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Abstract 
 

There is growing evidence for wide variation in productivity across hospitals, with large differences in risk-
adjusted health outcomes as well as expenditures. In this paper, we consider the contribution of misallocation in 
input choices – the underuse of effective inputs and overuse of ineffective ones -- to explain why some hospitals 
get better outcomes at lower cost. We use a sample of 1.7 million patients in the Medicare fee-for-service 
population with acute myocardial infarction (AMI), or heart attacks, during 2007-17.  The problem of 
confounding health factors is addressed in several ways, including the use of tourists, whose assignment to 
hospitals resembles random assignment (Doyle, 2011), and ZIP-code fixed effects.  Briefly, we find that 
misallocation accounts for as much as 22 percent of risk-adjusted survival rates across hospitals. Greater use of 
highly effective inputs, such as beta blocker, statin, and ACE/ARB drug treatments, primary care support, and 
stenting are predictive of highly-productive hospitals, while an excess of unnecessary scans and potentially 
fraudulent home health care are generally predictive of low-productivity hospitals.  
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I. Introduction 

 There is increasing evidence of widespread differences across regions and hospitals in both 

intensity of care as well as health care quality (e.g., Finkelstein et al., 2016, 2019; Fisher et al., 2003a,b, 

Wennberg, 2010; Baicker and Chandra, 2004a; Doyle et al., 2015, 2017; Yasaitis et al., 2014; Deryugina 

and Molitor, 2018; Romley et al., 2011).   Much of the debate has surrounded whether there is a 

positive, negative, or zero association between overall spending and health outcomes, with the implicit 

interpretation that the coefficient is stimating the slope of the production function for health care, thus 

addressing the question of whether U.S. health care is allocatively efficient (Garber and Skinner, 2008). 

Two recent studies noted that these wide variations in spending and outcomes might be better 

understood as hospital-based differences in total factor productivity (TFP), finding evidence of strong 

differences in productivity across hospitals, as well as rising market share for the most productive 

hospitals (Chandra et al., 2016a,b).  

 In this paper, we adopt this productivity framework, and consider both allocative and productive 

efficiency in health care production by allowing for the misallocation of inputs (or treatments), whether 

through underuse of effective inputs or the overuse of ineffective inputs, or both (Restuccia and 

Rogerson, 2017; David et al., 2016).  In a classic study, Hsieh and Klenow (2009) found that input 

misallocation (relative to a US benchmark) explained between 30-60% of TFP differences in Indian and 

Chinese manufacturing; Restuccia and Rogerson (2008) similarly found between 30-50% of 

productivity differences accounted for by (implicit) price distortions leading to suboptimal input 

choices. In health care, Skinner and Staiger (2015) showed that differences in input choices for highly 

effective beta blockers across hospitals could similarly explain long-term productivity gaps in outcomes, 

and the “Choosing Wisely” campaigns in health policy focus on identifying low-value health services 

(Colla et al., 2015). While the detection of misallocation has proven controversial in the productivity 
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literature (e.g., Haltiwanger et al., 2018), our measurement of physical inputs and well-measured 

outcomes (e.g., survival) allows for a novel test of misallocation in the health care sector.  

 To formalize the idea of misallocation in health care, we draw on Chandra et al. (2016a) but 

expand the model to allow for misallocation because of informational asymmetries, physician beliefs, or 

other types of distortions regarding highly effective or ineffective care.  We develop an estimation 

equation that implies that, under the null hypothesis of optimized inputs, constant Medicare prices, and a 

common production function, the choice of factor inputs are orthogonal to TFP conditional on total 

expenditures.  Thus including specific input choices, as well as expenditures, on the right-hand side of 

the equation provides information on the degree of input misallocation across hospitals.1  One clear 

implication of this model is that in the presence of misallocation, conventional regression approaches 

that seek to estimate “the” association between spending and outcomes (e.g., Doyle et al., 2015, 2017; 

Doyle, 2011; Wennberg et al., 2002; Fisher et al., 2003a,b) are misspecified, with the bias depending on 

the correlation across different categories of inputs.  

 The model is tested by considering the entire population of 1.7 million elderly (age 65+) fee-for-

service Medicare enrollees with acute myocardial infarction (AMI), or heart attacks during 2007-2017, 

along with a subset of 123,984 “tourists,” or people admitted to hospital far from home, as in Doyle 

(2011).   We choose inputs based on clinical evidence regarding their effectiveness in improving health 

outcomes in a cost-effective way. As in Chandra and Skinner (2012) (see also Wennberg, 2010), we 

consider cost-effective “Category I” inputs such as statins, primary-care within 14 days of discharge, or 

same-day stents. “Category II” inputs are those with heterogeneous treatment effects – for example, the 

first physician visit or scan is probably more valuable than the 47th, while “Category III” treatments that 

 
1 Another potential explanation for a finding that input choice affects outcomes is that hospitals differ with regard 
to their production functions, as in Chandra and Staiger (2007); we consider this case in more detail below.   
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are both costly and unlikely, based on clinical evidence, to offer health benefits, such as excessive and 

potentially fraudulent post-acute or home health care (Doyle et al., 2017) and  “Choosing Wisely” 

treatments deemed by professional physician groups to be wasteful (Colla, et al., 2015).  We 

hypothesize that higher use of the often underused “Category I” treatments, and lesser use of the 

“Category III” treatments, will be associated with higher measured productivity, with ambiguous 

predictions for the “Category II” treatments.  

 We also address several econometric challenges related to unmeasured patient health and 

endogenous patient selection.   First, there is the well-known problem of inadequate risk adjustment; 

hospitals may appear to be highly productive when in fact they are treating healthier patients.  We 

include a wide set of risk-adjusters that include both individual measures such as the type and location 

of the AMI (e.g., a subendocardial MI), whether the patient is eligible for low-income drug subsidies 

and/or Medicaid (as in Lewis et al., 2019) , ZIP-level socioeconomic status, and the share of the hospital 

referral region enrolled in Medicare managed care.  

 But a more subtle bias may result; perhaps patients with unmeasured health status seek care at 

one hospital but not another.  While AMI is a disease where every minute counts for treatment, leading 

to patients generally being taken to the nearest hospital (at least conditional on ambulance service; see 

Doyle et al., 2015, 2017), there may be biases with regard to geographic regions if (for example) people 

living in some regions are more likely to smoke than others.  We address this potential problem in two 

ways; we first include ZIP-code fixed effects (e.g., Garthwaite et al., 2019) which remove any place-

based unmeasured factors that may be expected to affect health outcomes; thus the comparison is for 

patients from the same ZIP code admitted to different hospitals (as might happen, for example, in the 

case of ambulance services as in Doyle et al., 2015; 2017). 2 Second, we consider the subset of patients 

 
2 Another approach is to consider movers, as in Song et al. (2010) and Finkelstein et al. (2016); while this sample 
is likely to be small, we plan ton consider the subset of movers in the future.  
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whose heart attack occurred far from home, and are therefore considered to be “tourists” as in Doyle 

(2011).  

