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1 Introduction

In empirical economic analysis, it is a common practice to drop outliers, whose definition can

however be ambiguous. If the underlying distribution is normal, then deleting the observations

that are larger than few standard deviations away from the sample mean seems reasonable;

but such a practice could lead to a substantially biased estimate if the underlying distribution

has a heavy tail or does not even have a finite mean. The classical confidence interval based

on the t-statistic can also be misleading. Technically, the non-existence of outliers is defined

as the finite first and second moment conditions on the score, which are required for consistent

estimation and a valid t-statistic, respectively. These finite moment conditions are often taken

for granted, but are not necessarily plausibly satisfied in empirical studies. Motivated by this

concern, this article proposes a method of diagnostic testing for these finite moment conditions.1

To illustrate our method, let Ai = A(Di; θ0) denote the score function – e.g., Ai = XiUi =

Xi(Yi−Xᵀi θ0) in case of the linear regression – for the estimator evaluated at the i-th observation

Di and the true parameter vector θ0. To test the finite first moment condition E[|Ai|] <∞, we

essentially require that the distribution of |Ai| decays to zero at a power law, i.e.,

lim
a→∞

P(|Ai| > a)

a−1/ξ
= 1,

where ξ is called the tail index that characterizes the decaying rate. Such a tail approximation

is satisfied by many commonly used distributions - see Sections 4–5 for more discussions. Under

this restriction, we have the elegant feature that the finite moment condition E[|Ai|] < ∞ is

equivalent to ξ < 1. Then, we propose a test of this equivalent condition ξ < 1 that has

nontrivial asymptotic power in large samples.

More specifically, consider a test of finite r-th moment of the score, e.g., r = 1 (respectively,

r = 2) for a test of the consistency (respectively, the root-n asymptotic normality). First, sort

1A closely related to but different from this objective is the literature on testing non- and weak-identification

(e.g., Wright, 2003; Stock and Yogo, 2005; Inoue and Rossi, 2011; Sanderson and Windmeijer, 2016; Lee,

McCrary, Moreira, and Porter, 2020). See the related literature subsection ahead for detailed discussions.
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the r-th power of the estimated absolute score |A(Di, θ̂)| in the descending order, where θ̂ is

some consistent estimator of θ0. Second, pick the largest k of these order statistics and self-

normalize them. We show that these self-normalized statistics asymptotically follow a known

joint distribution up to the unknown tail index parameter ξ. A sub-unit (respectively, super-

unit) value of this tail index parameter ξ indicates a finite (respectively, infinite) r-th moment

of the score. Using these dichotomous characteristics, we construct a likelihood ratio test based

on the limiting joint distribution of the self-normalized statistics. We establish a size control

property of the proposed test under the null hypothesis of a finite r-th moment of the score,

which is our main result.

Simulation studies support the theoretical result of the size control property. Applying the

proposed method of testing to the widely used market share data from Dominick’s Finer Foods

retail chain, we find that the common ad hoc treatment of zero market shares by adding an

infinitesimal positive value results in a failure of the consistency and the root-n asymptotic

normality. This failure results from the fact that inclusion of the logarithms of these infinites-

imal numbers (i.e., large negative values) induces a heavy-tailed distribution of the regression

residuals for observations with originally non-zero market shares.

Relation to the Literature: We are not aware of any existing paper that develops a

diagnostic test of the finite moment condition for the consistency or the root-n asymptotic

normality of the GMM or M estimators, as we do in this paper. This is potentially due to the

well-known ‘impossibility’ results by Bahadur and Savage (1956) and Romano (2004). Romano

(2004) shows that it is impossible to construct a powerful test that controls size uniformly over

all possible underlying distributions. We show that it is still possible to construct tests that

control size pointwisely under any fixed underlying distribution with a regularly varying tail.

Such a framework is still flexible enough to cover many commonly used distributions and is

widely adopted in the existing literature to model a variety of empirical datasets. To name a few,

Rozenfeld, Rybski, Gabaix, and Makse (2011) model the city-size data under this framework
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and empirically justify Zipf’s law. Gabaix, Gopikrishnan, Plerou, and Stanley (2003) establish

a novel theory to explain the empirical Pareto tails in the stock market. Barro and Jin (2011)

characterize the macroeconomic disaster dataset with a Pareto tail under this framework and

estimate the coefficient of risk aversion. Following the influential paper by Piketty and Saez

(2003), there have been many papers that model and explain the Pareto tail in the income and

wealth distributions. See Gabaix (2016) for a comprehensive review.

A different but closely related topic is a set of tools to test non- and weak-identification

(e.g., Wright, 2003; Stock and Yogo, 2005; Inoue and Rossi, 2011; Sanderson and Windmeijer,

2016; Lee, McCrary, Moreira, and Porter, 2020). These are related to our framework on one

hand because non- and weak-identification also results in a failure of the canonical consistency

and the root-n asymptotic normality, and therefore these testing methods serve for related

objectives. On the other hand, these are different from our framework because the non- and

weak-identification concerns about non- and weak-invertibility of the expected gradient of the

score,2 whereas the issue of our concern is instead about the finiteness of moments of the score

as the conditions for the WLLN and CLT. In this sense, the purposes of our method of test are

different from those of the preceding methods of tests of non- and weak-identification, while

they indeed play complementary roles.

Also related is the paper by Shao, Yu, and Yu (2001) that proposes a test of finite variance.

On the one hand, our test of the root-n asymptotic normality is also based on the test of finite

second moments, similarly to Shao, Yu, and Yu (2001). On the other hand, our objective of

testing the asymptotic normality for the GMM and M estimators requires to take into account

that the score is not directly observed in data, but has to be estimated via the GMM or M

estimation. With these similarities and differences, our proposed method also contributes to

this existing literature on testing finite moments by allowing for generated data.

For scalar locations and single equation models, an infinite first or second moment of the

2For general matrix rank tests, see e.g., Gill and Lewbel (1992); Cragg and Donald (1996, 1997); Robin and

Smith (2000); Kleibergen and Paap (2006); Camba-Méndez and Kapetanios (2009); Al-Sadoon (2017).

