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1 Introduction

Instrumental variables (IV) provide a convenient but powerful tool to overcome the endogeneity

problem in identification and estimation of the parameter of interest in economic models. In the

microeconometrics literature, using an exogenous variable correlated with the endogenous variable

but is uncorrelated with the unobserved error term in the main equation as an IV is common

practice. Although IV regression is less common in the macroeconometrics literature, there has

been increasing attention to using an external shock as an IV. The local projections (LP) is one of

such approaches. The LP method was proposed by Jordà (2005) to compute the impulse-response

functions (IRF) without fully specifying the law of motion of the underlying multivariate system, as

an alternative to the commonly used vector autoregressions (VAR). It has been extended to models

with endogeneity using IV in Jordá and Taylor (2015), Ramey and Zubairy (2018), and Stock and

Watson (2018). Following the literature, we call this IV regression of the LP models LP-IV.

A standard setting in the modern microeconometrics literature on IV is to allow for heterogene-

ity in the treatment effects. In a series of seminal papers, Imbens and Angrist (1994), Angrist and

Imbens (1995), and Angrist, Imbens, and Rubin (1996) investigate identification and estimation of

causal effects using IV under treatment effect heterogeneity. An important finding is that the IV

estimand identifies the average treatment effect (ATE) of those who receive treatment because of

the IV, which they call the local average treatment effect (LATE). Heckman and Vytlacil (2005)

and Heckman, Urzua, and Vytlacil (2006) show LATE can be written as a weighted average of the
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marginal treatment effects and provide a more general framework to characterize policy-relevant

treatment effects.

Unfortunately, these important findings have not been fully incorporated into the macro setting.

This paper primarily focuses on filling this gap.

This paper proposes a new framework for LP-IV models, which explicitly allows a LATE-like

interpretation of IV estimand. The novelty is to observe that macro variables are often (if not

always) aggregates of individuals or sectors whose dynamics may be heterogeneous. For example,

consider the estimation of the government spending multiplier. Government spending is the sum

of sectoral spendings such as defense and non-defense sectors, and their dynamic causal effects on

the gross domestic product (GDP) would be heterogeneous. Using the structural vector moving

average model, we show that the LP-IV estimand can be interpreted as a weighted average of

sectoral dynamic causal effects whose weight depends on the response of the endogenous variable

to the IV. Our theoretical framework builds on Stock and Watson (2018), who provided a theoretical

ground for LP-IV.

We also extend our finding to the threshold LP-IV model, where the threshold parameter is

given. It is standard practice to apply the LP-IV method to split samples such as recessions and

expansions, or the zero lower bound (ZLB) and non-ZLB, where the sample split is based on a

continuous threshold variable such as the unemployment rate or the interest rate, e.g., Ramey and

Zubairy (2018). Allowing for a possibility that the threshold parameter is not correctly specified,

we show that the threshold IV estimand is not only a weighted average of heterogeneous sectoral

dynamic causal effects but also a weighted average of state-dependent dynamic causal effects. The

second layer of the averaging (over the states) disappears when the threshold parameter is correctly

specified, which makes the interpretation of the estimand as well as the expression simpler.

Finally, we develop a new statistical test for state-dependency robust to heterogeneous sectoral

dynamic causal effects, and provide a rigorous distribution theory of the test statistic. It is a

nontrivial extension of Chernozhukov, Chetverikov, and Kato (2014) to dependent data. Our test

is relevant because the conventional test comparing two IV estimates based on the split sample is

not consistent under heterogeneous dynamic causal effects.

We list some relevant work in the literature. Jordà and Taylor (2015), Ramey and Zubairy

(2018), Jordà, Schularick, and Taylor (2019) are applications of LP-IV. Plagborg-Møller and Wolf

(forthcoming) show that LP and VAR estimate the same population IRF’s and the difference is

due to their finite sample properties. They also show that LP-IV is equivalent to estimating a

VAR with the IV ordered first in the system. Angrist, Jordà, and Kuersteiner (2018) provide the

potential outcome framework in the time-series setting, but they do not discuss LATE.
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2 LP-IV Estimator

For t = 1, 2, ..., T and h = 0, 1, 2, ...,H, the local projection instrumental variable (LP-IV) model is

given by

yt+h = x′tβh + ut+h, (1)

where yt is a scalar, xt is k × 1, and zt is l × 1. The instruments vector zt satisfies E[ztut+h] = 0

and E[ztx
′
t] 6= 0. If the model is just-identified (l = k), the IV estimator is

β̂h =

(
T∑
t=1

ztx
′
t

)−1 T∑
t=1

ztyt+h (2)

and the IRFs are obtained by estimating β̂h for each h = 0, 1, ...,H. For over-identified models

(l > k), the two-stage least squares (2SLS) estimator is

β̂h =

 T∑
t=1

ztx
′
t

(
T∑
t=1

ztz
′
t

)−1 T∑
t=1

xtz
′
t

−1
T∑
t=1

ztx
′
t

(
T∑
t=1

ztz
′
t

)−1 T∑
t=1

ztyt+h. (3)

By replacing
∑T

t=1 ztz
′
t with a general positive definite weight matrix, a GMM estimator may be

obtained.

Now consider the threshold LP-IV model with state-dependent slope parameters:

yt+h = x′t1(qt−1 ≤ γ)βA,h + x′t1(qt−1 > γ)βB,h + ut+h, (4)

for h = 0, 1, 2, ...,H and t = 1, ..., T , where qt is the threshold variable. The instruments are

zt1(qt−1 ≤ γ) and zt1(qt−1 > γ). Here γ and (βA,h, βB,h) are unknown parameters but we assume

that γ is given. Estimation of the threshold parameter in the IV regression is investigated in Caner

and Hansen (2004) for an exogenous threshold variable. Seo and Shin (2016) extend the result for

an endogenous threshold variable.

The IV estimators of the slope parameters given the threshold parameter for just-identified

models are

β̂A,h(γ) =

(
T∑
t=1

zt1(qt−1 ≤ γ)x′t

)−1 T∑
t=1

zt1(qt−1 ≤ γ)yt+h, (5)

β̂B,h(γ) =

(
T∑
t=1

zt1(qt−1 > γ)x′t

)−1 T∑
t=1

zt1(qt−1 > γ)yt+h. (6)
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The 2SLS estimators for over-identified models are defined similarly:

β̂A,h(γ) =

 T∑
t=1

xtzt1(qt−1 ≤ γ)′

(
T∑
t=1

ztz
′
t1(qt−1 ≤ γ)

)−1 T∑
t=1

zt1(qt−1 ≤ γ)x′t

−1

(7)

×

 T∑
t=1

xtzt1(qt−1 ≤ γ)′

(
T∑
t=1

ztz
′
t1(qt−1 ≤ γ)

)−1 T∑
t=1

zt1(qt−1 ≤ γ)yt+h

 ,

β̂B,h(γ) =

 T∑
t=1

xtzt1(qt−1 > γ)′

(
T∑
t=1

ztz
′
t1(qt−1 > γ)

)−1 T∑
t=1

zt1(qt−1 > γ)x′t

−1

(8)

×

 T∑
t=1

xtzt1(qt−1 > γ)′

(
T∑
t=1

ztz
′
t1(qt−1 > γ)

)−1 T∑
t=1

zt1(qt−1 > γ)yt+h

 .

These estimators are equivalent to the IV estimator (2) applied to the split sample where the sample

is split based on a continuous threshold parameter.

3 Identification using Structural Vector Moving Average Model

The IV estimand is the population version of the IV estimator. To characterize the IV estimand

under heterogeneous dynamic causal effects, we consider the structural vector moving average

(SVMA) model, which is also used in Stock and Watson (2018) and Plagborg-Møller and Wolf

(forthcoming, 2020).

3.1 Baseline model under heterogeneous dynamic causal effects

For simplicity, assume that the model (1) has no control variables and xt and zt are scalars. An

extension to models with control variables is straightforward by re-defining the variables as the

projection residuals on the control variables. The baseline SVMA model can be written as(
yt

xt

)
= Θ(L)

(
εy,t

εx,t

)
(9)

where L is the lag operator, Θ(L) = Θ0 + Θ1L + Θ2L
2 + · · · , and Θh for h = 0, 1, 2, ... are 2 × 2

parameter matrices. Following Stock and Watson (2018), we normalize the diagonal elements of

Θ0 to be 1 (unit effect normalizations). The dynamic causal effect of εx,t on yt+h is

E[yt+h|εx,t = 1]− E[yt+h|εx,t = 0] = θh,yx (10)

where θh,yx is the (1, 2)th element of the matrix Θh. Using the baseline model, Stock and Watson

(2018) show that LP-IV estimand is θh,yx.