  Briefly, we find, like previous studies, a wide range across hospitals in both one-year risk-

adjusted survival rates (with a patient-weighted range from 0.68 in the 10th percentile of hospitals to 

0.75 in the 90th percentile of hospitals), and in price-adjusted spending (between $42,133 in the 10th 

percentile to $52,676 in the 90th percentile).  Similar results are found for Medicare “tourists” who were 

in different hospital referral regions (HRRs) when admitted for their AMI.  

 When we run conventional regressions as in Doyle et al. (2015, 2017) and Doyle (2011), our 

coefficients on spending are roughly consistent, albeit sensitive to regression specification.  But a key 

assumption necessary to interpret these estimates as “the return to health care spending” or the slope of 

the production function, is that input choices are made optimally, an assumption that is strongly rejected 

by the data both in the full sample and for the tourists; hospital-specific inputs have a strong impact on 

productivity measures conditional on total expenditures. The signs of the coefficients are also consistent 

with the model; Category I or highly effective input rates are positively correlated with productivity, 

Category III are negatively correlated, while Category II treatments are in-between, with some 

categories positively associated (late stenting) and others negatively associated (e.g., being in the top 

quartile of hospitals with respect to MRI/CT scans, suggestive of fragmented care).  For tourists, the 

effects are similar although the results are not always significant.  A further implication of the model is 

that when input choices are not optimized, the total level of spending is no longer a summary statistic for 

the intensity of care; instead what matters is how the money is spent.3 That Doyle et al. (2015a) should 

find positive effects of spending on outcomes for acute-care hospital treatments within the first 30 days, 

 
3 This result has a parallel in education, where there is a general lack of association between school 
spending and schooling outcomes, despite evidence that some specific interventions are highly effective 
(Hanushek, 2006). 
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but in Doyle et al. (2017) find no impact of overall spending on outcomes for a one-year horizon, where 

post-acute care is a major component of subsequent spending, is consistent with these results.   

 Quantitatively, we find that hospital-level misallocation can explain as much as 22 percent of 

total variation across hospitals in risk-adjusted one-year survival rates.  In a hypothetical counterfactual, 

moving all hospitals to at least the 90th percentile with regard to efficient use of inputs would lead to a 

reduction of 7.6 percent in mortality.  Policies to reduce misallocation are also quite different from 

conventional approaches that involve trying to measure “value” or total expenditures, since such policies 

would lead to a greater emphasis on monitoring specific inputs, treatments, and other markers for 

productivity to improve health outcomes across hospitals. 

   

II. The Model 

 Following Chandra et al. (2016), we define a hospital-level production function for patient i in 

hospital h as   

i

w hk

ih ih

ih h iw ik
w k

Y Y e

where Y A Z X

ε

ω β

=

   
=    

   
∏ ∏



  (1) 

and the health outcome ihY  is defined (for technical reasons) as the exponent of survival for (e.g.) 30 

days or one year.  Survival in turn is a function of “produced” survival ihY , which depends on hospital-

specific productivity
hA , health and socioeconomic factors iwZ , w = 1,…,W for patient i, and healthcare 

inputs ikX , k = 1,…,K;  the actual outcome is equal to ihY times the (exponential) error term iε .4 

 
4 At the individual level, the actual outcome may be binary, in which case the condition is that Y = 1 if  0Y ≥ and 
is zero otherwise.  Generally, we consider outcomes at the hospital level in which case the outcome will be an 
average.  
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Because we are studying the Medicare program, we assume that prices are constant (except for cost-of-

living differences and other vagaries of the Medicare program) across hospitals.  For the moment, we 

also assume that the production parameters kβ are constant across hospitals. 

 In this model, the hospital system (including physicians, nurses, ancillary health employees, and 

administrators) is the relevant decision-making entity; thus productivity
hA will reflect this complex mix 

of physician skills, diffusion of best practices and guidelines, organizational structure and coordination, 

and other institution-specific factors. Hospitals will obviously differ with regard to such decision-

making, so we allow below systematic errors in decision-making of the institution.  

 Assume that the relevant objective function is: 

h h k hk
k

Y p Xϕ φΩ = −∑   (2) 

where ϕ is the monetary value to society of raising the outcome variable by one unit (which we assume 

is constant across hospitals), hΩ is the hospital-specific benefit for hospital h, and because we are 

focusing here on hospital-level averages, we drop the i subscripts.5   

 A more difficult question is to determine what is the cost function for hospitals?  First assume 

that kp is the social  price of the kth input (assumed constant across hospitals), and that (for the moment) 

1φ = .  Then the hospital is solving for the social optimum, leading to allocative efficiency in the sense 

that the point chosen on the production function exhibits a slope equal to the social value of health.  

 For example, Figure 1 shows a production function for health with an index of health inputs on 

the horizontal axis and survival (or quality-adjusted life years) on the vertical axis.  The optimum 

 
 
5 Note that this measure of net social benefit, which captures both allocative and productive efficiency, is more 
general than the focus purely on productivity hA , or output given a vector of inputs.  
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between A and A’ is shown where the slope of the tangent line is equal to 1/ϕ ; other points are 

allocatively inefficient, representing either too little investment in health (to the left of A’) or too much 

(e.g., H) or even where more spending is harmful to health (J).     

 In the Medicare data during this period, it is not an unreasonable assumption that Medicare 

prices are roughly equal to marginal cost (or average variable cost).  But it may be a less tenable 

assumption that 1φ = given that Medicare spending by the government represents revenue for the 

hospital.6  For example, when 0φ = the hospital ignores cost (or Medicare revenue – or equivalently, 

Medicare reimbursements are equal to marginal cost so hospitals are in financial equipoise) and simply 

maximizes health, leading to Point H in Figure 1; 0φ < corresponds to classic supplier-induced demand 

where hospitals spend more to the detrement of health, leading to Point J.7  Intuitively, conventional 

estimates of the marginal returns to expenditures involves estimating a regression with (exogenous) 

measures of X on the right-side of the equation, and survival or other outcome on the left-side, leading 

to a slope like that shown in Figure 1; depending on the coefficient (and the corresponding cost-

effectiveness), the results are viewed as shedding light as to whether the U.S. is spending too much or 

too little on health care. But in all cases, variation in φ  moves outcomes along a common production 

possibility frontier, which corresponds to measuring allocative inefficiency.   

We now allow either for differences across hospitals in TFP, or for non-optimizing behavior that 

could move hospitals off of the production function in Figure 1; either generalization will lead to invalid 

estimates of “the” slope of the production function.  Under optimizing behavior, the first-order 

 
6 This approach follows Skinner and Staiger (2015).  
 
7 The Cobb-Douglas specification of the production function we use in (1) does not allow for spending more to 
lead to worse outcomes.     
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conditions equate the marginal incremental value of each input kX ,  /h hkY Xϕ
φ
∂ ∂ , with its (adjusted) 

price.  But suppose that there were regulations, or informational barriers, or internal resistance to using 

effective treatments with clear benefits; then:    

/ 0h hk k hkY X pϕ µ
φ
∂ ∂ − = >    (3)  

 In other words, these non-price barriers lead to “underuse” of otherwise effective treatments.8  

Why might this underuse occur?  Information about the value of beta blockers may have been scarce in 

earlier years because of high search costs (e.g., Skinner and Staiger, 2015) or incorrect physician beliefs 

about their effectiveness. Other factors include poor organizational or management structure (e.g., 

Bloom et al., 2014; McConnell et al., 2013) the lack of leaders championing their use (Bradley et al., 

2005), or systematic differences in training environments (Chan, 2020).  We cannot quantify the 

specific causes of underuse but can capture the implicit costs (defined broadly) that would have 

generated the behavior we observe (Westfall et al., 2007).  