4



score is often imputed to outliers. Edgeworth (1887) proposes to use the absolute loss instead of

the square loss for a robust estimation of the equation parameters. This idea later extends and

generalizes to other robust methods based on the check losses (Koenker and Bassett Jr, 1978)

and the Huber loss (Huber, 1992). While we propose a test of the finite second moment of a

norm of the score for the root-n asymptotic normality of GMM and M estimators in general,

there are existing papers that establish limit distribution theories (which are not necessarily

root-n or normal) without requiring the finite second moment condition in these frameworks

(e.g., Davis and Resnick, 1985, 1986; Davis, Knight, and Liu, 1992; Hill and Prokhorov, 2016).

Finally, our method is based on recent developments in extreme value theory. We refer

readers to De Haan and Ferreira (2006) for a very comprehensive review of this subject. In

particular, our inference approach is based on the fixed-k asymptotics and takes advantage of the

technique developed by Müller and Wang (2017) and Müller (2020). Müller and Wang (2017)

construct fixed-k confidence intervals for the extreme quantile and tail conditional expectation,

based on a random sample drawn from some unknown distribution. In comparison, we focus

on the tail index and more importantly, allow for generated variables. The fixed-k approach

is useful in practice, because the asymptotic size control is valid for any predetermined fixed

number k, unlike traditional increasing-k approaches that require a sequence of changing tuning

parameters as the sample size grows for which a sensible choice rule is difficult to obtain in

small samples. The fixed-k approach also allows for robustness against errors in preliminary

estimation – this type of robustness, benefiting from the fixed-tuning parameter setup, has

been similarly explored in other contexts in the existing literature, e.g., the fixed-b asymptotic

inference under heteroskedasticity and autocorrelation proposed by Kiefer and Vogelsang (2005)

and the robust inference in kernel estimations proposed by Cattaneo, Crump, and Jansson

(2014). In constructing our likelihood ratio test, we take advantage of the computational

algorithm developed by Elliott, Müller, and Watson (2015).

Organization: The rest of this article is organized as follows. Section 2 sets up the
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econometric frameworks and Section 3 characterizes the testing problem. Section 4 introduces

our test and previews its properties, followed by asymptotic derivations in Section 5. Section

6 contains simulation studies and Section 7 conducts a detailed study of the market shares

data set. Section 8 concludes with proofs and omitted details relegated to the Supplementary

Applendix.

2 Econometric Frameworks

We first introduce the general frameworks of the GMM and M estimators under which we

propose the new test. A concrete empirical example will follow after the presentation of the

general frameworks.

2.1 GMM and M Estimators

M-Estimation: Consider the class of estimators defined by

θ̂ = arg max
θ∈Θ

Q̂n(θ),

where the criterion function Q̂n takes the form of Q̂n(θ) = n−1
∑n

i=1 gi(θ). Under regularity

conditions for this class (cf. Newey and McFadden, 1994, Section 3.2), the influence function

representation takes the form of
√
n
(
θ̂ − θ0

)
= −Ĥn(θ0)−1 · 1√

n

∑n
i=1 g

′
i(θ0) + op(1), where

Ĥn(θ) = n−1
∑n

i=1D
2
θgi(θ) and g′i(θ) = ∇θgi(θ). The consistency of θ̂ (via the weak law of large

numbers) requires E [‖g′i(θ0)‖] < ∞. Likewise, the asymptotic normality of
√
n
(
θ̂ − θ0

)
(via

multivariate Lindeberg-Lévy CLT) requires E
[
‖g′i(θ0)‖2] <∞. Common examples include the

following two classes of estimators:

1. (OLS) g′i(θ) = Xi (Yi −Xᵀi θ) ⇒ Ari (θ) ≡ ‖g′i(θ)‖
r = {(Yi −Xᵀi θ)

ᵀXᵀi Xi (Yi −Xᵀi θ)}r/2

2. (QMLE) g′i(θ) = ∇θ`(Yi, Xi; θ) ⇒ Ari (θ) ≡ ‖g′i(θ)‖
r = {∇θ`(Yi, Xi; θ)

ᵀ∇θ`(Yi, Xi; θ)}r/2
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In this paper, we propose tests of the null hypothesis: E [A1
i (θ0)] < ∞, the condition that is

required for establishing the consistency of θ̂; and the null hypothesis: E [A2
i (θ0)] < ∞, the

condition that is required for establishing the asymptotic normality of
√
n
(
θ̂ − θ0

)
.

Remark 1. Due to the related structures between M and Z estimators, our framework also

applies to Z estimators.

GMM: Next, consider the class of estimators defined by

θ̂ = arg min
θ∈Θ

Q̂n(θ),

where the criterion function Q̂n takes the form of Q̂n(θ) = [n−1
∑n

i=1 gi(θ)]
ᵀ
Ŵ [n−1

∑n
i=1 gi(θ)] .

Under regularity conditions for this class (cf. Newey and McFadden, 1994, Section 3.3), the influ-

ence function representation takes the form of
√
n
(
θ̂ − θ0

)
= −(Ĝn(θ̂)ᵀŴnĜn(θ0))−1 Ĝn(θ̂)ᵀŴn

n−1/2
∑n

i=1 gi(θ0) + op(1), where Ĝn(θ) = n−1
∑n

i=1∇θgi(θ) and Ŵn
p→ W0. The consistency of

θ̂ (via the weak law of large numbers) requires E [‖gi(θ0)‖] < ∞. Likewise, the asymptotic

normality of
√
n
(
θ̂ − θ0

)
(via multivariate Lindeberg-Lévy CLT) requires E

[
‖gi(θ0)‖2] < ∞.