The baseline model treats xt and εx,t as individual units, but typically they are aggregate by
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construction. For example, in Ramey and Zubairy (2018), government spending xt is defined as the

sum of all federal, state, and local purchases excluding transfer payments. Purchases can also be

divided into sectors where the consumption is made, such as military, infrastructure, health, etc.

Since a dollar spent on the military would have a quite different dynamic causal effect on the GDP

compared to a dollar spent on health, it is reasonable to model this in the SVMA model explicitly.

We define xt =
∑S

s=1 xs,t where xs,t is the sectoral component of the aggregate variable xt. Let

εs,t be the structural shock to the sector s at time t. We consider the following SVMA model:

Yt = Θ(L)εt (11)

where Yt = (yt, x1,t, x2,t, ..., xS,t)
′, εt = (εy,t, ε1,t, ε2,t, ..., εS,t)

′, Θ(L) = Θ0 + Θ1L+ Θ2L
2 + · · · , and

Θh is (S + 1)× (S + 1) matrix for h = 0, 1, 2, · · · . Similar to the baseline model (9), we assume the

unit effect normalization, i.e., the diagonal elements of Θ0 are equal to one. The parameter matrix

Θh has the following structure:

Θh =


θh,yy θh,y1 · · · θh,yS

θh,1y θh,11 · · · θh,1S
...

...
...

...

θh,Sy θh,S1 · · · θh,SS

 (12)

where θh,ys and θh,s′s are the dynamic causal effect of εs,t on yt+h and xs′,t+h, respectively. Similarly,

θh,sy is defined as the dynamic causal effect of εy,t on xs,t+h. The dynamic causal effect of εs,t on

the sectoral sum xt+h is compactly written as θh,xs =
∑S

s′=1 θh,s′s. We assume that θ0,xs 6= 0 for

all s. Since θ0,ss = 1 by the unit effect normalization, this assumption rules out the special case of∑
s′ 6=s θ0,s′s = −1.

We make the following assumptions for the instrument zt:

Assumption 1.

(i) E[ztεs,t] = αs 6= 0 for some s (relevance)

(ii) E[ztεy,t] = 0 (contemporaneous exogeneity)

(iii) E[ztεt+j ] = 0 for j 6= 0 (lead-lag exogeneity)

Assumption 1 is an extension of Condition LP-IV of Stock and Watson (2018) to heterogeneous

sectors. Assumption 1(i) allows for heterogeneity in the response of sectors to the instrument.

Assumption 1(ii)-(iii) are identical to Condition LP-IV (ii)-(iii) of Stock and Watson (2018).

Proposition 1. Under Assumption 1, the IV estimand βh for h = 0, 1, 2, ...,H is given by

βh =
E[ztyt+h]

E[ztxt]
=

S∑
s=1

(
αsθ0,xs∑S

s′=1 αs′θ0,xs′

)
θh,ys
θ0,xs

.
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Proposition 1 shows that the estimand βh is a weighted average of the normalized sectoral

dynamic causal effects θh,ys/θ0,xs. The weights are αsθ0,xs/
∑S

s′=1 αs′θ0,xs′ , which depend on αs

measuring the response of sector s to the instrument zt, and the contemporaneous causal effect of

εs,t on the sectoral sum xt. The weights can be negative but sum to one. If we further assume that

the instrument zt only affects sector s, i.e., αs′ = 0 for s′ 6= s, then

βh =
θh,ys
θ0,xs

, (13)

which is the dynamic causal effect of sector s.

The LP-IV estimand can be interpreted as the local average treatment effect (LATE) of Imbens

and Angrist (1994). LATE is the average treatment effect of the subpopulation called compliers

who receive treatment because of the instrument. Since the complier subpopulation is defined by

the instrument, LATE is instrument-specific. The LP-IV estimand has similar properties. First,

it is a weighted average of the sectoral dynamic causal effects with larger weights on sectors that

respond stronger to the instrument. Second, it depends on the instrument. On the other hand,

sectors are known and observed while compliers are not identified individually.1

Even with observed sectors, the weights in the IV estimand in Proposition 1 are not identified in

general without further restrictions. Proposition 2 gives a condition under which the sector-specific

weights are identified.

Proposition 2. Under Assumption 1 and no inter-sectoral causal effects, θ0,s′s = 0 for all s′ 6= s,

the IV estimand βh for h = 0, 1, 2, ...,H can be written as

βh =
E[ztyt+h]

E[ztxt]
=

S∑
s=1

E[ztxs,t]

E[ztxt]
θh,ys.

Proposition 2 shows that the sector-specific weights are identified (i.e., can be written as a

function of data moments) under no inter-sectoral causal effects. This result may be useful for

counterfactual analyses. Suppose S = 2 for simplicity. The parameters of interest are θh,y1 and

θh,y2. Since βh and the weights are consistently estimated by the sample moments, we can construct

a confidence interval for θh,y1 for a given θh,y2 and vice versa. Alternatively, if an additional

instrument is available, then both of θh,y1 and θh,y2 can be identified. In principle, θh,ys for s =

1, ..., S are identified if S instruments are available.

The zero inter-sectoral causal effects assumption is critical for identification of the sectoral

components. Without the assumption, the ratio E[ztxs,t]/E[ztxt] does not identify the weight.

Moreover, the IV estimand using zt for the sectoral component xs,t, E[ztyt+h]/E[ztxs,t], is still a

weighted average of the sectoral dynamic causal effects, rather than the sector-specific dynamic

causal effect.

1Only their statistical characteristics are identified, see Abadie (2003).
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3.2 Threshold model under heterogeneous dynamic causal effects

We extend the SVMA model (11) under sectoral heterogeneity to threshold models. The threshold

SVMA model is given by

Yt = (Θ(L)1(qt−1 ≤ γ0) + Ψ(L)1(qt−1 > γ0)) εt, (14)

where Θ(L) = Θ0+Θ1L+Θ2L
2+· · · , Ψ(L) = Ψ0+Ψ1L+Ψ2L

2+· · · , and qt is the threshold variable.

We assume that qt−1 is externally determined so that qt does not appear on the left-hand side of

(14). The diagonal elements of Θ0 and Ψ0 are normalized to one (the unit effect normalization).

The matrices Θh and Ψh are similarly defined with (12). We write the state-dependent dynamic

causal effect of εs,t on xt as θh,xs =
∑S

s′=1 θh,s′s and ψh,xs =
∑S

s′=1 ψh,s′s, respectively. We also

assume that θ0,xs 6= 0 and ψ0,xs 6= 0 for all s, which are mild under the unit effect normalization.

We consider the IV estimators using zt1(qt−1 ≤ γ) and zt1(qt−1 > γ) as instruments, allowing

for γ 6= γ0. Define

αA,s(γ) =E[ztεs,t1(qt−1 ≤ γ)],

αB,s(γ) =E[ztεs,t1(qt−1 > γ)],

αs(γ1, γ2) =E[ztεs,t1(γ1 < qt−1 ≤ γ2)] for γ1 ≤ γ2.

By construction, αs = αA,s(γ) + αB,s(γ). The instruments satisfy the following assumptions:

Assumption 2.

(i) αA,s(γ) 6= 0 and αB,s(γ) 6= 0, ∀γ ∈ Γ, for some s (relevance)

(ii) E[ztεy,t|qt−1] = 0 (contemporaneous exogeneity)

(iii) For j ≥ 1, E[ztεt+j |qt−1] = 0 and E[ztεt−j |qt−1] = 0 (lead-lag exogeneity)

Assumption 2(i) is the relevance condition for the instrument of the split sample. Since

limγ→−∞ αA,s(γ) = limγ→∞ αB,s(γ) = 0, it restricts the support of Γ, the parameter space of

γ. Assumption 2(ii) is the exclusion restriction conditional on the threshold variable. Assumption

2(iii) is the threshold version of Assumption 1(iii), stating that zt is uncorrelated with all future and

past ε’s conditional on the threshold variable. Assumptions 2(ii)-(iii) are in the form of conditional

expectations, which are slightly stronger than necessary but give simpler results.