 Alternatively, suppose that there were strong financial incentives to “overuse” specific 

treatments because the private gain to the hospital or the providers was so large (e.g., supplier-induced 

demand) or because of incorrect physician beliefs about the marginal productivity of the input (Cutler et 

al., 2019).  In that case, 0hkµ <  , and there is systematic overuse of the low-productivity treatment.9  

For analytical purposes, it is easier to define the distortion as proportional to the price, so that 

(1 )k hk k hkp pλ µ+ ≡ +   (4) 

 
8 Also see Díaz-Hernández et al. (2008) for a similar “shadow price” approach. 
 
9 Note that this is input-specific, and does not represent general overuse, as would be the case if 0φ < for 
example.   
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Thus the proportional input distortions hkλ  are defined implicitly based on actions or decisions by the 

hospital, so they will differ across hospitals (and presumably over time, although in this model we 

assume temporal stability).  

We first derive our estimating equation in the special (nested) case where 0hkλ = , so there is no 

misallocation of factor inputs.  Letting 1 1p =  as the numeraire and referencing production parameters 

kβ we can write: 

1
1

k
kh h

k

X X
p
β
β

 
=  

 
  (5) 

which allows us to write total expenditures M solely as a function of 1X : 

1
1

( )k
h k hk h

k k
M p X X β

β
 

= =  
 

∑ ∑   (6)  

Using the same first-order condition in (5), we can similarly express output solely as a function 

1
1

k
h h h

k k

Y A X
p
β
β

  
=   

  
∏

      (7) 

where hY is “produced” health by the hospital, but is expressed for an average patient (whose risk-

adjustment product w
iw

w

Zω 
 
 
∏  is normalized to 1).   

 This means that normalized output can be written: 

[ ]

[ ]
h k

k
h h

k
k

M
Y A

η

η

 
 
 =

∏
∑

   (8) 
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where 
1

k
k

kp
βη
β

 
=  
 

.   

Finally, we take the log of output Y and represent logged values by lower-case letters: 

ln ln( )h h h k k h
k k

y mα β η η ε ′= + + − +  
∑ ∑   (9) 

and k
k

β β′ =∑ .  We are unlikely to separately identify the terms in the brackets, but we note that all of 

these terms that depend solely on (fixed) Medicare prices and production parameters – are assumed for 

the moment to be constant across hospitals (and independent of TFP), and would therefore be absorbed 

in the constant term.  Under the assumption that hospitals are choosing input prices optimally, hm or 

logged total expenditures, along with the conventionally defined total factor productivity (TFP) 

parameter hα summarizes the predictable (non-random) component of spending.  Small fluctuations in 

inputs choices will, by the envelope theorem, affect both y and m equally, leading to an orthogonality 

condition that when inputs are chosen optimally, and the kβ coefficients are the same across hospitals, 

the specific choice of inputs should not predict outcomes. In the empirical section, we therefore consider 

an F-test for the joint hypothesis that all input variables are zero.  

 In Figure 1, we previously illustrated the inefficiency arising from allocative inefficiency; Figure 

2 illustrates how either differences in TFP or productive inefficiency, can lead to arbitrary correlations 

between spending and outcomes.  Assume two hospitals, A and B, but where we consider expenditures 

(on the horizontal axis) and survival and more generally quality of life (y) on the vertical axis.  In the 

case we consider, where each hospital is at Point A and Point B, expenditures are identical but they 

differ with respect to survival; A gets better outcomes for the same spending level.  There are two at 

least reasons why that might be so.  The first is that TFP explains the entire gap between SA(X*) and 
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SB(X*), explained by more highly skilled physicians (conditional on inputs), nurses, and support staff, 

better administration, and cleaner facilities at Hospital A (e.g., de Vries et al., 2010; Bloom et al. 

(2014); these are shown by the hypothetical production functions that are drawn through A and B, but in 

the case of A, it is shifted up by the difference in TFP.   

The second explanation is independent of TFP; assume for the moment that the two hospitals are 

identical in that respect.  For simplicity, assume there are two distinct technologies for treatment; the 

Category I “green” input is more cost-effective (the green line 0C in Figure 2; at point C the 

effectiveness of the treatment ceases), and the alternative “red” Category III input with little or no net 

health benefit.  While Hospital A uses the first (green) technology up to its maximum potential value, at 

Point C, and then spends additionally on the second technology (the red horizontal line), Hospital B 

does not use the first technology to its fullest extent (only to Point D) before spending more on the less 

effective technology (DB), leading to the same spending level, but with worse outcomes.  In this case, 

misallocation would explain the entire difference in outcomes between Hospitals A and B.   

Figure 2 also illustrates why regressions that attempt to regress outcomes on expenditures may 

not be estimating the slope of the production function (Diaz-Hernandez et al., 2008).  For example, 

suppose that one’s empirical sample comprised of 4 hospitals corresponding to the points D, C, B, and 

D* in Figure 2 – e.g., different hospitals with respect to their adoption of inputs 1 and 2. The different 

points could be explained either by TFP differences, by misallocation, or by both. In either case, a 

conventional regression falsely suggests higher spending “causes” patients to die (e.g., Point J in Figure 

1), even though no patient is being harmed by spending more.  Conversely, a sample comprising points 

C, D, A, and D* would yield a positive regression line, suggesting that any efforts to scale back 

spending would be deleterious to health; again the regression coefficient says nothing about the shape of 

the production function, only the correlation between Category I and Category III treatments at the 
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hospital level.  This is consistent with the findings in Colla et al. (2015) that regional use of low-value 

(Category III) care is positively correlated with regional spending overall. To recover valid estimates, 

one must either allow for hospital-specific productivity measures (as in Skinner and Staiger, 2015, or 

Chandra et al., 2016a) or allow for the presence of misallocation, or both. 

We return to Equation 9 to rewrite in order to allow for misallocation as well as differences in 

TFP across hospitals.     

* *ln ln( )h h h hk hk h
k k

y mα β η η ε ′= + + − +  
∑ ∑  (10) 

where *

1 1

(1 )
(1 )

hk k
hk

h kp
λ βη
λ β

 +
=  + 

.   

 To develop the intuition, consider Hospital B in Figure 2 under the assumption that its lower 

output is the consequence of the underuse of Input 1 (the green technology) and overuse of Input 2 (the 

red technology).  The implicit shadow price for Input 2 is negative, so that the ratio ( 2 1(1 ) / (1 )h hλ λ+ + ) 

is less than one.  It is straightforward to show in the two-input case that when there is a preexisting 

distortion, an increase in the relative price distortion between the two inputs will reduce output 

conditional on expenditures.  Given that higher shadow prices are implied by lower utilization (and 

conversely), we use factor inputs (relative to other hospitals) as measures of misallocation or 

appropriate allocation.   We acknowledge that these estimated coefficients may also capture some 

component of TFP, in the sense that more skilled physicians may also make better input choices.  Thus 

comparing coefficients in our regressions with the corresponding estimates from clinical literature 

provides some bounds on what the coefficients are capturing.  