A common example is:

3 (2SLS) gi(θ) = Zi (Yi −Xᵀi θ) ⇒ Ari (θ) ≡ ‖gi(θ)‖
r = {(Yi −Xᵀi θ)

ᵀ Zᵀi Zi (Yi −X
ᵀ
i θ)}r/2

Similarly to the M-estimation case, we propose tests of the null hypothesis: E [A1
i (θ0)] < ∞,

which is required for establishing the consistency of θ̂; and the null hypothesis: E [A2
i (θ0)] <∞,

which is required for establishing the asymptotic normality of
√
n
(
θ̂ − θ0

)
.

2.2 Example: Demand Analysis in Differentiated Products Markets

In applications, Ari (θ0) may not have a finite moment in the presence of outliers in the dependent

variable. Outliers may be innate in data in some applications. In other applications, outliers

may be produced as artifacts of ad hoc procedures taken by researchers. In the empirical
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application to be presented in Section 7 ahead, we highlight this point in the context of the

demand analysis under the following setup.

Example 1 (Demand Analysis). Demand estimation with market share data3 in the logit case

is based on GMM with the moment function defined by

gjt(θ) = Zjt
(
ln(Sjt)− ln(S0t)− Pjtθ1 −Xᵀjtθ−1

)
,

where j indexes products, t indexes markets, Sjt denotes the share of product j in market t,

Pjt denotes the price, Xjt denotes product characteristics, and Zjt denotes instruments. In this

setting,

Arjt(θ) = {(ln(Sjt)− ln(S0t)− Pjtθ1 −Xᵀitθ−1)ᵀ ZᵀjtZjt (ln(Sjt)− ln(S0t)− Pjtθ1 −Xᵀitθ−1)}r/2,

evaluated at θ = θ0, may not have a finite moment when ln(Sjt) has a heavy-tailed distribution.

Furthermore, in the presence of zero market shares, there is a common ad hoc practice of

replacing zero shares by infinitesimal shares in order to avoid the logarithm of zeros, but only

to artificially produce a heavy-tailed distribution of regression residuals for observations with

“originally non-zero” market shares. Such a practice can result in a failure of the consistency

and the root-n asymptotic normality – see our empirical applications in Section 7.

3 Hypothesis Testing Problem

This section establishes the equivalence between the event of finite moments and the event of

sub-unit values of the tail index.

Consider the distribution function F of a non-negative random variable, examples of which

are the random variables Ari (θ0) that were introduced in Section 2. As a preliminary step

before constructing a test, we show that whether its moment is finite is fully determined by

3This framework is drawn from the literature on the estimation of demand for differentiated products (Berry,

1994; Berry, Levinsohn, and Pakes, 1995). See Ackerberg, Benkard, Berry, and Pakes (2007) for a survey.
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the right-tail behavior of F . To this end, we introduce our key assumption on F . We say that

a distribution F is within the domain of attraction (DoA) of the extreme value distribution,

denoted by F ∈ D (Gξ), if there exist sequences of constants an and bn such that for every v,

lim
n→∞

F n(anv + bn) = Gξ(v)

holds, where the function Gξ is defined by

Gξ(v) =


exp

(
−(1 + ξv)−1/ξ

)
1 + ξv > 0, ξ 6= 0

exp (−e−v) v ∈ R, ξ = 0,

and is referred to as the generalized extreme value distribution.

This condition, characterizing the tail shape of the underlying distribution, is mild and

satisfied by many commonly used distributions. In particular, the case with ξ > 0 equivalently

covers regularly varying (RV) distributions such that

1− F (a) = a−1/ξL(a) (3.1)

for some function L(·) that satisfies L(a) → 1 as a → ∞. Leading examples include Pareto,

Student-t, and F distributions. The case with ξ ≤ 0 covers thin tailed distributions that have a

finite r-th moment for any r > 0, including, for example, the Gaussian family and distributions

with bounded supports. See De Haan and Ferreira (2006, Ch.1) for a comprehensive review.

Since the finite moments are readily satisfied in this case, we focus on the case of ξ > 0 in the

rest of the paper. We will interchangeably refer to DoA and RV as our key assumption.

The following lemma formally characterizes the finiteness of the moment in terms of the

sub-unit values of ξ. A proof can be found in Appendix A.1.

Lemma 1 (Characterization). For a generic non-negative random variable A with distribution

FA satisfying (3.1), we have that

E [A] <∞ if ξ < 1;

E [A] =∞ if ξ > 1.
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In addition, suppose L(·) is uniformly bounded below from zero. Then E [A] =∞ if ξ = 1.

A couple of remarks are in order. First, the results with ξ < 1 and ξ > 1 have been

stated in Mikosch (1999) with proofs following from Karamata’s theorem (e.g., Resnick, 2007,

Theorem 2.1). We present them here mainly for completeness. Second, the case with ξ = 1

is more complicated since the distribution in such case may have either infinite or finite first

moment, if no further restriction is imposed. To explicitly characterize this case, we impose

the additional condition that L(·) is uniformly bounded below from zero. This is mild and

satisfied by many commonly used distributions. For example, if the underlying distribution

is exactly Pareto, we have L(·) = 1. If the underlying distributio is Student-t, we have that

L(a) = c(1 + da−2 + o(a−2) as a→∞ for some constants c > 0 and d 6= 0.

In summary, Lemma 1 implies that, given the class of distributions that satisfy the DoA

condition, the tail index ξ cannot exceed one for any distribution that has a finite moment.

Then, we are ready to state our competing hypotheses as follows

H0 : ξ ∈ (0, 1) against H1 : ξ ∈ [1, ξ̄], (3.2)

where ξ̄ is the upper bound of the parameter space that includes all empirically relevant values

of ξ. We set ξ̄ = 2 in later sections, which can be easily extended. Note that the null space

shares the boundary of the alternative space at the point ξ = 1. At such boundary point, our

proposed test is expected to have equal size and power, which is presented later in Figure 1.