Let the split-sample IV estimands be

βA,h(γ) =
E[zt1(qt−1 ≤ γ)yt+h]

E[zt1(qt−1 ≤ γ)xt]
, (15)

βB,h(γ) =
E[zt1(qt−1 > γ)yt+h]

E[zt1(qt−1 > γ)xt]
, (16)

for h = 0, 1, 2, ...,H. The following proposition characterizes the IV estimands under sectoral

heterogeneity.
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Proposition 3. Under Assumption 2, the IV estimands βA,h(γ) and βB,h(γ) for h = 0, 1, 2, ...,H

are given by as follows. If γ ≤ γ0,

βA,h(γ) =
S∑
s=1

(
αA,s(γ)θ0,xs∑S

s′=1 αA,s′(γ)θ0,xs′

)
θh,ys
θ0,xs

,

βB,h(γ) =
S∑
s=1

[(
αB,s(γ0)ψ0,xs∑S

s′=1(αB,s′(γ0)ψ0,xs′ + αs′(γ, γ0)θ0,xs′)

)
ψh,ys
ψ0,xs

+

(
αs(γ, γ0)θ0,xs∑S

s′=1(αB,s′(γ0)ψ0,xs′ + αs′(γ, γ0)θ0,xs′)

)
θh,ys
θ0,xs

]
,

and if γ > γ0,

βA,h(γ) =

S∑
s=1

[(
αA,s(γ0)θ0,xs∑S

s′=1(αA,s′(γ0)θ0,xs′ + αs′(γ0, γ)ψ0,xs′)

)
θh,ys
θ0,xs

+

(
αs(γ0, γ)ψ0,xs∑S

s′=1(αA,s′(γ0)θ0,xs′ + αs′(γ0, γ)ψ0,xs′)

)
ψh,ys
ψ0,xs

]
,

βB,h(γ) =
S∑
s=1

(
αB,s(γ)ψ0,xs∑S

s′=1 αB,s′(γ)ψ0,xs′

)
ψh,ys
ψ0,xs

.

Similar to Proposition 1, Proposition 3 shows that the estimand of the split-sample IV estimator

is a weighted average of the normalized state-dependent sectoral dynamic causal effects. The

estimand is averaged across the states due to potential misspecification of the threshold parameter.

The IV estimands in Proposition 3 simplify if the threshold parameter is correctly specified.

Setting γ = γ0, we can write

βA,h(γ) =

S∑
s=1

(
αA,s(γ0)θ0,xs∑S

s′=1 αA,s′(γ0)θ0,xs′

)
θh,ys
θ0,xs

, (17)

βB,h(γ) =
S∑
s=1

(
αB,s(γ0)ψ0,xs∑S

s′=1 αB,s′(γ0)ψ0,xs′

)
ψh,ys
ψ0,xs

(18)

If we further assume αA,s′(γ0) = αB,s′(γ0) = 0 for all s′ 6= s, we can write

βA,h(γ0) =
θh,ys
θ0,xs

, (19)

βB,h(γ0) =
ψh,ys
ψ0,xs

. (20)

Proposition 4 shows that the weights in the IV estimands are identified if inter-sectoral causal

effects are zero and the threshold parameter is correctly specified.

Proposition 4. Under Assumption 2, no inter-sectoral causal effects, θ0,s′s = ψ0,s′s = 0 for all
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s′ 6= s, and the correct specification of the threshold parameter, γ = γ0, the IV estimands βA,h and

βB,h for h = 0, 1, 2, ...,H can be written as

βA,h(γ0) =
S∑
s=1

E[zt1(qt−1 ≤ γ0)xs,t]

E[zt1(qt−1 ≤ γ0)xt]
θh,ys,

βB,h(γ0) =
S∑
s=1

E[zt1(qt−1 > γ0)xs,t]

E[zt1(qt−1 > γ0)xt]
ψh,ys.

4 A New Test for State-Dependency

In this section, we show that the conventional test for state-dependency is invalid in the presence of

heterogeneous sectoral dynamic causal effects and propose a new test for state-dependency robust

to such heterogeneity.

4.1 Conventional test for state-dependency

The standard approach to testing state-dependency of the slope parameter is to split the sample

with respect to the assumed continuous threshold parameter and compare the estimated values

based on each of the split sample. For a given threshold γ∗, the null hypothesis of the conventional

test is

H0 : βA,h(γ∗) = βB,h(γ∗), (21)

where βA,h(γ) and βB,h(γ) are given by (15) and (16). The conventional test statistic is the

standardized value of |β̂A,h(γ∗) − β̂B,h(γ∗)|. This test has been widely used in practice either

formally or informally, see Ramey and Zubairy (2018), for instance. We show this conventional

approach is not appropriate under heterogeneous sectoral dynamic causal effects.

Assume that the threshold parameter is correctly specified, γ∗ = γ0, and no state-dependency

in the dynamic causal effect, i.e., θh,ys = ψh,ys and θ0,xs = ψ0,xs for all s. The population version

of the test statistic should be zero under the null hypothesis. However, using Proposition 3, the IV

estimands can be written as

βA,h(γ0) =

S∑
s=1

(
αA,s(γ0)θ0,xs∑S

s′=1 αA,s′(γ0)θ0,xs′

)
θh,ys
θ0,xs

,

βB,h(γ0) =
S∑
s=1

(
αB,s(γ0)θ0,xs∑S

s′=1 αB,s′(γ0)θ0,xs′

)
θh,ys
θ0,xs

.

Thus, βA,h(γ0) = βB,h(γ0) if αA,s(γ0) = αB,s(γ0) for all s, or equivalently,

E[ztεs,t1(qt−1 ≤ γ0)] = E[ztεs,t1(qt−1 > γ0)], ∀s. (22)
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But this may not be true in general. In particular, under the assumption of Proposition 4, the

condition (22) can be replaced with

E[ztxs,t1(qt−1 ≤ γ0)] = E[ztxs,t1(qt−1 > γ0)], ∀s, (23)

which further implies

E[ztxt1(qt−1 ≤ γ0)] = E[ztxt1(qt−1 > γ0)]. (24)

Therefore, if (24) is violated then we may incorrectly reject the null hypothesis of no state-

dependency. Both of (23) and (24) are testable and they can be conveniently verified in practice.

4.2 New test for state-dependency

Our new test builds on the fact that the IV estimand is a kinked function of the threshold parameter

with the kink at γ = γ0 in the presence of state-dependency using the threshold SVMA model (14).

We first assume the following regularity conditions.

Assumption 3.

(i) γ0 ∈ int(Γ)

(i) αA,s(γ) and αB,s(γ) are differentiable on int(Γ)

(ii) The probability dentity function of q at q = γ, pq(γ), is smooth over Γ

Consider βA,h(γ) in (15). Under Assumption 2, its numerator is

E[zt1(qt−1 ≤ γ)yt+h] =

{ ∑S
s=1 αA,s(γ)θh,ys if γ ≤ γ0,∑S
s=1(αA,s(γ0)θh,ys + αs(γ0, γ)ψh,ys) if γ > γ0.

(25)

The left and right derivatives of (25) around γ = γ0 are

lim
ε↓0

E[zt1(qt−1 ≤ γ0)yt+h]− E[zt1(qt−1 ≤ γ0 − ε)yt+h]

ε
=

S∑
s=1

α′A,s(γ0)θh,ys, (26)

lim
ε↓0

E[zt1(qt−1 ≤ γ0 + ε)yt+h]− E[zt1(qt−1 ≤ γ0)yt+h]

ε
=

S∑
s=1

α′A,s(γ0)ψh,ys, (27)

where α′A,s(γ) = (∂/∂γ)αA,s(γ). Thus, as long as θh,ys 6= ψh,ys for some s such that α′A,s(γ0) 6= 0,

E[zt1(qt−1 ≤ γ)yt+h] exhibits a kink at γ = γ0.

Since we can write by the fundamental theorem of calculus

∂

∂γ
E[zt1(qt ≤ γ)yt+h] = E[ztyt+h|qt−1 = γ]pq(γ), (28)

∂

∂γ
E[zt1(qt > γ)yt+h] = −E[ztyt+h|qt−1 = γ]pq(γ), (29)
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the derivatives will exhibit a jump (discontinuity) at γ = γ0 under Assumption 3. The test for

state-dependency is therefore equivalent to a test for the presence of a jump:

H0 : E[ztyt+h|qt−1 = γ] has no jump. (30)

For the null hypothesis of no state-dependency in (30), the natural test statistic is the supremum

of appropriately scaled differences between estimates of the left and right limits of the function

E[ztyt+h|qt−1 = γ] over the interior of Γ. The test statistic is constructed using a nonparametric

one-sided kernel estimation approach.

More specifically, consider the following regression model,

gt =µ(qt−1) + ut (31)

where gt is the multiple of an instrument, zt and a dependent variable, yt+h, qt−1 ∈ Γ is a prede-

termined state variable, and µ(γ) = E[gt|qt−1 = γ] by construction.

Under the setup, we want to see whether there is any discontinuity in µ(·) without specifying

its functional form. That is, we want to testH0 : µ(·) is a continuous function on the domain of the threshold variable, qt−1.

H1 : At least one jump exists.
(32)

We let µ(·) be a nonparametric function given the complicated and approximating nature of the

quantity. This also reflects the fact that the local projection is only an approximation, and hence

it is better for its form to be unspecified except for some minimal regularity conditions.