 Another potential concern is that hospitals may differ with regard to the productivity of their 

inputs; for example as in Chandra and Staiger (2007) where hospital cardiologists skilled in the use of 

percutaneous coronary interventions (PCI) exhibited (optimally) higher rates of use. In the context of 
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our production function, this would correspond to a larger β  for PCI.  In this case, we could observe a 

positive association between high PCI use and outcomes conditional on spending, but it’s not because 

other hospitals with low PCI use are lagging behind or behaving sub-optimally.  

 In the context of the Cobb-Douglas model, we can consider what might the impact be of varying 

values of β  across inputs.  Holding the output elasticity or the sum *β  (that is, the overall log return 

to doubling inputs) constant, it turns out that varying the individual β s has little impact on outcomes, 

even when the quantities of inputs are allowed to vary optimally.10 One can provide a rough test this 

hypothesis, however, by considering whether hospitals with higher measured TFP gain a higher 

marginal return (with regard to survival) for the three input categories (or to *β more generally); we 

consider this below.   

 

III. Data 

 Medicare claims. We created a cohort of patients hospitalized with acute myocardial infarction 

(AMI) in the fee-for-service Medicare population during 2007-June 2017, with follow up data through 

December 31, 2017.   An AMI is based on the first diagnosis code, which is 410.x0 or 410.x1, not 

including 410.x2, in ICD9 coding (prior to October 2015) and I21.x in subsequent ICD10 coding 

beginning October 1, 2015.  We have considered issues regarding the transition elsewhere (Mainor et 

al., 2019) and were not able to detect coding-induced jumps around October 1, 2015.  In the hospital-

level analysis for the entire sample, we limit to hospitals with at least 50 admissions for AMI during the 

combined years 2007-17.     

 
10 For example, in a simple case where .1 .1

1 2Y X X= , total expenditures are $100, and prices of each input are equal 
to $1, output will be 2.187.  Shifting the production parameters to 0.0125 and 0.0075 (so the sum is still .2) leads 
to a change of 33 percent in optimal input use (to 66.7 and 33.3, respectively) but only a 1 percent increase in 
outcomes, to 2.080.   
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 Risk adjustment.  The risk adjustment approach we use includes admission-level comorbidities 

such as cancer, diabetes, liver disease, peripheral vascular disease, congestive heart failure, the clinical 

location of the AMI (e.g., inferior, anterior, subendocardial), as well as zip-code-level income quintiles 

based on the American Community Survey (2010-2014 five-year estimates) , and age-sex 5-year cells 

(e.g., women aged 70-74), and race (African-American, Hispanic, Asian, Native American). We also use 

Hierarchical Condition Categories (HCC), which counts the number of different diagnoses that patients 

have received in the 6 months prior to the index admission, and weights them for severity. However, we 

note that the use of HCC measures leads to biases in conventional regressions of spending on outcomes 

because physicians who see patients more often and look harder for diseases will tend to code more 

diseases, thus making them appear sicker (Song et al., 2010; Finkelstein et al., 2016), meaning that when 

they do survive, the hospital will get credit as a highly productive institution.  We also adjust for the 

fraction of the hospital referral region enrolled in Medicare Advantage to capture the idea that the fee-

for-service population could exhibit greater unmeasured health deficits if healthier enrollees select into 

managed care. 

 Tourists. We follow Doyle (2011) by considering tourists under the reasonable assumption that 

few tourists consider whether their vacation hotel is near a high- or low-intensity hospital.  We define 

tourists in the following way – that they received their treatment in an HRR that is different from their 

HRR of residence, and that they received less than 20% of their healthcare in the HRR in which the AMI 

was treated.   

 ZIP Codes. Another approach is to sweep out all neighborhood variation by including ZIP11 

code fixed effects; this will of course absorb common health behaviors, average socioeconomic status, 

environmental health effects, and other neighborhood factors. One limitation of a ZIP code is that there 

 
11 ZIP stands for zone improvement plan.  
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can still remain considerable variation within a ZIP code, but there is clear evidence of considerable 

variation in health behaviors and socioeconomic status across ZIP codes.  

 Clinically relevant inputs: Category I, II, and III.  There are a wide array of different 

treatments for AMI patients, both in the acute setting, and subsequently post-discharge.  We consider a 

range of such treatments or procedures where our initial hypothesis of effectiveness is based on existing 

clinical evidence.  Because these measures are derived from the claims data, there is a potential bias in 

measuring such rates across hospitals when mortality rates differ.  Suppose that Hospital B has a higher 

mortality rate than Hospital A; then any measures of inputs could be systematically biased; either 

spending (if people who die cost more – although empirically, people who survive post-AMI account for 

more spending, not less), or (e.g.) PCI rates or primary care follow-ups, which do not (generally) occur 

when people have already died.  For this reason, when creating input measures, we consider both 

spending measures based on everyone in the sample (including those who die), as well as  people who 

survived for the relevant length of time, whether 30 days (for the corresponding 30-day spending 

measure), 6 months, or 1 year; these are then applied at the hospital level to the entire dataset.12  

To help organize the data analysis, we follow Wennberg et al. (2002), Wennberg (2010), and 

Chandra and Skinner (2012) by appealing to clinical evidence to collapse this broad array of treatment 

effectiveness into three broad groups. The first is “effective” or Category I inputs which are 

distinguished by their high cost-effectiveness and limited scope for expensive overuse.  Examples are 

beta blocker, statin, and ACE/ARB prescription fills for AMI patients during the 6 months after 

discharge from the hospital for AMI (Munson et al., 2013).  Nearly everyone should get such 

treatments, regardless of health status, but there are a significant minority of people who do not tolerate 

 
12 When we use public measures from (e.g.) Hospital Compare, these may include people who died.   
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such treatments well, so the optimal compliance is not 100%.13   Similarly, the integration between the 

hospital and physicians in the community is potentially important for post-acute survival (Sharma et al., 

2010; Hernandez et al., 2010); thus we use the fraction of patients discharged from the hospital for a 

medical condition that is seen by any physician within 14 days.14  Finally, we include coronary 

percutaneous intervention (PCI), in which a collapsed balloon is led by catheter into the blocked artery 

(or arteries) of the heart muscle, where it is inflated (and then withdrawn) to improve blood flow, 

typically in conjunction with a stent, a wire cylindrical mesh that helps to keep the artery open. It is 

highly effective in saving lives if administered for appropriate patients within 12 or 24 hours of a heart 

attack (Hartwell, et al., 2005). In the 1990s, there was evidence that this procedure exhibited 

diminishing returns as physicians reached into less appropriate patients, but current evidence for same-

day PCI suggests less heterogeneity in treatment effects.   

 The “Category II” treatments are hypothesized to exhibit a greater degree of heterogeneity in 

incremental benefits across different types of patients.  While same-day PCI has well-established 

benefits, subsequent PCI is often viewed as potentially less beneficial, and in the post-acute setting may 

exhibit diminishing returns working further into the distribution of patients (Chandra and Staiger, 2019).  

