\]

Loss from Token Revenue
Gain from Fiat Money Revenue

The platform would prefer to choose a separating equilibrium if the platform can gain sufficiently large profit from discriminating consumers in the token revenue, at the cost of revenue in future fiat money revenue. The condition is

\[
\text{For frequent consumers,} \\
M_H p_H - M_L p_L \leq \sum_{i=M_L}^{M_H} \left(\frac{\beta p_H}{1 - \beta(1 - p_H)} \right)^i
\]

\[
\text{For infrequent consumers,} \\
M_L p_H - M_L p_L \geq \sum_{i=M_L}^{M_H} \left(\frac{\beta p_L}{1 - \beta(1 - p_L)} \right)^i
\]

The optimal \(M_L \) is pinned down by the F.O.C

\[
0 = \frac{d\text{Rev}(M_L)}{dM_L}
\]

\[40\text{ The optimal issuance policy} (M_L, M_H, p_L, p_H) \text{ can be solved from the revenue maximization problem with incentive constraints and participation constraints.} \]

\[41\text{ In a pooling equilibrium, every consumer chooses the price quantity-price pair} \ (M, \sum_{i=1}^{M} \left(\frac{\beta p_L}{1 - \beta(1 - p_L)} \right)^i). \]

\[42\text{ A platform would choose the pooling equilibrium for sure if} \ \beta^* < \beta = 1. \]
\[
\left(\frac{\beta^* p_H}{1-\beta^* (1-p_H)}\right)^M - \left(\frac{\beta^* p_L}{1-\beta^* (1-p_L)}\right)^M < 2
\]