We construct a test statistic based on the difference between the right and left limits of the

regression function via the one-side kernel estimation. More specifically, define µ+(γ) = limx↓γ µ(x)

and µ−(γ) = limx↑γ µ(x) to denote the right and left limits of the function µ(·). We assume that if

there exists a jump, the jump location is an interior point in the domain Γ of the threshold variable.

The test statistic we consider is a sup-type one defined as

JT = sup
γ∈Γ

{√
Tb

ν̂(γ)

∣∣µ̂+(γ)− µ̂−(γ)
∣∣} (33)

where

µ̂±(γ) =

∑T
t K

±
b (γ − qt−1)gt∑T

t K
±
b (γ − qt−1)

with K±b (·) = K±(·/b) and a scaling factor ν(γ) obtained by

ν̂(γ) =
σ̂2+(γ)

p̂+(γ)
+
σ̂2−(γ)

p̂−(γ)
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with

σ̂2±(γ) =

∑
K±b (γ − qt−1)(gt − µ̂(qt−1))2∑

t=1K
±
b (γ − qt−1)

and p̂±(γ) =
∑

K±b (γ − qt−1).

The novelty of the test is that state-dependency of the parameter of interest is tested without

relying on consistent estimation of coefficients and knowledge of correct specification of models and

heterogeneity. The test is therefore nonparametric by nature, and it is robust to heterogeneity in

the sectoral dynamic causal effects.

4.3 Distribution theory for testing the state-dependency

The test statistic given in (33) is a supremum-type based on nonparametric kernel estimates, and

therefore deriving its null distribution is nonstandard. It is nontrivial to derive the distribution

of the test statistic as in Theorem 1 especially in the context of time series. Therefore, it is of

independent interest and a significant econometric and statistical contribution to the literature

since existing methods cannot be directly implemented. Utilizing a recent development of theories

on empirical processes, the theory entails approximating suprema of local empirical processes with

dependent data by suprema of Gaussian processes (strong approximation). More technical details

and regularity conditions regarding strong approximation is provided in Appendix B. We present

an approximating distribution of the test statistic in the form of Theorem 1.

Theorem 1. Under Assumption 4 in Appendix B, there exists a random variable JT
d∼ supf∈FT

GT f

where GT is a tight Gaussian process indexed by FT where

FT =
{
fq(x, y) :

(
K+
b (q − x)−K−b (q − x)

)
y
/√

b where q ∈ Γ
}
.

and covariance function

EGT (g)GT (f) =
1

ν
Cov

(
g
(
ξ̃t

)
, f
(
ξ̃t

))
where {ξ̃t} is an MDS defined in Lemma 2 and g, f ∈ FT and ν = 2σ2(q)/f(q) and we have

|JT − JT | = Op (AT +BT + CT ) ,

AT =m1/2−1/qb−1/2T−1/2+1/q log3/2 T

BT =m1/4 (bT )−1/4 log5/4 T

CT = (bT )−1/6 log T

where m is the size of each big block in the Bernstein’s big-and-small decomposition in Appendix B

and b is the bandwidth.

Theorem 1 entails (i) approximating the original data by big and small independent blocks

whose size are m and r respectively and (ii) approximating the big independent blocks by martingale
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difference sequences (MDS) while the small independent blocks are negligible in the limit. This

work is a considerable time-series extension of recent theoretical development of empirical processes

in Chernozhukov, Chetverikov and Kato (2014), which is only concerned with independent and

identically distributed (i.i.d.) data.

Our result is also a nontrivial generalization of Antoch, Gregoire and Hukov (2007) who inves-

tigated the asymptotic behavior of a test statistic for continuity of regression functions based on

i.i.d. data.

The approximating distribution can be simulated using the plug-in method, and critical values

with selected significant levels can be tabulated for inference. However, bootstrap techniques are

preferred in practice, given that the covariance function contains nuisance parameters for both

computational convenience and precision.

4.3.1 Construction of null distribution: Residual wild bootstrapping

Since the convergence to the approximating distribution discussed in Theorem 1 is rather slow, and

the asymptotic distribution involves nuisance parameters, the bootstrap method is employed in

practice. Due to the lack of serial correlation structure of approximating distribution in Theorem

1, we employ the residual wild bootstrap (RWB) method.

The algorithm generating paired bootstrap data {(g∗,(j)t , q
∗,(j)
t−1 )}Tt=1; j = 1, ..., B from the paired

observations {(gt, qt−1)}Tt=1 is given in Algorithm 1.

Algorithm 1 Construction of Null Distribution via RWB

1: Given (31), we estimate µ̂(q) under the null via the two sided kernel estimation:

µ̂(q) =

∑T
t Kb(q − qt−1)gt∑T
t Kb(q − qt−1)

where Kb(·) is a symmetric kernel function.
2: Obtain residuals from µ̂(q):

ût = gt − µ̂(qt−1).

3: Construct the paired bootstrap data {(g∗,(j)t , q
∗,(j)
t−1 )}Tt=1:

g
∗,(j)
t = µ̂(q

∗,(j)
t−1 ) + wtût

where q
∗,(j)
t−1 = qt−1 and wt is an i.i.d. random variable with mean zero and variance one.

4: Repeat the procedure given the desired number of bootstrap repetitions.

After B repetitions, construct the empirical distribution of bootstrapped test Statistics T ∗T
under the null. Note that the validity of the suggested bootstrapping is studied in Antoch et al.

(2007).
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5 Non-military spending multiplier in the U.S.

The government spending multiplier is the ratio of the change in the GDP to the change in gov-

ernment spending. The magnitude of the multiplier is the key to making fiscal policies, but the

academic community has not been able to reach a consensus on it. Different models, shocks, and

sample periods often give quite different estimates of the multiplier, e.g., Blanchard and Perotti

(2002), Barro and Redlick (2011), Ramey (2011), Auerbach and Gorodnichenko (2012), Nakamura

and Steinson (2014), and Ramey and Zubairy (2018), among many important others.

In this section, we estimate the non-military spending multiplier in the U.S. by applying our

method to Ramey and Zubairy (2018), who estimate the cumulative government spending multiplier

using the military news shock as the instrument. We first replicate their results to obtain the

cumulative government spending multiplier estimate, which is denoted by m̂h. Measured as the

two-year or four-year integral, we find that m̂h < 1, which is consistent with Ramey and Zubairy

(2018). Then we decompose m̂h into a weighted average of military and non-military spending

multipliers. The weights are estimated by the response of sectoral spending to the military news

shock. The post-WWII data shows that the response of the non-military spending to the military

news shock is negative and persistent, which leads to a negative weight for the non-military spending

multiplier. As a result, we find that the less-than-unity aggregate spending multiplier can be written

as a weighted average of larger-than-unity non-military and military spending multipliers.

The model in the linear case (no state-dependency) is

h∑
j=0

yt+j = ch + φh(L)wt−1 +mh

h∑
j=0

gt+j + εt+h, (34)

where yt is the GDP, gt is the government spending, wt is a set of control variables, and φh(L)

is a polynomial in the lag operator of order 4. Since
∑h

j=0 yt+j is the sum of the GDP over h

periods and
∑h

j=0 gt+j is the sum of government spending over h periods, the parameter mh is the

cumulative government spending multiplier. Ramey and Zubairy (2018) argue that the cumulative

multiplier is more appropriate in a dynamic setting than other definitions. Since gt is endogenous,

we use the military news shock as the IV, denoted by zt. The control variables include lagged

values of yt, gt, and zt. The state-dependent case is given by

h∑
j=0

yt+j =(cA,h + φA,h(L)wt−1 +mA,h

h∑
j=0

gt+j)1(qt−1 ≤ γ∗)

+ (cB,h + φB,h(L)wt−1 +mB,h

h∑
j=0

gt+j)1(qt−1 < γ∗) + εt+h, (35)

where qt is the unemployment rate and γ∗ is a given threshold. In both models, the parameters

are estimated by the just-identified IV estimator.

Define the cumulative variables ỹ⊥t+h =
∑h

j=0 y
⊥
t+j and x̃⊥t+h =

∑h
j=0 x

⊥
t+j . By the Frisch-Waugh-
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Lovell (FWL) theorem2, the IV estimand for the cumulative multiplier in the linear is

mh =
E[z⊥t ỹ

⊥
t+h]

E[z⊥t x̃
⊥
t+h]

, (36)

where y⊥t , x⊥t , and z⊥t as the residual of the original variable after projecting onto the control

variables including the intercept in (34). In the state-dependent case,

mA,h(γ∗) =
E[z⊥t ỹ

⊥
t+h1(qt−1 ≤ γ∗)]

E[z⊥t x̃
⊥
t+h1(qt−1 ≤ γ∗)]

, (37)

mB,h(γ∗) =
E[z⊥t ỹ

⊥
t+h1(qt−1 > γ∗)]

E[z⊥t x̃
⊥
t+h1(qt−1 > γ∗)]

(38)

where y⊥t , x⊥t , and z⊥t as the residual of the original variable after projecting onto the control

variables including the intercept in (35). Note that the residuals y⊥t , x⊥t , and z⊥t in (36) and in (38)

are different as they are based on different equations. We abuse the notation to keep the expression

simple.