Another example of potential Category II treatment occurs when a larger number of different physicians 

treats the same patient.  As demonstrated by Becker and Murphy (1992), more specialization can 

improve productivity, but at some point, there are diminishing returns to additional physicians, owing to 

rapidly rising costs of coordinating care (Baicker and Chandra, 2004b.) A final example is the number of 

 
13 Teaching hospitals may exhibit higher levels of TFP, as in (Burke et al., 2018), but we do not consider teaching 
hospitals as an input.  
 
14 We use this broader measure instead of post-acute physician visits for AMI patients because the sample sizes 
are so much larger; however, the two series are highly correlated, with a rho greater than .7 when weighted by 
sample size. 
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MRI and CT scans.  Clearly the first few scans can save lives, but other studies have suggested that 

incremental CT scans for stroke patients are not associated with better outcomes, and carry significant 

radiation risk (Bekelis, et al., 2014).  For this reason, we hypothesize an inverse-U-shape influence of 

the number of different physicians, or MRI and CT scans, on survival rates; we address this by including 

dummy variables for hospitals if they are in the (weighted) top or bottom quartiles of these inputs. 

  Category III (low-value or potentially harmful) treatments are those for which marginal benefit is 

either small or unknown, but that have a large effect on spending. Services labelled as those “physicians 

and patients should question” by the Choosing Wisely program fit this description.15  As noted above, 

we use one measure from OIG (2012), the fraction of home health care patients with “outlier” payments 

that put the individual in the top 10 percent of AMI-specific home health care spending among those 

who receive home health care on a post-acute basis ($10,687 in 2017 dollars).  Under the null of no 

hospital variation, all hospitals would report a fraction of .10.  This measure is not necessarily higher in 

a sicker population, since it captures only these “outlier” utilization measures, rather than the number of 

home health patients per se.16  

 We also consider services that are indirectly related to AMI patients but reflect the practice and 

management styles of physicians at the hospital.  We use three of these “Choosing Wisely” measures 

involving the use of “double CT” scans of the chest and abdomen, one with iodine contrast and the other 

without.  This may be ordered by physicians in the mistaken belief that “more information is better,” but 

it provides no additional clinical information, and is recognized as a marker of poor quality (Bogdanich 

and McGinty, 2011).   

 
15 These are a list of procedures created by national specialty groups where there is little or no evidence of benefit 
and often involve potential harm to patients.  See http://www.choosingwisely.org/ 
 
16 That is, a region may have many sick AMI patients requiring home health care, but that does not necessarily 
imply that among those who are receiving home health care, a higher fraction would be “outliers.”   

http://www.choosingwisely.org/
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 To describe the basic patterns of the data, we begin with two linear regressions: One that 

estimates risk-adjusted one-year survival, and the other estimating risk-adjusted one-year expenditures.  

(Estimating two separate regressions avoids the biases noted above that arise from putting spending on 

the right-hand side of an outcomes regression.) The regressions use individual-level risk adjusters and 

ZIP-level measures of socioeconomic status with hospital-level random effects.  These random-effects 

models “shrink” hospital-specific effects towards the predicted values when hospitals are small, and thus 

avoid over-fitting as in fixed-effects models.  And while the random effects assume independence of the 

error term with the X and Z variables, in practice random effects estimates for the larger hospitals are 

nearly identical to fixed effects models (the correlation coefficient is 0.99 for hospitals with N > 500 

patients). The regression coefficients and risk-adjusters are included in Appendix Table A.1. All 

estimates are clustered by hospital.  

 We then turn to estimating the productivity model using a similar regression model as the 

survival model described above including patient and ZIP-code levels, but also including hospital-level 

measures of log average price-adjusted Medicare expenditures, and hospital-specific Category I through 

Category III inputs.  Rather than just tossing in all the separate components, we use three distinct 

principal components models, one for each of the categories, to create a common component for ease of 

interpretation and greater statistical prediction.  

V. Results 

 In Table 1, summary statistics are presented for the entire sample of 1.7 million individuals with 

AMI, and for the 123,984 out-of-HRR “tourists.” Tourists were slightly younger, were less likely to be 

Black, and were somewhat healthier based on comorbidities at admission.   

 In Figure 3A, we use the regression models from Table A.1 of the predicted hospital-specific 

random-effects for expenditures (the horizontal axis) and one-year survival (the vertical axis) for the full 
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sample evaluated at mean values of the independent variables.  While the previous literature has focused 

on whether the slope of the regression line is positive or negative, the more interesting finding of these 

tables are the large differences in productivity (and net benefit); hospitals in the Northwest corner of the 

graph are achieving above-average outcomes at low costs, while those in the Southeast corner are 

suggestive of low-productivity hospitals.  And while other industries also exhibit wide variation in 

productivity (Chandra et al., 2016b), the difference in survival rates range over 10 percentage points.  

   Figure 3B presents a similar graph for the tourist sample (given the smaller overall sample, we 

include all hospitals with at least 50 AMIs during the period of analysis).  Like Figure 3A, there is wide 

variability in both spending and outcomes, with at best only a weak correlation between the two.17      

 Our first set of regressions are presented in Table 2, where we report regession estimates that 

follow standard conventions of placing log expenditures on the right-hand side of the regression 

equation; all regressions include a full set of risk adjusters (not reported) and in some cases ZIP code 

fixed effects. Model 1 reports coefficients of 30-day mortality on the log of 30-day expenditures; with a 

highly significant coefficient of 0.0368, it implies a positive association between spending and survival, 

in magnitude roughly between the Doyle (2011) and the Doyle et al. (2015) estimates.  Model 2 differs 

from Model 1 in limiting the cohort for estimating hospital-level spending to only those who survived 30 

days; this reduces the coefficient to 0.00977 (but still significant).  Model 3 moves to a one-year 

horizon, with a coefficient of 0.0541 when spending is not limited to survivors, and 0.00674 (and 

marginally significant) for survivors only in Model 4; however, including ZIP code fixed effects 

increases the estimated effect to 0.0157 in Model 5.  We next move to tourists in Models 6 through 8, 

for a variety of specifications, but where the estimates are not significantly different from zero.  In sum, 

the estimates are quite sensitive to the specification of the regression, with the magnitude of the 

 
17 For the record, the bivariate regression coefficient is -9.015e-08 (s.e. = 1.526e-07) for the full sample and -
5.487e-07  (s.e. = 3.011e-07) for the tourist sample in the sample of hospitals reported in Figures 3A and 3B.  
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association varying based on whether spending truncated by death is included, and with ZIP code fixed 

effects strengthening the association.  

 In Table 3, we account for the allocation of inputs within the hospital, including individual 

independent input variables in the equation in Model (6), alongside the risk adjustment tools described 

above. Each of the first three models include only the first principal components of each of the 

categories, as well as the log of total price-adjusted expenditures; all regressions reject the null 

hypothesis of orthogonality with regard to inputs.  