4 The Test

In order to test the hypotheses in (3.2), we would like to observe large values of Ari (θ0), which

are not available since θ0 is unknown. We make use of a consistent estimator θ̂ of θ0. Let

Ar(1)(θ̂) ≥ Ar(2)(θ̂) ≥ . . . ≥ Ar(n)(θ̂) denote the order statistics by sorting {Ari (θ̂)}ni=1 in the

descending order. For a pre-determined integer k ≥ 3, collect the largest k order statistics as

Ar
(
θ̂
)

=
[
Ar(1)(θ̂), A

r
(2)(θ̂), . . . , A

r
(k)(θ̂)

]ᵀ
. (4.1)
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By extreme value theory again, the joint distribution of the largest order statistics asymptoti-

cally approaches a well-defined parametric joint distribution that is fully characterized by the

location, the scale, and the scalar parameter ξ. Therefore, if we conduct location and scale

normalization by considering the statistics

Ar
∗

(
θ̂
)

=
Ar
(
θ̂
)
− Ar(k)

(
θ̂
)

Ar(1)

(
θ̂
)
− Ar(k)

(
θ̂
) ,

where for any generic k × 1 vector A = (A1, . . . , Ak)
ᵀ and scalars a 6= 0 and b, the notation

a−1(A− b) is understood componentwisely as (a−1(A1 − b), . . . , a−1(Ak − b))ᵀ, then Ar
∗(θ̂) con-

verges in distribution to a limiting random vector V∗, whose density fV∗ is fully characterized

by ξ and is invariant to location, scale, and the order r – see (5.2) ahead for the formula of

fV∗ . By construction, the first and the last elements of Ar
∗(θ̂) (and V∗) are one and zero,

respectively. The estimation error in θ̂ is asymptotically negligible since it is of a smaller order

of magnitude than the largest order statistics of Ari (θ0) under the null hypothesis – see Section

5 for details.

Now, the limiting testing problem has become straightforward: we construct a test based on

a random draw of V∗ from its parametric density fV∗ about the only unknown scalar parameter

ξ. When the null and alternative hypotheses are both simple, the optimal solution is known

to be the Neyman-Pearson test, where large values of the likelihood ratio statistic reject the

null hypothesis. Therefore, we transform the null and alternative hypotheses of (3.2) into

simple ones by considering weighted average likelihoods, and our proposed test rejects the null

hypothesis that Ari (θ0) has a finite moment if∫
fV∗

(
Ar
∗(θ̂); ξ

)
dW (ξ)∫

fV∗

(
Ar
∗(θ̂); ξ

)
dΛ (ξ)

> cv,

where cv denotes the critical value, W (·) denotes a weight chosen by the econometrician to

reflect the importance of rejecting different alternatives, and Λ (·) is some pre-determined weight

defined on the null space. More details about this test are presented in the following section.
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We provide some heuristic discussions of the asymptotic property of the new test - formal

discussions will follow in Section 5. Figure 1 plots oracle rejection probabilities of the test with

V∗ generated from the limiting distribution fV∗ with various values of ξ and the nominal size

of 0.05. The plots are based on 10000 simulation draws. (This is a power prescription and is

different from Monte Carlo simulation studies. Full-blown Monte Carlo simulation studies with

concrete econometric models and small samples will be conducted and presented in Section 6 to

evaluate the finite sample performance.) Observe that the rejection probabilities for ξ ∈ (0, 1)

are dominated by the nominal size, 0.05. In other words, the test has a size control property

for all distributions with tail index less than one.

The nontrivial power of our proposed test is in fact not at odds with the result of Ro-

mano (2004, Example 1), which is often viewed as an ‘impossibility’ result regarding tests

of finite moments. Specifically, Romano (2004, Theorem 1) shows that supP∈P1
EP [φ(D)] ≤

supP∈P0
EP [φ(D)] holds for any test φ(·), where P0 and P1 denote the sets of distributions

compatible with the null and alternative hypotheses, respectively. His result implies that even

the maximum power in the alternative space cannot exceed the uniform size if we allow the

data generating process to change with the sample size. To illustrate this point, consider the

Pareto distribution F1(y) = 1 − y−1/2 that belongs to P1. We can construct the sequence of

distributions {F0m(y)}∞m=1 such that F0m(y) is identical to F1(y) if y is less than the 1 − 1/m

quantile of F1 and 1 − y−2 otherwise. Note that each F0m belongs to P0. By construction,

F0m and F1 differ from each other only at the very tail, and hence the extreme order statistics

cannot distinguish F1 from F0m if we allow m to increase with n sufficiently fast. On the other

hand, many empirical studies aforementioned in the introduction implicitly adopt the frame-

work that the data are generated from some fixed underlying distributions (m is fixed and n is

increasing). Under this framwork, the largest k order statistics will stem almost surely from the

tail part of the distribution, and hence they will nontrivially inform us of the true tail behavior

of the distribution asymptotically. This feature allows for the power to exceed the size of the
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Figure 1: Rejection probabilities of the test with V∗ generated from fV∗ with ξ ∈ [0.01, 2] and

the nominal size of 0.05. The plots are based on 10000 simulations.

test, as demonstrated in Figure 1.

5 Asymptotic Theory

We now present a formal theory to guarantee that our proposed test works in large samples.

To this end, we first introduce additional notations and some definitions. Denote by Di the

i-th observation so that we can write Ari (θ) = Ar (θ;Di). For example, Di = (Xᵀi , Yi)
ᵀ in the
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context of the OLS, and Di = (Xᵀi , Z
ᵀ
i , Yi)

ᵀ in the context of the 2SLS presented in Section

2.1. Let FAr(θ) denote the cumulative distribution function (CDF) of Ari (θ) and θ0 denote the

(pseudo-) true value of θ. Let Bηn (θ0) denote an open ball centered at θ0 with radius ηn → 0.

Let fAr(θ0) and QAr(θ0) be the probability density function (PDF) and quantile function of

Ari (θ0), respectively. With these notations and definitions, we impose the following regularity

conditions to prove the size control property of our proposed test.

Condition 1. The following conditions are satisfied.

(i) Di is i.i.d. from some underlying distribution that does not change with n.