Assume two sectors (S = 2): the military sector (s = 1) and the non-military sector (s = 2). Let

x1,t and x2,t be military spending, and non-military spending, respectively. Based on the SVMA

model (11) and Proposition 2, the cumulative multiplier can be decomposed as

mh =
E[z⊥t x̃

⊥
1,t+h]

E[z⊥t x̃
⊥
t+h]

θ̃h,y1 +
E[z⊥t x̃

⊥
2,t+h]

E[z⊥t x̃
⊥
t+h]

θ̃h,y2, (39)

where θ̃h,ys =
∑h

j=0 θj,ys for s = 1, 2. The cumulative dynamic causal effects θ̃h,y1 and θ̃h,y2 are the

military and the non-military spending multipliers, respectively. Assuming correct specification of

the threshold, γ∗ = γ0, the state-dependent cumulative multipliers can be similarly decomposed

using Proposition 4 as

mA,h(γ∗) =
E[z⊥t x̃

⊥
1,t+h1(qt−1 ≤ γ∗)]

E[z⊥t x̃
⊥
t+h1(qt−1 ≤ γ∗)]

θ̃h,y1 +
E[z⊥t x̃

⊥
2,t+h1(qt−1 ≤ γ∗)]

E[z⊥t x̃
⊥
t+h1(qt−1 ≤ γ∗)]

θ̃h,y2, (40)

mB,h(γ∗) =
E[z⊥t x̃

⊥
1,t+h1(qt−1 > γ∗)]

E[z⊥t x̃
⊥
t+h1(qt−1 > γ∗)]

ψ̃h,y1 +
E[z⊥t x̃

⊥
2,t+h1(qt−1 > γ∗)]

E[z⊥t x̃
⊥
t+h1(qt−1 > γ∗)]

ψ̃h,y2, (41)

where ψ̃h,ys =
∑h

j=0 ψj,ys for s = 1, 2 is the state-dependent cumulative sectoral multiplier. Since

the weights are the population moments of the observables, they can be consistently estimated by

the sample moments.

We use the post-WWII data as the quarterly defense spending data is only available from

1947Q1. The econometric model specification and the control variables are identical to Ramey

and Zubairy (2018). The federal defense consumption expenditures and gross investment data

2See p.344 of Hansen (2020) for the FWL theorem applied to 2SLS.
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(FDEFX) is obtained from the Federal Reserve Bank of St. Louis FRED database. The sample

period is from 1947Q1 to 2015Q4.

Figure 1 shows real government spending, defense spending, and non-defense spending per

capita in the U.S. The vertical lines represent Ramey and Shapiro (1998) dates, including the

Korean War, the Vietnam War, and the Soviet invasion of Afghanistan, and 9/11. The defense

spending gradually increases after the major war events and decreases over time. The share of

defense spending has been decreased over time.

Figure 2 shows the de-trended real series of government spending, defense spending, non-defense

spending, and military news shock. The relative magnitude of the news shock before the Korean

War is very large, so we provide a robustness check excluding the Korean War later in the section.

Figure 3 shows the cumulative government spending multiplier in the linear model (no state-

dependency) for each horizon from two quarters to 5 years out. The bands are 95% confidence

bands using the Newey-West standard errors (Newey and West, 1987). The top panel shows the

cumulative spending multiplier, which corresponds to the top panel of Figure 6 of Ramey and

Zubairy (2018). Note that ours is based on the sample from 1947Q1 to 2015Q4, while Figure 6 of

Ramey and Zubairy (2018) is based on the sample from 1889Q1 to 2015Q4. The result is consistent

with Ramey and Zubairy (2018) that the aggregate multiplier is less than one.

Our sectoral decomposition reveals interesting trajectories of the non-military spending multi-

plier. The bottom panel of Figure 3 shows the cumulative non-military spending multiplier when

the military spending multiplier is calibrated at 1.2 (solid blue line) and at 0.6 (red circle marker).

The non-military spending multiplier gradually increases over time in both cases. More impor-

tantly, it is possible that both the military and the non-military spending multipliers are higher

than one while m̂h is less than one. In this case, the non-military spending multiplier is significantly

higher than the military spending multiplier, which is set to 1.2.

This result is due to the negative weight on the non-military spending multiplier in the decom-

position. Figure 4 shows the IRFs of total and sectoral spending to the news shock. The weights

are given by the ratio of the sectoral IRF to that of total spending. The top panel shows the IRFs of

total spending (black solid), military spending (blue dotted), and non-military spending (red circle

marker). The IRF of non-military spending is negative (statistically significant) and persistent.

This negative IRF leads to a negative weight for the non-military spending multiplier, as shown in

Figure 5.

Next we investigate if the non-military spending multiplier is state-dependent. Auerbach and

Gorodnichekko (2012) found strong evidence on the state-dependency of the multiplier using the

smooth transition VAR, but Ramey and Zubairy (2018) found little evidence supporting the state-

dependency using the LP-IV. Ramey and Zubairy (2018) use the unemployment rate of 6.5% as the

threshold but this is not an estimated value. Since our decomposition result for the state-dependent

case critically relies on the correct specification of the threshold parameter, we apply our new test

for state-dependency.

Since 1947Q1, the lowest unemployment rate is 2.6% in 1953Q2 and the highest is 10.7%
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in 1982Q4. Figure 6 shows the value of the test statistic against the unemployment rate. The

bootstrap 95% critical value is 13.97, so we would reject the null hypothesis if the test statistic is

greater than the critical value. Using all the observations from 1947Q1 to 2015Q4, the maximum

of the test statistic is 6.73 at the unemployment rate of 5.517%. But this result is largely driven by

one influential observation during the Korean War. When this observation (1950Q3) is removed,

the maximum of 2.06. In both cases, we do not reject the null hypothesis of the existence of at

least one jump (state-dependency) at the 5% level. We conclude that there is little evidence of

state-dependency after WWII.

Although we do not find strong evidence for state-dependency, we provide additional analyses

for state-dependent multipliers. We set γ∗ = 5.6 so that observations with the unemployment rate

equals to or lower than (higher than) 5.6% are defined as the low-employment (high-employment)

state.

Figures 7 and 8 are the cumulative spending multipliers and the IRFs. Overall, the results

are similar to the linear case: The non-military spending multiplier is increasing over time and

is greater than one when the military spending multiplier is so. The weight for the non-military

spending multiplier is the response of non-military spending to the news shock, which is negative

and persistent. In contrast, the multipliers are statistically insignificant in recessions, as are shown

in Figures 9 and 10. In sum, we find little statistical evidence supporting the state-dependency

of the multipliers. Although point estimates of the non-military spending multipliers are larger

than those in the low-unemployment state, the standard errors are too large to give a reasonable

statistical significance.

Figure 11 shows the relationship between the military spending and the non-military spending

multipliers. By replacing the population moments in (39)-(41) with the sample moments, we obtain

the following equations:

Linear:
̂̃
θh,y1 =

∑T
t=1 z

⊥
t x̃
⊥
t+h∑T

t=1 z
⊥
t x̃
⊥
1,t+h

m̂h −
∑T

t=1 z
⊥
t x̃
⊥
2,t+h∑T

t=1 z
⊥
t x̃
⊥
1,t+h

M

Low Unemployment:
̂̃
θh,y1 =

∑T
t=1 z

⊥
t x̃
⊥
t+h1(qt−1 ≤ γ∗)∑T

t=1 z
⊥
t x̃
⊥
1,t+h1(qt−1 ≤ γ∗)

m̂A,h −
∑T

t=1 z
⊥
t x̃
⊥
2,t+h1(qt−1 ≤ γ∗)∑T

t=1 z
⊥
t x̃
⊥
1,t+h1(qt−1 ≤ γ∗)

M

High Unemployment:
̂̃
ψh,y1 =

∑T
t=1 z

⊥
t x̃
⊥
t+h1(qt−1 > γ∗)∑T

t=1 z
⊥
t x̃
⊥
1,t+h1(qt−1 > γ∗)

m̂B,h −
∑T

t=1 z
⊥
t x̃
⊥
2,t+h1(qt−1 > γ∗)∑T

t=1 z
⊥
t x̃
⊥
1,t+h1(qt−1 > γ∗)

M,

where
̂̃
θh,y1 is the non-military spending multiplier estimator and M is a given military spending

multiplier. The first row shows the graphs of the 2 year integral case and the second row shows

those of the 4 year integral case. The first column shows the linear case (no state-dependency) and

the state-dependent cases all together. The second and third columns show the linear and state-

dependent cases with 95% confidence bands, respectively. For both of 2 year and 4 year integrals,

the non-military spending multiplier is greater than one when the military spending multiplier is

greater than one.
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It is worth noting that the linear case is very similar to the low unemployment case and not in

the “middle” of the state-dependent cases. This is because the functions have similar slopes, but

the intercepts of the linear and the high unemployment cases are quite different.