 Proxying for the use of efficient, Category I treatments with the first principal component score, 

the principal component score on Category I services is significant and positive across specifications, as 

hypothesized. Each of the individual inputs is also positive or non-significant in the deconstructed 

regressions. The coefficients on Category II, or treatments with heterogeneous effects depending on 

patient or provider, are mixed. The coefficient on the principal component for Category II is positive or 

zero. Late PCI (after the admission date) is consistently protective of survival, as are the hospital having 

fewer different physicians treat each patient, and not being in the top quartile for use of MRI and CT, 

indicating diminishing returns to multiple physicians and scans. The coefficient on the Category III 

principal component score is consistently negative and significant. However, the deconstructed 

measures are non-significant or close to zero when provider-level random effects are included. 

 Generally across specifications, the results are consistent with our model, in the sense that the 

effective Category I treatments are highly and positively associated with productivity; for example in 

Model 1, a one-standard deviation rise in the principal component Category I treatment is predicted to 

increase survival by 1.5 percentage points, or roughly half of the interquartile range across hospitals.  

The average Category II component has little impact, while Category III use is negatively associated 

with productivity (a one-standard deviation in this measure is predicted to reduce survival by 0.3 
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percentage points).  These results are insensitive to the exact specification of the model, as shown in the 

first three columns (Model 1 through 3).   

 Finally, we compare a random effects model with and without the detailed inputs in Models 4 

and 5.  Here we have broken out high-quartile and low-quartile utilization of Category II treatments to 

test the hypothesis that both high-use and low-use of multiple physicians could lead to worse outcomes, 

with a similar pattern for scans.  We find some evidence consistent with this hypothesis for scans, but in 

general a greater degree of physician specialization did not exhibit higher returns relative to the lowest 

quartile (Model 5).  And while the specific inputs are often highly significant, the coefficients are 

sometimes counterintuitive, as in the case of home health care outlier behavior (showing a positive 

coefficient), a result at odds with Doyle et al. (2017) who find consistently negative effects of home 

health care on health outcomes (also see McKnight, 2006).  This may reflect the interaction of our 

different measures of Category III inputs; the bivariate correlation between home health care and risk 

adjusted survival is strongly negative; the corresponding correlation for spending is positive. Finally, the 

difference in the estimated standard deviation of the estimated random effects are only slightly lower 

with inputs included.18  Results are similar with included ZIP code fixed effects.  

 We repeat the analyses on our sample of tourists (Table 4).  While the precision of the estimates 

is diminished, the results are broadly similar. The Category I principal component score is consistently, 

significantly positively related to survival, while individual treatment indicators at the hospital level are 

either positive and significant or zero.  Late PCI remains positive and significant in the tourist sample, 

while the principal component score for Category II is non-significant. Similar to the analyses on the full 

sample, the coefficient on the Category III principal component score is consistently negative and 

 
18 This may also be the consequence of the smaller hospital sample size in Model 5 owing to the lack of reliable 
data on inputs for all hospitals.  
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significant.19 In sum, the coefficients on the three principal components are remarkably stable across 

different specifications, and for tourists and the entire sample.  

 We return to our concern above that the reason why hospitals may choose different input 

combinations is because they have different production functions; some are better at PCI, while others 

are not as Chandra and Staiger (2007) found for hospitals in the mid-1990s when such procedures were 

being newly developed.  However, we do not find substantive differences in coefficients on Category I, 

II, or III when the sample is split into terciles based on their estimated TFP productivity.   

 How important is misallocation? While we recognize that the coefficients may overstate the true 

effects of the treatments, we create a predicted risk-adjusted measure of survival based solely on values 

of inputs and the estimated coefficients for the entire sample; call this ˆ
hS ; we normalize the mean to the 

overall survival mean.  Values of ˆ
hS  are shown in Figure 4, along with risk-adjusted survival rates from 

Figure 3A, again for hospitals with at least 400 AMIs during the period of analysis.  Predicted mortality 

based solely on input choices ranges by 10 percentage points across hospitals, and is positively 

associated with risk-adjusted mortality; a bivariate regression explains 22 percent of the variance.   

 Are there characteristics of hospitals that are closely associated with low levels of input 

misallocation?  One obvious feature would be hospital volume; the larger the hospital, the greater is the 

incentive to invest in providing high-quality inputs to improve health outcomes (Skinner and Staiger, 

2015). This hypothesis appears to be consistent with the data; we illustrate predicted survival ( ˆ
hS ) by 

ventiles of hospitals as ranked from lowest to highest volume hospitals in Figure 5; there is a strong 

association between high-volume hospitals and adoption of efficient input practices.  

 

 
19 The estimated standard error of the random effects are higher for Model 5.   



24 
 

VII. Conclusions 

 In this paper, we have revisited the literature on health care productivity, introducing the idea 

that systematic misallocation in inputs can contribute to substantial differences across hospitals in 

survival rates.  We estimate our model of productivity for the specific case of AMI, and find that 

misallocation can explain considerable differences across hospitals in productivity, although a very 

important role for TFP in explaining hospital-level differences in survival remains.  

 While there is a general recognition that there is wide variation in TFP across a variety of 

industries (e.g., Syverson, 2011), it has been more difficult to identify exactly what causes such 

differences. In the case of misallocation, however, it is more clear; measurable inputs that in theory 

could be acted upon, either by the hospital seeking to improve outcomes, or by patients who might more 

quickly find a more productive hospital. In this paper, we include several of these measures, but also 

others that have not previously been estimated, and we find that some – but not all – of these measures 

are predictive of differences across hospitals in productivity.  

 We acknowledge that the parameters used in the model may not capture causal factors, so that 

simply lowering (e.g.) double CT scans may not have a direct impact on hospital productivity if such 

scans are a symptom of poor organizational structure rather than a causal measure per se.  However, 

many if not most of our measures do have a causal interpretation; our estimated effects of same-day PCI 

for example is just a bit larger than estimates from randomized trials. Indeed, one could simply include 

estimates of survival effects based on randomized trial evidence rather than estimating them, as we do 

here, to infer the potential gains from reducing misallocation.  

 What are the policy implications?  Current alternative payment models seek to reduce some of 

the financial incentives simply to do more, but the fundamental question is whether we might expect an 

improvement – in the sense of a reduction in the magnitude of λ over time.  Early results (e.g., Colla et 



25 
 

al., 2012) are suggestive that basic Category I measures can be improved relatively easily, but that many 

institutions face challenges with the overuse of expensive treatments. It may also be more difficult to 

fundamentally change the way that health care is delivered if physicians hold strong beliefs about the 

use of specific treatments, even when there is little proven effectiveness of their value, as in Cutler et al. 

(2019).  