(ii) FAr(θ0) satisfies (3.1) with L(·) bounded below from zero.

(iii) θ̂ − θ0 = op (1). For some ηn → 0, supi supθ∈Bηn (θ0)

∣∣∣∣∣∣∂Ari (θ)∂θ

∣∣∣∣∣∣ = Op

(
nξ
)
;

Condition 1 (i) requires random sampling from some fixed population distribution. It rules

out the trivial case where the location and the scale of the data diverge with the sample size.

As a consequence, the existence of the moment only depends on the tail heaviness of the

underlying distribution, which should remain invariant to location and scale shifts. Condition

1 (ii) requires that the distribution of Ar(θ0) falls in the domain of attraction of the extreme

value distribution, which bridges the finiteness of moments and the tail heaviness.

The first part of Condition 1 (iii) requires that the estimator θ̂ is consistent for θ0. Note

that this in general only requires the identification and finite first moments of the score. For the

case of testing the finite first moment condition for consistency (i.e., the case of setting r = 1),

this assumption is satisfied under the null hypothesis in (3.2). For the case of testing the finite

second moment condition for root-n asymptotic normality (i.e., the case of setting r = 2), this

assumption is satisfied even under a range of alternative hypotheses as well as under the null

hypothesis. In any case, the fact that this consistency condition is satisfied under the null

hypothesis allows us to establish a size control property based on this condition.
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The second part of Condition 1 (iii) requires that the gradient of Ari (θ) grows not too fast

as the sample size increases. Since this last piece of the condition is a high-level statement, it

will be useful to consider stronger lower level sufficient conditions in a specific example. We do

so in the context of the GMM estimator, which is implemented in our application.

It is worth mentioning that the consistency of θ̂ is sufficient but not necessary for the size

control. It can be relaxed provided a tigher bound on the magnitude of gradient. Consider OLS

for example, where the gradient becomes XiX
ᵀ
i . If Xi has a bounded support, the gradient is

then uniformly bounded over i and then Lemma 2 holds as long as the parameter space of θ0

is also bounded.

Discussion of Condition 1 (iii) – Case of GMM: Consider the case of setting r = 2 for test-

ing the root-n asymptotic normality. Recall that we defineA2
i (θ) = (Yi −Xᵀi θ)

ᵀ Zᵀi Zi (Yi −X
ᵀ
i θ) .

Thus,

∂A2
i (θ)

∂θ
= −2XiZ

ᵀ
i Zi (Yi −X

ᵀ
i θ)

= −2XiZ
ᵀ
i Ziui + 2XiZ

ᵀ
i ZiX

ᵀ
i

(
θ̂ − θ

)
.

The triangle inequality and Cauchy-Schwartz inequality yield

sup
i

sup
θ∈Bηn (θ0)

∣∣∣∣∣∣∣∣∂A2
i (θ)

∂θ

∣∣∣∣∣∣∣∣ ≤ 2 sup
i
||XiZ

ᵀ
i Ziui||+ 2 sup

i
||XiZ

ᵀ
i ZiX

ᵀ
i || · sup

θ∈Bηn (θ0)

∣∣∣∣∣∣θ̂ − θ∣∣∣∣∣∣
≤ 2 sup

i
||XiZ

ᵀ
i ||
(

sup
i

∣∣∣∣A2
i (θ0)

∣∣∣∣)1/2

+ 2

(
sup
i
||XiZ

ᵀ
i ||
)2

· sup
θ∈Bηn (θ0)

∣∣∣∣∣∣θ̂ − θ∣∣∣∣∣∣ . (5.1)

Condition 1 (ii) implies that supi ||A2
i (θ0)|| = Op(n

ξ) so that (supi ||A2
i (θ0)||)1/2

is of a smaller

order than supi ||A2
i (θ0)|| . Therefore, a sufficient condition for Condition 1 (iii) is that supi ||XiZ

ᵀ
i ||

is of a smaller order than (supi ||A2
i (θ0)||)1/2

. An even stronger sufficient condition for this suf-

ficient condition is that Xi and Zi have bounded supports, which is satisfied by the typical

applications in the demand analysis, in particular the one that we consider in our empirical

application in Section 7. �
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We now proceed to derive the asymptotic property of the proposed test. The following

lemma shows that the largest order statistics as in (4.1) asymptotically follow the joint extreme

value distribution.

Lemma 2. Under Condition 1, there exist sequences of constants an and bn depending on

FAr(θ0) such that, for any fixed k,

Ar
(
θ̂
)
− bn

an

d→ V ≡ (V1, ..., Vk)
ᵀ ,

where V is jointly distributed with the density given by fV|ξ(v1, ..., vk) = Gξ(vk)
∏k

i=1 gξ(vi)/Gξ(vi)

on vk ≤ vk−1 ≤ . . . ≤ v1, and gξ(v) = ∂Gξ(v)/∂v.

A proof is provided in Appendix A.2.

Since an and bn are unknown, we would like to eliminate them in constructing feasible test

statistics. We do so by constructing the self-normalized statistic

Ar
∗

(
θ̂
)

=

1,
Ar(2)

(
θ̂
)
− Ar(k)

(
θ̂
)

Ar(1)

(
θ̂
)
− Ar(k)

(
θ̂
) , . . . , Ar(k−1)

(
θ̂
)
− Ar(k)

(
θ̂
)

Ar(1)

(
θ̂
)
− Ar(k)

(
θ̂
) , 0

ᵀ .
By the continuous mapping theorem, change of variables, and Lemma 2, we obtain

Ar
∗

(
θ̂
)

d→ V∗ ≡
V − Vk
V1 − Vk

,

where the density function fV∗ of the limit observation V∗ is given by

fV∗ (v∗; ξ) = Γ (k)

∫ ∞
0

sk−2 exp

(
(−1− 1/ξ)

(
log(1 + ξs) +

k−1∑
i=2

log (1 + ξv∗is)