6 Conclusion

In this paper, we provide a formal theoretical framework for identification and estimation of dynamic

causal effects in the LP-IV models. Our results are based on the structural vector moving average

models. We show that the IV estimand is a weighted average of heterogeneous sectoral dynamic

causal effects and provide conditions under which the sector-specific weights are identified. This

result is extended to threshold models where the sample is split according to a continuous threshold

variable. Since the correct specification of the threshold parameter is important for identification

of weights, we propose a new test for state-dependency robust to heterogeneous sectoral dynamic

causal effects. In contrast, the conventional test for state-dependency is no longer appropriate

if heterogeneous sectoral dynamics are allowed. Finally we apply our method to estimate the

non-military spending multiplier in the U.S. using the data after WWII. We first decompose the

aggregate multiplier into a weighted sum of the military and non-military spending multipliers.

The estimated aggregate spending multiplier is less than one, but our decomposition result shows

that the non-military spending multiplier can be larger than one if the military spending multiplier

is at least as large as one. However, we find no strong evidence on the state-dependency of the

multiplier.
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Figure 1: Real Government Spending Per Capita (in thousands of chained dollars)

1950 1960 1970 1980 1990 2000 2010
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 2: De-trended Real Government Spending and Military News Shock (Total spending: solid
line, Defense spending: circle, Nondefense spending: dotted line, News shock: cross)

19



4 6 8 10 12 14 16 18 20

0.5

1

1.5

2
Cumulative aggregate spending multiplier

4 6 8 10 12 14 16 18 20
quarter

0.5

1

1.5

2

2.5
Cumulative non-military spending multiplier

Figure 3: Cumulative Spending Multiplier with 95% Confidence Bands. Bottom panel: military
spending multiplier = 1.2 (solid line), 0.6 (circle)

0 2 4 6 8 10 12 14 16 18 20

0

0.1

0.2

G
ov

er
nm

en
t s

pe
nd

in
g

0 2 4 6 8 10 12 14 16 18 20

0

0.05

0.1

0.15
IRF: Aggregate Spending

0 2 4 6 8 10 12 14 16 18 20
-0.1

0

0.1

0.2

IRF: Sectoral Spending

Figure 4: Government Spending Response to News Shock with 95% Confidence Bands. Bottom
panel: military spending (solid line), non-military spending (circle)
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Figure 5: Relative Weights for Sectoral Multipliers: military spending multiplier (solid line), non-
military spending multiplier (circle)
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Figure 6: Test Statistic for Threshold Parameter using Post-WWII sample. Bootstrap 5% critical
value=13.97
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Figure 7: Cumulative Spending Multiplier with 95% Confidence Bands in Low-Unemployment
State. Bottom panel: military spending multiplier = 1.2 (solid line), 0.6 (circle)
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Figure 8: Government Spending Response to News Shock with 95% Confidence Bands in Low-
Unemployment State. Bottom panel: military spending (solid line), non-military spending (circle)
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Figure 9: Cumulative Spending Multiplier with 95% Confidence Bands in High-Unemployment
State. Bottom panel: military spending multiplier = 1.2 (solid line), 0.6 (circle)
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Figure 10: Government Spending Response to News Shock with 95% Confidence Bands in High-
Unemployment State. Bottom panel: military spending (solid line), non-military spending (circle)
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Appendix A: Proofs

A.1. Proof of Proposition 1

Rewriting (11) for yt and xs,t yields

yt = (εy,t + θ1,yyεy,t−1 + θ2,yyεy,t−2 + · · · ) +
S∑
s=1

(θ0,ysεs,t + θ1,ysεs,t−1 + · · · )

=
∞∑
j=0

(
θj,yyεy,t−j +

S∑
s=1

θj,ysεs,t−j

)
(42)

xs,t = (θ0,syεy,t + θ1,syεy,t−1 + θ2,syεy,t−2 + · · · ) +
S∑

s′=1

(
θ0,ss′εs′,t + θ1,ss′εs′,t−1 + · · ·

)
,

=
∞∑
j=0

(
θj,syεy,t−j +

S∑
s′=1

θj,ss′εs′,t−j

)
. (43)

Replace the subscript t with t+ h in (42)-(43). Using xt =
∑S

s=1 xs,t and Assumption 1, we obtain

E[ztyt+h] =
∑S

s=1 αsθh,ys and E[ztxt+h] =
∑S

s=1 αsθh,xs. Setting h = 0 for E[ztxt+h] yields the

estimand. Note that the denominator of the estimand is nonzero under Assumption 1(i). Q.E.D.

A.2. Proof of Proposition 2

Under the assumption, θ0,xs = θ0,ss = 1 by the unit effect normalization and the IV estimand

simplifies to

βh =

S∑
s=1

αs∑S
s′=1 αs′

θh,ys. (44)

Since

E[ztxs,t] =
S∑

s′=1

αs′θ0,ss′ = αsθ0,ss = αs, (45)

the IV estimand can be written as

βh =
S∑
s=1

E[ztxs,t]

E[ztxt]
θh,ys. (46)

Q.E.D.
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A.3. Proof of Proposition 3

Similar to the proof of Proposition 1, we rewrite (14) for yt and xs,t and replace t with t+ h to get

yt+h =

∞∑
j=0

(θj,yy1(qt+h−1 ≤ γ0) + ψj,yy1(qt+h−1 > γ0))εy,t+h−j (47)

+
∞∑
j=0

S∑
s=1

(θj,ys1(qt+h−1 ≤ γ0) + ψj,ys1(qt+h−1 > γ0))εs,t+h−j ,

xs,t+h =
∞∑
j=0

(θj,sy1(qt+h−1 ≤ γ0) + ψj,sy1(qt+h−1 > γ0)εy,t+h−j (48)

+
∞∑
j=0

S∑
s′=1

(θj,ss′1(qt+h−1 ≤ γ0) + ψj,ss′1(qt+h−1 > γ0))εs′,t+h−j .

Using Assumption 2(ii)-(iii) and the law of iterated expectations, for all integer j ≤ h,

E[zt1(qt−1 ≤ γ)1(qt+h−1 ≤ γ0)εt+j ] =E[1(qt+h−1 ≤ γ0)E[1(qt−1 ≤ γ)E[ztεt+j |qt−1]|qt+h−1]] = 0,

E[zt1(qt−1 ≤ γ)1(qt+h−1 > γ0)εt+j ] =E[1(qt+h−1 > γ0)E[1(qt−1 ≤ γ)E[ztεt+j |qt−1]|qt+h−1]] = 0,

and

E[zt1(qt−1 ≤ γ)1(qt−1 ≤ γ0)εy,t] =E[1(qt−1 ≤ γ)1(qt−1 ≤ γ0)E[ztεy,t|qt−1]] = 0,

E[zt1(qt−1 ≤ γ)1(qt−1 > γ0)εy,t] =E[1(qt−1 ≤ γ)1(qt−1 > γ0)E[ztεy,t|qt−1]] = 0.

In addition, we can write

E[zt1(qt−1 ≤ γ)1(qt−1 ≤ γ0)εs,t] =

{
αA,s(γ) if γ ≤ γ0,

αA,s(γ0) if γ > γ0,

E[zt1(qt−1 ≤ γ)1(qt−1 > γ0)εs,t] =

{
0 if γ ≤ γ0,

αs(γ0, γ) if γ > γ0.