 Still, one may be more sanguine about the future of Medicare if it is possible to identify and 

measure systematically the degree of inefficiency in health care systems. As electronic health records 

become more sophisticated, allowing more accurate assessments of misallocation, there is a real 

potential for improving productivity across hospitals that might yield real benefit to patients.   
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Figure 1: Allocative Efficiency and Inefficiency in a Health Care Production 

Function 
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Figure 2: Sources of Differences in Outcomes: Total Factor Productivity and Input 

Misallocation 
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Figure 3a: Association between Risk-Adjusted Spending and Survival: 2007-2017  
  

 

Figure 3b: Association between Risk-Adjusted Spending and Mortality for Tourists: 
2007-2017 
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Figure 4: Association between Predicted Survival Based on Misallocated Inputs and 
Risk-Adjusted Survival 
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Figure 5: Association between Predicted Survival Based on Misallocated Inputs and 
Hospital Volume (by Ventile of Volume)  
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Table 1: Descriptive Characteristics of Medicare Beneficiaries with AMI: 2007-15 

 All AMI Admissions 
Tourist AMI 
Admissions 

  Mean (SD) Mean (SD) 
Survival    

1 year 0.703 (0.457) 0.779 (0.415) 
6 months 0.775 (0.418) 0.833 (0.373) 
30 days 0.862 (0.345) 0.890 (0.313) 
7 days 0.922 (0.269) 0.935 (0.247) 

Price Adjusted Spending      
1 year 46702 (43524) 46704 (44196) 
6 months 37765 (34958) 38888 (37102) 
30 days 24307 (19856) 26696 (22207) 

age at index admitted date 78.219 (8.356) 76.142 (7.902) 
female 0.483 (0.500) 0.416 (0.493) 
Comorbidities      

Peripheral Vascular Disease 0.081 (0.273) 0.073 (0.261) 
Chronic  Non-Asthmatic Lung Disease 0.178 (0.382) 0.151 (0.358) 
Dementia 0.038 (0.192) 0.027 (0.161) 
Chronic Renal Failure 0.189 (0.392) 0.142 (0.349) 
Cancers (various) 0.050 (0.218) 0.040 (0.197) 
Metastatic Solid Tumor 0.013 (0.111) 0.008 (0.088) 
Congestive Heart Failur 0.397 (0.489) 0.343 (0.475) 
HIV/AIDS 0.001 (0.023) 0.000 (0.020) 
Hemi/Paraplegia    0.003 (0.052) 0.003 (0.051) 
Liver Disease 0.005 (0.070) 0.004 (0.064) 
Diabetes 0.274 (0.446) 0.258 (0.437) 
Peptic Ulcer Disease 0.008 (0.090) 0.008 (0.089) 
Rheumatologic Disease 0.017 (0.130) 0.014 (0.117) 
HCC score 6m before index admission 1.343 (1.091) 1.086 (0.931) 

Race 0.000 (0.000) 0.000 (0.000) 
Native  0.005 (0.070) 0.008 (0.090) 
Hispanic 0.015 (0.121) 0.012 (0.108) 
Other 0.011 (0.103) 0.011 (0.105) 
Asian 0.012 (0.111) 0.011 (0.103) 
Black 0.074 (0.261) 0.056 (0.231) 
White 0.884 (0.321) 0.902 (0.298) 

Medicare Advantage Proportion in residence HRR 0.261 (0.127) 0.261 (0.131) 
Dual Eligible for Medare and Medicaid 0.165 (0.371) 0.130 (0.336) 
Median Household Income of zipcode 55500 (25402) 54933 (26133) 
AMI subtype      

Anterior 0.086 (0.280) 0.106 (0.308) 
Inferior 0.104 (0.305) 0.133 (0.339) 
Right 0.012 (0.109) 0.016 (0.124) 
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Subend 0.731 (0.443) 0.684 (0.465) 
Other sites 0.019 (0.135) 0.020 (0.139) 
Unspecified 0.049 (0.216) 0.042 (0.200)  

Number of observations* 1,713,345 123,984  
    
*Sample size for 1 year follow-up variables:  (number of observations for 1 year follow up:  1,637,468 
and 117,880, respectively. 
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Table 2: Association between Spending and Survival: Conventional Regression Approaches       
  Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 

            (Tourists) (Tourists) (Tourists) 
Log 1-year Spending   0.0541*** 0.00674* 0.0157***     -0.0124 
      (0.0031) (0.0033) (0.0027)     (0.0079) 
      17.35 2.044 5.785     -1.567 
Log 30-Day 
Spending  0.0368*** 0.00977***       0.0124 0.00766   
  (0.0027) (0.0026)      (0.0070) (0.0071)   
  13.42 3.746      1.756 1.086   
                 

Outcome 
30-day 
survival 

1-year 
survival 

1-year 
survival 

1-year 
survival 

1-year 
survival 

30-day 
survival 

30-day 
survival 

1-year 
survival 

Spending limited to survivors x   x x   x x 
Zip code fixed effects       x       
                  
Observations 1,801,733 1,801,540 1,721,178 1,722,000 1,721,178 128,565 128,561 122,186 
R-squared 0.085 0.085 0.182 0.201 0.201 0.073 0.073 0.154 
Robust standard errors in parentheses, t-statistics below standard errors.          
*** p<0.001, ** p<0.01, * p<0.05               
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 Table 3: Regressions Estimates for 1-Year Survival Allowing for Misallocation: Entire Sample 
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Table 4: Regressions Estimates for 1-Year Survival Allowing for Misallocation: Tourists
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Appendix Table A.1: Risk Adjustment Models for 1-Year Spending and Outcomes 

 
     
  (1) (2) (3) (4) 
VARIABLES Model 1 Model 2 Model 3 Model 4 
  All Patients All Patients Tourists Tourists 

 
Price-

Adjusted One-Year  
Price-

Adjusted One-Year  

 Expenditures Survival Expenditures Survival 
     

Peripheral Vascular Disease 1,807*** 0.0103*** 2,447*** 0.000323 
 (131.9) (0.00126) (525.0) (0.00444) 

 13.70 8.133 4.661 0.0727 
Chronic Non-Asthmatic Lung Disease 285.9** -0.0300*** -100.6 -0.0315*** 

 (100.0) (0.000971) (365.8) (0.00356) 

 2.859 -30.92 -0.275 -8.838 
Chronic Renal Failure 8,081*** -0.0585*** 7,367*** -0.0531*** 

 (130.2) (0.000995) (414.1) (0.00352) 
 62.08 -58.77 17.79 -15.09 

Cancers -1,562*** -0.0699*** -958.4 -0.0506*** 

 (157.1) (0.00172) (602.0) (0.00627) 
 -9.944 -40.62 -1.592 -8.073 

Cancer: Metastatic Solid Tumor -9,700*** -0.346*** -8,266*** -0.360*** 
 (287.7) (0.00326) (1,397) (0.0163) 

 -33.71 -106.0 -5.917 -22.12 
Congestive Heart Failure 9,869*** -0.120*** 13,612*** -0.104*** 

 (105.9) (0.000873) (312.7) (0.00276) 

 93.17 -137.3 43.53 -37.69 
HIV 2,994 0.00423 -2,194 0.0148 

 (1,684) (0.0136) (4,963) (0.0566) 
 1.778 0.310 -0.442 0.262 

Stroke 13,746*** -0.169*** 20,020*** -0.199*** 

 (908.6) (0.00701) (3,774) (0.0274) 
 15.13 -24.05 5.305 -7.287 

Liver disease -2,365*** -0.0865*** -4,720** -0.0744*** 
 (542.2) (0.00506) (1,614) (0.0190) 

 -4.363 -17.08 -2.925 -3.910 
Diabetes -62.07 0.0439*** -1,298*** 0.0341*** 

 (104.7) (0.000820) (307.4) (0.00271) 

 -0.593 53.52 -4.222 12.58 
Peptic Ulcer Disease 6,556*** 0.000717 9,574*** -0.00717 