))
ds, (5.2)

and v∗i denotes the i-th component of v∗. With this density function, we construct the likelihood

ratio test

ϕ (V∗) = 1

[∫ 2

1
fV∗ (V∗; ξ) dW (ξ)∫ 1

0
fV∗ (V∗; ξ) dΛ (ξ)

> cv

]
, (5.3)

where W (·) denotes a weight chosen by the econometrician and Λ (·) is some pre-determined

weight that transforms the composite null space into a simple one. The critical values are
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k 10 20 30 40 50 60 70 80 90 100

cv 2.15 2.57 2.65 2.59 2.45 2.40 2.27 2.10 2.22 1.98

k 150 200 250 300 350 400 450 500 1000 2000

cv 1.51 1.34 1.14 1.12 1.03 0.92 0.87 0.80 0.59 0.42

Table 1: 5% critical values of the test (5.4). Based on 10000 simulation draws.

determined by simulations. In particular, W (ξ) reflects the weight attached to the rejection

probability under the value of ξ in the alternative space. Since ξ is unknown, our likelihood

ratio test is essentially designed to maximize the local average power with respect to W (cf.

Andrews and Ploberger, 1994). We choose the uniform weight in later sections mainly for

implementational simplicity, which can be easily changed.

It remains to determine the weight Λ, which is referred to as the least favorable distribution

(e.g., Lehmann and Romano, 2005, Ch.3.8) that guarantees the size control over the null hy-

pothesis. To this end, we adapt the generic algorithm developed by Elliott, Müller, and Watson

(2015) to numerically construct Λ - see Appendix B for details. It turns out that Λ allocates

all the weights to the point ξ = 1, suggesting that the least favorable distribution is simply the

point mass on the boundary of the null and the alternative spaces. Using the uniform weight

for W (·), the test (5.3) then reduces to

ϕ (V∗) = 1

[∫ 2

1
fV∗ (V∗; ξ) dξ

fV∗ (V∗; 1)
> cv

]
, (5.4)

which is implemented in later sections. The critical values at the 5% nominal level are presented

across alternative values of k in Table 1.

The following theorem establishes the asymptotic size control of our test (5.3).
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Theorem 1. Suppose Condition 1 holds. Then for any fixed k, under H0 in (3.2)

lim
n→∞

E
[
ϕ
(
Ar
∗(θ̂)

)]
≤ α.

A proof is provided in Appendix A.3.

We close this section with two remarks. First, the fixed-k asymptotic design leads to the

desired size control property as stated in the theorem. This feature provides a practical advan-

tage because a researcher does not ex ante know the true distribution under the composite null

hypothesis.

Second, our method is robust to estimation errors and hence allows for generated observa-

tions, which have not been discussed in the existing literature about the fixed-k design (e.g.,

Müller and Wang, 2017). Such robustness comes from the fact that the estimation error, θ̂− θ0

is op(1) and hence to be dominated by the infeasible largest order statistics of {Ari (θ0)}.

6 Simulation Studies

Using Monte Carlo simulations, we demonstrate that the proposed test has the claimed size

control property. We consider two of the most popular econometric models, namely the linear

regression model and the linear IV model, for data generating designs. For each of these two

designs, we consider the test of the consistency (by setting r = 1) and the test of the root-n

asymptotic normality (by setting r = 2).

6.1 Simulation Setup

First, consider the linear regression model:

Yi =θ1 + θ2Xi + Ui,

where θ = (θ1, θ2)ᵀ = (1, 1)ᵀ. The independent variable is generated according to Xi ∼ N(0, 1).

The error Ui is independent from Xi and generated from the symmetric generalized Pareto
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distribution with tail index ξU that satisfies 1− FU(u) = (1 + ξUu)−1/ξU/2 for u ≥ 0. We vary

the value of ξU across sets of simulations. The test is based on the r-th moment of the score:

Ari (θ) = (1 + X2
i )r/2 · |Yi − θ1 − θ2Xi|r for r = 1, 2. Since we do not know θ0, we replace θ0 by

the OLS θ̂. We thus use k order statistics of

Ari (θ̂) = (1 +X2
i )r/2 · |Yi − θ̂1 − θ̂2Xi|r

to construct our test, following the procedure outlined in Section 4.

Second, consider the linear IV model:

Yi =θ1 + θ2Xi + Ui + Vi

Xi =π1 + π2Zi +Ri

where θ = (θ1, θ2)ᵀ = (1, 1)ᵀ and π = (π1, π2)ᵀ = (1, 1)ᵀ. The instrument is generated according

to Zi ∼ N(0, 1) independently of the tri-variate error components (Ui, Vi, Ri)
ᵀ. The heavy-tailed

part of the error Ui is generated in the same way as above, independently from (Vi, Ri)
ᵀ. We

vary the value of ξU across sets of simulations. The endogenous part of the error components

(Vi, Ri)
ᵀ is generated according to (Vi, Ri)

ᵀ ∼ N(~0,Σ) where Σ = (1, 0.5; 0.5, 1). The test is

based on the r-th moment of the score: Ari (θ) = (1 +Z2
i )r/2 · |Yi− θ1− θ2Xi|r for r = 1, 2. Since

we do not know θ0, we replace θ0 by the IV estimator θ̂. We thus use k order statistics of

Ari (θ̂) = (1 + Z2
i )r/2 · |Yi − θ̂1 − θ̂2Xi|r

to construct our test, following the procedure outlined in Section 4.