Combining the above results, we obtain

E[zt1(qt−1 ≤ γ)yt+h] =

{ ∑S
s=1 αA,s(γ)θh,ys if γ ≤ γ0,∑S
s=1(αA,s(γ0)θh,ys + αs(γ0, γ)ψh,ys) if γ > γ0,

E[zt1(qt−1 ≤ γ)xs,t+h] =

{ ∑S
s′=1 αA,s′(γ)θh,ss′ if γ ≤ γ0,∑S
s′=1(αA,s′(γ0)θh,ss′ + αs′(γ0, γ)ψh,ss′) if γ > γ0
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for βA,h(γ). For βB,h(γ), we use

E[zt1(qt−1 > γ)1(qt−1 ≤ γ0)εs,t] =

{
αs(γ, γ0) if γ ≤ γ0,

0 if γ > γ0,

E[zt1(qt−1 > γ)1(qt−1 > γ0)εs,t] =

{
αB,s(γ0) if γ ≤ γ0,

αB,s(γ) if γ > γ0.

which lead to

E[zt1(qt−1 > γ)yt+h] =

{ ∑S
s=1(αB,s(γ0)ψh,ys + αs(γ, γ0)θh,ys) if γ ≤ γ0,∑S
s=1 αB,s(γ)ψh,ys if γ > γ0,

E[zt1(qt−1 > γ)xs,t+h] =

{ ∑S
s′=1(αB,s′(γ0)ψh,ss′ + αs′(γ, γ0)θh,ss′) if γ ≤ γ0,∑S
s′=1 αB,s′(γ)ψh,ss′ if γ > γ0.

Now by setting h = 0 for xs,t+h and using xt =
∑S

s=1 xs,t, we have βA,h(γ) and βB,h(γ). Q.E.D.

A.4. Proof of Proposition 4

Under the assumption, θ0,xs = θ0,ss = 1 and ψ0,xs = ψ0,ss = 1 by the unit effect normalization.

Letting γ = γ0, the IV estimands simplify to

βA,h(γ0) =
S∑
s=1

(
αA,s(γ0)∑S
s=1 αA,s(γ0)

)
θh,ys, (49)

βB,h(γ0) =
S∑
s=1

(
αB,s(γ0)∑S
s=1 αB,s(γ0)

)
ψh,ys. (50)

Since

E[zt1(qt−1 ≤ γ0)xs,t] =
S∑

s′=1

αA,s′(γ0)θ0,ss′ = αA,s(γ0)θ0,ss = αA,s(γ0), (51)

E[zt1(qt−1 > γ0)xs,t] =
S∑

s′=1

αB,s′(γ0)ψ0,ss′ = αB,s(γ0)ψ0,ss = αB,s(γ0), (52)

the IV estimands can be written as desired. Q.E.D.

A.5. Proof of Theorem 1

Recall that the test statistic is given as in (33). Note that the major difference between the one in

Proposition 2 and the test statistic is the presence of estimator of ν. To address the estimation error

of ν, we refer to the result in Chernozhukov et al. (2014b). Particularly, Provided that Condition

H4 in page 1795 of the paper is satisfied, then the estimation error does not affect the rate and
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can be treated as if it were known a priori. The type of estimation error in this paper is verified in

pages 1813-1814 in Chernozhukov et al. (2014b). Provided that K±b (·) satisfies Assumption 4(ii),

the desired result comes from the straightforward application of Proposition 2. Q.E.D.
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Appendix B

Our distribution theory entails approximating suprema of local empirical processes with dependent

data by suprema of Gaussian processes (strong approximation). This section discusses asymptotic

theory on strong approximation in the time series context in details. Before our discussion, we

begin with defining two concepts.

Definition 1. A β-mixing coefficient is defined as

β(k) := sup
t≥1

E sup
A∈σ∞t+k

|Pr(A|σt−∞)− Pr(A)|

Definition 2. Let F be a class of measurable functions on a measurable space (S,S), to which a

measurable envelope F is attached. Define ‖f‖Q,p := (Q|f |p)1/p <∞. F is VC class with envelope

F if there are constants A, v > 0 such that

sup
Q
N(ε‖F‖Q,2,F , eQ) ≤ (A/ε)v

for all 0 < ε ≤ 1, where eQ(f, g) = ‖f − g‖Q,2, f, g ∈ L2(Q), the supremum is taken over all finitely

discrete probability measures on (S,S).

B.1 Strong approximation for empirical processes of dependent data

Given the test statistic defined as (33), consider the following maxima of the empirical process of

dependent data {(qt−1, gt)}Tt=1:

WT := sup
f∈FT

GT f, (53)

where

GT f =
1√
T

T∑
t=1

(fq(qt−1, gt)− Efq(qt−1, gt)) (54)

and

FT =
{
fq(x, y) :

(
K+
b (q − x)−K−b (q − x)

)
y
/√

b where q ∈ Γ
}
. (55)

Defining a two by one vector wt := (qt−1, gt)
>, fq(wt) ∈ FT is indexed by q where Γ is a Borel

subset of R.3 A sequence of random pair {wt}Tt=1 is assumed to be strictly stationary β-mixing

for empirical processes GT f . Since FT needs not belong to a Donsker class (while it belongs to a

Vapnik-C̆ervonenkis (VC) subgraph class), the usual weak convergence for WT does not hold and

therefore, strong approximation for WT is required.4

3Without loss of generality, we can let Γ = (b, 1− b), which can be done by defining the conditioning variable by
arctan (qt).

4 Note that the set of all translates of kernel function K(·) of bounded variation is VC and for two VC-subgraphs
F and G with f ∈ F and g ∈ G, a variety of operations including F ∧G and F ∨G, F + g and Fg are VC-subgraphs.
See e.g. Lemma (2.6.11) and Lemma (2.6.18) in van der Vaart and Wellner (2011). Some general sufficient conditions
to ensure that FT is VC are discussed in Giné and Guillou (2002).
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Under this setting, by employing an entropy method, we show the asymptotic behavior of the

test statistic by validating a Gaussian approximation of WT by a sequence of random variables

WT whose distribution is equal to that of supf∈FT
GT f where GT is a centered Gaussian process

specified below in Proposition 2 in a sense that

|WT −WT | = op (ρT ) (56)

for some ρT → 0 as T →∞.

While Chernozhukov, Chertverikov and Kato (2014) studied the above strong invariance princi-

ple for i.i.d data, their results cannot be directly applied to our test statistic since the data {wt}Tt=1

are dependent by nature. In order to extend Theorem 2.1 and Corollary 2.2 in Chernozhukov,

Chertverikov and Kato (2014) by accommodating dependent data, we employ the Bernstein’s big-

block-small-block decomposition (e.g. Masry, 2005), coupling (e.g. Chen and Shen, 1998) and

Martingale difference sequence (MDS) approximation (Wu and Mielniczuk, 2002).

In particular, following Bernstein’s big-block-small-block decomposition to the empirical pro-

cesses, we consider two sequences m and r(< m) such that m + r ≤ T/2, m, r → ∞ as T → ∞,

m = o (T ), and r = o
(
m1/4/ log1/2 T

)
. Then we can construct two types of index sets: one type

is a big block and the other is a small block such that for kT satisfying (kT − 1) (m+ r) ≤ T ≤
kT (m+ r), for i = 1, ..., kT−1,

Ii = {(i− 1) (m+ r) + 1, ..., (i− 1) (m+ r) +m} ,

Ji = {im+ (i− 1) r + 1, i (m+ r)} ,

and the remainder for each type:

IkT = {(kT − 1) (m+ r) + 1, ..., (kT − 1) (m+ r) +m} ∩ {1, ..., T} ,

JkT = {kTm+ (kT − 1) r + 1, kT (m+ r)} ∩ {1, ..., T} .

Based on these index sets, we can construct a random sequence {w̃t}Tt=1 independent of {wt}Tt=1

where {w̃t} is the sequence in the independent blocks such that {w̃t : t ∈ Ii} is independent of

{w̃t : t ∈ Ij} and {w̃t : t ∈ Ji} is independent of {w̃t : t ∈ Jj} for i 6= j satisfying that for any

M > 0,∣∣∣∣∣∣P
sup

f

∣∣∣∣∣∣ 1√
T

kT∑
i=1

∑
t∈Ii

f (wt)− Ef (wt)

∣∣∣∣∣∣ ≥M
− P

sup
f

∣∣∣∣∣∣ 1√
T

kT∑
i=1

∑
t∈Ii

f (w̃t)− Ef (w̃t)

∣∣∣∣∣∣ ≥M

∣∣∣∣∣∣

= O (kTβ (r)) ,
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∣∣∣∣∣∣P
sup

f

∣∣∣∣∣∣ 1√
T

kT∑
i=1

∑
t∈Ji

f (wt)− Ef (wt)

∣∣∣∣∣∣ ≥M
− P

sup
f

∣∣∣∣∣∣ 1√
T

kT∑
i

∑
t∈Ji

f (w̃t)− Ef (w̃t)

∣∣∣∣∣∣ ≥M

∣∣∣∣∣∣

= O (kTβ (m)) ,

due to the coupling as in e.g. Lemma 1 and its proof of Chen and Shen (1998). Then, the above

approximation errors are asymptotically negligible as long as

kTβ (r) = o
(
Tβ
(
m1/4/ log1/2 T

)
/m
)
→ 0. (57)

where m = T c with 0 < c < 1. And kTβ (m) = o (1) since r = o (m). It suffices to set a polynomial

decay rate for β (·), e.g. β(k) = o(k−η) for some positive constant η > 4/c− 4.