 (398.6) (0.00367) (1,692) (0.0130) 
 16.45 0.195 5.658 -0.552 

Rheumatologic Disease -2,010*** 0.0261*** -2,768** 0.0217* 

 (227.1) (0.00244) (954.3) (0.00904) 
 -8.851 10.68 -2.900 2.403 

Native-American 3,436*** 0.000803 3,326* -0.00410 
 (497.7) (0.00470) (1,489) (0.0142) 

 6.903 0.171 2.233 -0.289 
Hispanic 1,453*** 0.0287*** 1,002 0.0145 

 (336.6) (0.00282) (1,220) (0.0108) 
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 4.316 10.19 0.821 1.340 
Other Race/Ethnicity 1,490*** -3.72e-06 2,373 -0.00888 

 (385.8) (0.00323) (1,429) (0.00967) 
 3.861 -0.00115 1.661 -0.919 

Asian 1,198** 0.0173*** 2,143 -0.00949 
 (406.4) (0.00319) (1,470) (0.0123) 

 2.947 5.437 1.458 -0.772 
Black 3,706*** -0.00144 4,091*** -0.0150** 

 (190.2) (0.00151) (712.7) (0.00548) 

 19.48 -0.956 5.740 -2.736 
Location of MI: Anterior 6,674*** 0.0931*** 4,539*** 0.0925*** 

 (183.2) (0.00213) (750.1) (0.00735) 

 36.43 43.75 6.051 12.58 
Location of MI: Inferior 4,665*** 0.133*** 2,345*** 0.126*** 

 (176.0) (0.00204) (707.7) (0.00715) 
 26.50 65.31 3.314 17.63 

Location of MI: Right 5,770*** 0.112*** 3,600** 0.0983*** 
 (308.9) (0.00340) (1,130) (0.0115) 

 18.68 32.94 3.186 8.541 
Location of MI: Subendocardial 6,108*** 0.163*** 2,450*** 0.162*** 

 (160.2) (0.00188) (671.0) (0.00665) 

 38.12 87.10 3.651 24.28 
Location of MI: Other 4,632*** 0.0900*** 2,966** 0.0829*** 

 (281.4) (0.00295) (1,075) (0.00994) 

 16.46 30.47 2.760 8.333 
2nd Quintile ZIP Income -274.3* 0.00286** -728.4 0.00613 

 (109.8) (0.00106) (384.5) (0.00343) 
 -2.498 2.702 -1.894 1.783 

3rd Quintile ZIP Income -595.2*** 0.00507*** -1,051** 0.00869* 
 (115.4) (0.00110) (389.1) (0.00369) 

 -5.160 4.602 -2.701 2.353 
4th Quintile ZIP Income -467.9*** 0.00612*** -353.3 0.0150*** 

 (118.9) (0.00118) (430.8) (0.00372) 

 -3.935 5.185 -0.820 4.014 
5th Quintile ZIP Income -547.2*** 0.0137*** -158.6 0.0299*** 

 (127.1) (0.00125) (429.0) (0.00378) 

 -4.307 10.92 -0.370 7.910 
year2007 -26,189*** -0.0336*** -26,518*** -0.0260** 

 (302.8) (0.00292) (1,029) (0.00971) 
 -86.50 -11.51 -25.78 -2.672 

year2008 -23,583*** -0.0354*** -24,758*** -0.0276** 
 (308.4) (0.00293) (1,025) (0.00954) 

 -76.48 -12.12 -24.16 -2.897 
year2009 -23,073*** -0.0318*** -24,413*** -0.0252** 

 (307.2) (0.00295) (1,036) (0.00957) 

 -75.10 -10.77 -23.56 -2.631 
year2010 -23,369*** -0.0278*** -24,585*** -0.0217* 

 (310.2) (0.00289) (1,041) (0.00963) 

 -75.34 -9.612 -23.62 -2.255 
year2011 -21,513*** -0.0248*** -22,645*** -0.0212* 

 (308.7) (0.00293) (1,035) (0.00969) 
 -69.70 -8.456 -21.88 -2.183 
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year2012 -21,271*** -0.0258*** -22,327*** -0.0215* 
 (307.6) (0.00291) (1,026) (0.00975) 

 -69.15 -8.850 -21.76 -2.208 
year2013 -20,732*** -0.0205*** -21,781*** -0.0190 

 (304.2) (0.00292) (1,058) (0.00996) 
 -68.16 -7.033 -20.59 -1.905 

year2014 -18,922*** -0.0259*** -20,078*** -0.0183 

 (308.1) (0.00290) (1,031) (0.00962) 
 -61.41 -8.908 -19.47 -1.901 

year2015 -15,180*** -0.0173*** -15,556*** -0.0164* 
 (242.7) (0.00237) (887.4) (0.00773) 

 -62.54 -7.309 -17.53 -2.120 
icd10 indicator (adjust for coding shift) -18,021*** -0.00516* -19,555*** -0.00488 

 (263.5) (0.00251) (898.6) (0.00833) 

 -68.40 -2.057 -21.76 -0.586 
Dementia (ICD10) -5,828*** -0.145*** -5,062*** -0.129*** 

 (162.8) (0.00239) (795.3) (0.0105) 
 -35.79 -60.67 -6.365 -12.29 

Dementia (ICD10 interacted) 1,676*** 0.00604 921.6 -0.0231 

 (337.4) (0.00436) (1,426) (0.0190) 
 4.968 1.385 0.646 -1.213 

Medicare Advtg proportion (0 to 1) 3,086*** -0.00222 764.8 0.0213* 
 (607.2) (0.00448) (1,169) (0.00970) 

 5.083 -0.495 0.654 2.194 
Any month enrolled in Medicaid prior 6 months 209.3 -0.0306*** -126.9 -0.0276*** 

 (121.2) (0.00119) (450.5) (0.00410) 

 1.726 -25.65 -0.282 -6.746 
Second Quintile HCC 7,643*** -0.0290*** 6,371*** -0.0229*** 

 (112.8) (0.000944) (363.7) (0.00287) 
 67.73 -30.73 17.52 -7.974 

Third Quintile HCC 11,416*** -0.0617*** 10,499*** -0.0502*** 

 (134.0) (0.00110) (470.3) (0.00392) 
 85.18 -55.95 22.32 -12.80 

Fourth Quintile HCC 15,307*** -0.117*** 14,890*** -0.0966*** 
 (150.1) (0.00118) (526.4) (0.00427) 

 102.0 -99.05 28.29 -22.64 
Fifth Quintile HCC 21,099*** -0.259*** 22,197*** -0.233*** 

 (205.4) (0.00135) (677.3) (0.00523) 

 102.7 -192.4 32.78 -44.64 
     

Constant 50,934*** 0.813*** 55,168*** 0.810*** 
 (401.4) (0.00364) (1,274) (0.0120) 

 126.9 223.7 43.31 67.39 

     
Observations 1,722,000 1,722,000 122,207 122,207 
Number of provider 3,062 3,062 2,754 2,754 
sigma_u 3597 0.0264 4683 0.0391 
Robust standard errors in parentheses     
*** p<0.001, ** p<0.01, * p<0.05     

 