For each of the linear regression model and the linear IV model introduced above, we

experiment with sample sizes of n = 104, 105 and 106, which are similar to the sample size

that we actually encounter in our empirical application in Section 7. For testing the finite first

moment condition, we experiment with the tail index values of ξU = 0.19, 0.39, 0.59, 0.79, 0.99,

1.19, 1.39, 1.59, 1.79 and 1.99. Note that ξU ∈ {0.19, 0.39, 0.59, 0.79, 0.99} satisfy the condition

for the consistency, but ξU ∈ {1.19, 1.39, 1.59, 1.79, 1.99} fail to satisfy it. For testing the finite
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second moment, we experiment with the tail index values of ξU = 0.09, 0.19, 0.29, 0.39, 0.49,

0.59, 0.69, 0.79, 0.89 and 0.99. Note that ξU ∈ {0.09, 0.19, 0.29, 0.39, 0.49} satisfy the condition

for the asymptotic normality, but ξU ∈ {0.59, 0.69, 0.79, 0.89, 0.99} fail to satisfy it. We also

experiment with various numbers k = 50, 100, and 200 of order statistics for construction of

the test. Each set of simulations consists of 5000 Monte Carlo draws.

6.2 Simulation Results

Table 2 shows Monte Carlo simulation results of testing the finite first moment condition in

(A) the linear regression model and (B) the linear IV model. In both of the two panels, (A)

and (B), we can see that the simulated rejection probabilities are dominated by the nominal

size 0.05 for all of ξU ∈ {0.19, 0.39, 0.59, 0.79} in the null region, and those are approximately

the same as the nominal size 0.05 near the boundary, i.e., ξU = 0.99, of the null region. These

results support the size control property of the test that is established in Theorem 1. The

condition for the consistency holds for any of ξU < 1, but a researcher does not ex ante know

or does not want to pick which exact value ξU for a specific application. For this reason, this

size control property is important in practice.

Table 3 shows Monte Carlo simulation results of testing the finite second moment condition

in (A) the linear regression model and (B) the linear IV model. The findings here are very

similar to those in the consistency test presented above. Namely, in both of the two panels, (A)

and (B), we can see that the simulated rejection probabilities are dominated by the nominal

size 0.05 for all of ξU ∈ {0.09, 0.19, 0.29, 0.39} in the null region, and those are approximately

the same as the nominal size 0.05 near the boundary, i.e., ξU = 0.49, of the null region. Again,

these results support the size control property of the test that is established in Theorem 1.
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(A) Linear Regression Model

n = 104 n = 105 n = 106

ξU k =50 k =100 k =200 k =50 k =100 k =200 k =50 k =100 k =200

0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.39 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.59 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.79 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00

0.99 0.06 0.06 0.07 0.05 0.05 0.06 0.05 0.04 0.05

1.19 0.19 0.28 0.42 0.19 0.25 0.39 0.17 0.24 0.39

1.39 0.39 0.57 0.70 0.39 0.57 0.78 0.38 0.56 0.80

1.59 0.59 0.70 0.69 0.59 0.80 0.91 0.59 0.82 0.96

1.79 0.69 0.73 0.59 0.75 0.88 0.88 0.77 0.93 0.96

1.99 0.75 0.68 0.51 0.85 0.89 0.83 0.87 0.96 0.94

(B) Linear IV Model

n = 104 n = 105 n = 106

ξU k =50 k =100 k =200 k =50 k =100 k =200 k =50 k =100 k =200

0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.39 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.59 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.79 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.99 0.06 0.06 0.08 0.05 0.05 0.06 0.05 0.04 0.05

1.19 0.19 0.28 0.42 0.18 0.26 0.40 0.19 0.24 0.38

1.39 0.40 0.56 0.68 0.38 0.57 0.79 0.37 0.57 0.82

1.59 0.59 0.70 0.66 0.59 0.80 0.90 0.59 0.82 0.95

1.79 0.69 0.73 0.57 0.75 0.88 0.87 0.76 0.93 0.96

1.99 0.74 0.66 0.47 0.84 0.88 0.81 0.86 0.96 0.94

Table 2: Rejection probabilities of the test (5.3) of the consistency of θ̂ in (A) the linear

regression model and (B) the linear IV model. The results are based on 5000 simulation draws.

The significance level is 0.05.
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(A) Linear Regression Model

n = 104 n = 105 n = 106

ξU k =50 k =100 k =200 k =50 k =100 k =200 k =50 k =100 k =200

0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.29 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.39 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00

0.49 0.05 0.06 0.07 0.05 0.05 0.05 0.05 0.04 0.04

0.59 0.17 0.27 0.44 0.17 0.25 0.37 0.17 0.23 0.36

0.69 0.39 0.57 0.84 0.37 0.56 0.81 0.37 0.56 0.80

0.79 0.60 0.83 0.97 0.59 0.82 0.98 0.59 0.82 0.97

0.89 0.76 0.94 0.99 0.76 0.95 1.00 0.76 0.95 1.00

0.99 0.87 0.98 0.99 0.87 0.99 1.00 0.87 0.99 1.00

(B) Linear IV Model

n = 104 n = 105 n = 106

ξU k =50 k =100 k =200 k =50 k =100 k =200 k =50 k =100 k =200

0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.29 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.39 0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00

0.49 0.05 0.05 0.08 0.05 0.04 0.04 0.04 0.04 0.04

0.59 0.18 0.26 0.44 0.18 0.24 0.37 0.16 0.23 0.37

0.69 0.38 0.58 0.83 0.37 0.56 0.82 0.36 0.57 0.81

0.79 0.59 0.83 0.98 0.58 0.82 0.98 0.59 0.82 0.97

0.89 0.76 0.94 0.99 0.77 0.95 1.00 0.76 0.94 1.00

0.99 0.88 0.98 0.98 0.88 0.98 1.00 0.88 0.99 1.00

Table 3: Rejection probabilities of the test (5.3) of the asymptotic normality of
√
n
(
θ̂ − θ0

)
in (A) the linear regression model and (B) the linear IV model. The results are based on 5000

simulation draws. The significance level is 0.05.
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7 Application to Demand Estimation

In this section, we present an empirical application of the proposed test procedure. Recall the

framework of demand estimation in differentiated products markets introduced in Example 1.

The dependent variable is defined by the logarithm of the market share of a product relative to

that of an outside product. In rich data sets, we often encounter zero empirical market shares.