Consider the following collections of composite functions:

U1 ={`1,q (w̃t : t ∈ Ii) =
∑
t∈Ii

fq(w̃t) : q ∈ Γ, fq ∈ FT }

U2 ={`2,q (w̃t : t ∈ Ji) =
∑
t∈Ji

fq(w̃t) : q ∈ Γ, fq ∈ FT }

Under the blocking and coupling scheme, GT f = G1,kT `1 + G2,kT `2 where `1 ∈ U1 and `2 ∈ U2 and

G1,kT `1 is an empirical process indexed by U1 such that

G1,kT `1 =
1√
T

kT∑
k=1

(`1,q(w̃t : t ∈ Ik)− E`1,q(w̃t : t ∈ Ik)) (58)

and G2,T `2 is defined analogously.

Before we proceed with our detailed discussion on the strong approximation, we provide regu-

larity conditions.

Assumption 4.

(i) E|gt|p <∞ for some p ≥ 4 and supq∈ΓE[g4
t |qt−1 = q] <∞.

(ii) The kernel function K(·) is a bounded and continuous on R and such that the class of functions

K(·) belongs to is a VC class with a bounded envelop.

(iii) The distribution of qt has a bounded Lebesgue density pq(·) on R.

(iv) CΓ := supT≥1 supq∈Γ |ν−1/2(q)| < ∞. Moreover, for every fixed T ≥ 1 and for every qk ∈ Γ

with qk → q ∈ Γ pointwise, ν(qk)→ ν(q).

(v) For the bandwidth b, the big block size m, and the small block size r, as T →∞, (a) b→ 0 (b)

m = T c for 0 < c < 1; (c) r = m1/4
/

log1/2 T .

(vi) {wt} is a strictly stationary β-mixing sequence with its β-mixing coefficient satisfying β(k) =

o(k−η) for some constant η > 4/c− 4 for c in (v).
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(vii) {wt} is a linear process with the absolute summability and finite second moment such that

w̃t =
∑∞

j=0 ajεt−j where
∑∞

i |ai| < ∞ {εi} are i.i.d random variables with zero mean and a finite

variance and the density of ε1 is Lipschitz continuous and bounded.

Assumptions 4(i)-(v) are slightly modified from those for Proposition 3.2. in Chernozhukov et

al. (2014). Assumption 4(iii) is typical and Assumption 4(iv) is required to avoid measurability

complications. Assumption 4(v) is the decaying rate for the bandwidth and the increasing rate for

the size of the big block, and the size of the small block. Assumption 4(vi) allows for stationary

data and it is required to relate the original empirical process with dependent data to another

empirical process built on an independent block sequence along the line of blocking and coupling

scheme in Arcone and Yu (1994) and Chen and Shen (1998). Assumption 4(vii) is required for the

MDS approximation in relation to the big block component as in Wu and Mielniczuk (2002).

The following lemma shows the uniform asymptotic negligibility of the small block components

(G2,kT `2) compared to the big block ones (G1,kT `1) via a maximal inequality for the empirical

processes so that we can focus on the big block components.

Lemma 1. Under Assumption 4,

sup
`2∈U2

|G2,kT `2| = op(log−1 T )

Proof. The size of envelop for the class U2 is given as
∥∥∥∑t∈Jk F (w̃t)

∥∥∥
P,2
≤ r ‖F‖P,2 and the uniform

entropy integral has

sup
Q

∫ 1

0

√√√√√1 + logN

ε
∥∥∥∥∥∥
∑
t∈Jk

F (w̃t)

∥∥∥∥∥∥
Q,2

,U2, L2(Q)

dε = O (r) .

Apply Theorem 2.14.1 in van der Vaart and Wellner (2011) or Corollary 5.1 in Chernozhukov et

al. (2014) to the class U2,

sup
`2∈U2

|G2,kT `2| = sup
f∈F

∣∣∣∣∣∣
√
kT√
T

1√
kT

kT∑
k=1

∑
t∈Jk

f (w̃t)− Ef (w̃t)

∣∣∣∣∣∣ = Op

(
r2

√
m+ r

)
= op

(
log−1 T

)
due to Assumption 4(v)(c). Q.E.D.

For the big block component, note that while the big blocks in the sequence, {w̃t} are inde-

pendent, elements within each block are dependent. To address the dependence within each big

block, we employ the martingale approximation following Lemma 3 in Wu and Mielniczuk (2002).

In particular, the following Lemma shows that the big block component can be approximated by

an MDS under Assumption 4.
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Lemma 2. Under Assumption 4,

sup
`1∈U1

∣∣∣G1,kT `1(w̃t)−G1,kT `1(ξ̃t)
∣∣∣ (59)

= sup
f∈F

∣∣∣∣∣∣ 1√
T

kT∑
k=1

∑
t∈Ik

[f (w̃t)− Ef (w̃t)]−
1√
T

kT∑
k=1

∑
t∈Ik

[f(ξ̃t)− Ef(ξ̃t)]

∣∣∣∣∣∣ = op

(√
b
)
, (60)

where {ξ̃t} is an MDS and the approximation error is shown to be of the order of O
(√

b
)

, where

b is the bandwidth in the kernel.

Proof. Applying Lemma 3 in Wu and Mielniczuk (2002) yields the desired result. Q.E.D.

Since each small block is asymptotically negligible due to Lemma 1 and each big block in the

sequence {w̃t} is approximated by an MDS as in (60) due to Lemma 2, we can apply Corollary 2.2

in Chernozhukov et al. (2014) to the independent blocks.

Theorem 2. Under Assumption 4, for WT defined in (53), there exists WT whose distribution

is equivalent to that of supf∈FT
GT f , a sequence of suprema of independent centered Gaussian

processes GT indexed by Γ where q ∈ Γ with covariance function such that for fq, fq′ ∈ FT ,

E[GT fq(ξ̃t)GT fq′(ξ̃t)] = Cov

 1√
mkT

kT∑
j=1

∑
t∈Ij

fq

(
ξ̃t

)
,

1√
mkT

kT∑
j=1

∑
t∈Ij

fq′
(
ξ̃t

) , (61)

where ξ̃t is a sequence of MDS. Then,

|WT −WT | = Op(AT +BT + CT ) (62)

with

AT =m1/2−1/qb−1/2T−1/2+1/q log3/2 T

BT =m1/4 (bT )−1/4 log5/4 T

CT = (bT )−1/6 log T

where m is the size of each big block, b is the bandwidth.

Proof. Due to Lemma 2, we first apply Corollary 2.2 in Chernozhukov et al. (2014) to the big block

component with {ξ̃t}. In particular, we set the parameters in Corollary 2.2 in Chernozhukov et al.

(2014) as follows: b = mb−1/2, σ = O (1), Kn = log T and F =

{∑
t∈Ik

f(b−1(q−qt−1))√
b

: q ∈ Γ

}
. As

kT (m+ r) ∼ T and r = o (m), we have kTm/n → 1. Then, there exists a sequence of suprema of

independent centered Gaussian processes GkT indexed by Γ where q ∈ Γ with covariance function

33



such that for `1,q, `1,q′ ∈ U1,

E[GkT `1,qGkT `1,q′ ] = Cov

 1√
kT

kT∑
j=1

∑
t∈Ij

fq

(
ξ̃t

)
,

1√
kT

kT∑
j=1

∑
t∈Ij

fq′
(
ξ̃t

) . (63)

Then, applying Corollary 2.2 in Chernozhukov et al. (2014) yields

1√
m

sup
f∈F

1√
kT

kT∑
j=1

∑
t∈Ij

f
(
ξ̃t

)
− sup
f∈F

GkT `1,q


=

1√
m
Op

(
mb−1/2k

−1/2+1/q
T log3/2 T +m1/2b−1/4k

−1/4
T log5/4 T +m1/3 (bkT )−1/6 log T

)
=

1√
m
Op

(
m3/2−1/qb−1/2T−1/2+1/q log3/2 T +m3/4 (bT )−1/4 log5/4 T +m1/2 (bT )−1/6 log T

)
.

Also, due to Lemma 1,

1√
m

sup
f∈FT

GkT f = sup
f∈FT

GT f + op
(
log−1 T

)
.

Combining the above result yields the desired result. Q.E.D.
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[19] Jordà, Ò. (2005). Estimation and inference of impulse responses by local projections. American

Economic Review, 95(1), 161-182.

[20] Jord, ., Schularick, M., & Taylor, A. M. (2020). The effects of quasi-random monetary exper-

iments. Journal of Monetary Economics, 112, 22-40.
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