Since the logarithm of zero is undefined, empirical practitioners often use ad hoc procedures

to deal with observations with zero market share. One common way is to simply remove

observations with zero empirical market shares. Another common way is to replace zeros with

a small positive value. Both of these two ad hoc treatments result in biased estimates in general,

as demonstrated through Monte Carlo simulation studies by Gandhi, Lu, and Shi (2017). In

implementing the second approach, empirical researchers often substitute infinitesimal positive

values ∆ for zeros, perhaps in efforts to mitigate such biases. In this paper, we show that

substitution of infinitesimal positive values ∆ in fact results in pathetic asymptotic behaviors

of the estimator. Specifically, such an ad hoc estimator fails the root-n asymptotic normality, as

we reject the finite second moment condition of the score. Furthermore, such an estimator is not

even likely to converge in probability to a possibly biased pseudo-true target either, as we reject

the finite first moment condition of the score too. These results follow because the introduction

of a huge negative number (as the logarithm of an infinitesimal number) turns some of the

observations with originally non-zero shares into outliers, as we will carefully illustrate ahead

after presenting the test results.

Following preceding papers on market analysis, we use scanner data from the Dominick’s

Finer Foods (DFF) retail chain.4 The unit of observation is defined by the product of UPC

(universal product code), store, and week. Our analysis, as described below, follows that of

Gandhi, Lu, and Shi (2017). We focus on the product category of canned tuna. Empirical

4We thank James M. Kilts Center, University of Chicago Booth School of Business for allowing us to use

this data set. It is available at https://www.chicagobooth.edu/research/kilts/datasets/dominicks.
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market shares are constructed by using quantity sales and the number of customers who visited

the store in the week. Control variables include the price, UPC fixed effects, and a time trend.

We instrument the possibly endogenous prices by the wholesale costs, which are calculated by

inverting the gross margin.

The number of observations is approximately 106, similar to the sample sizes considered in

our Monte Carlo simulation studies in Section 6. This feature of the data allows us to use a

reasonably large number k of order statistics to enhance the power of our proposed test. Among

this large number of observations, approximately 44% of the observations are recorded to have

zero empirical market share. The smallest non-zero empirical market share is approximately

10−5. Therefore, it is sensible to replace the zero empirical market share by an infinitesimal

positive number ∆ that is no larger than 10−5. In our analysis, therefore, we consider the

following numbers to replace zero with: ∆ = 10−5, 10−6, ..., 10−19, 10−20.

Table 4 summarizes the p-values of testing the finite first moment condition for the consis-

tency. Similarly, Table 5 summarizes the p-values of testing the finite second moment condition

for the root-n asymptotic normality. For the sake of transparency, we show results for various

numbers of k ranging from 1000 to 5000. Before discussing these results, first note that small

numbers k of order statistics in general entail short power. In view of Figure 1, we can see that

k ranging from 1000 to 5000 yields very strong powers of the test. Furthermore, note also that

the number k = 5000 corresponds to only 0.5 percent of the whole sample, so that the extreme

value approximation should perform well. With these in mind, observe that the results reported

in Tables 4 and 5 suggest that we start to reject the null hypothesis of a finite first and second

moments when k is greater than or equal to 2000. The rejection of the finite second moment

conditions (Table 5) implies that the root-n asymptotic normality of the demand estimator may

perform poorly if we conduct the ad hoc practice of replacing the zero empirical market share

by any of the infinitesimal positive values ∆ = 10−5, 10−6, ..., 10−19, 10−20. Furthermore, the

rejection of the finite first moment conditions (Table 4) implies that such an ad hoc estimator
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∆ k =1000 k=2000 k =3000 k =4000 k =5000

10−5 0.54 0.00 0.00 0.97 1.00

10−6 1.00 0.00 0.00 0.00 0.28

10−7 1.00 0.00 0.00 0.00 0.00

10−8 1.00 0.00 0.00 0.00 0.00

10−9 1.00 0.00 0.00 0.00 0.00

10−10 1.00 0.00 0.00 0.00 0.00

10−11 1.00 0.00 0.00 0.00 0.00

10−12 1.00 0.00 0.00 0.00 0.00

10−13 1.00 0.00 0.00 0.00 0.00

10−14 1.00 0.00 0.00 0.00 0.00

10−15 1.00 0.00 0.00 0.00 0.00

10−16 1.00 0.00 0.00 0.00 0.00

10−17 1.00 0.00 0.00 0.00 0.00

10−18 1.00 0.00 0.00 0.00 0.00

10−19 1.00 0.00 0.00 0.00 0.00

10−20 1.00 0.00 0.00 0.00 0.00

Table 4: P-values of the test (5.3) of the finite first moment condition for consistency with

the market share data from DFF for the product category of canned tuna data, where zero

empirical market shares are replaced by ∆ = 10−5, 10−6, ..., 10−19, 10−20.

may not even converge in probability to a possibly biased pseudo-true target.

While the test rejects the null hypotheses of finite moments of A1
i (θ0) and A2

i (θ0), a natural

question is why the ad hoc procedure of adding a small constant to the zero market share causes

the heavy-tailed distributions of A1
i (θ0) and A2

i (θ0). Since the logarithm of a small constant is
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∆ k =1000 k=2000 k =3000 k =4000 k =5000

10−5 0.00 0.00 0.00 0.00 0.00

10−6 0.00 0.00 0.00 0.00 0.00

10−7 0.01 0.00 0.00 0.00 0.00

10−8 0.02 0.00 0.00 0.00 0.00

10−9 0.02 0.00 0.00 0.00 0.00

10−10 0.05 0.00 0.00 0.00 0.00

10−11 0.06 0.00 0.00 0.00 0.00

10−12 0.08 0.00 0.00 0.00 0.00

10−13 0.11 0.00 0.00 0.00 0.00

10−14 0.12 0.00 0.00 0.00 0.00

10−15 0.14 0.00 0.00 0.00 0.00

10−16 0.16 0.00 0.00 0.00 0.00

10−17 0.17 0.00 0.00 0.00 0.00

10−18 0.19 0.00 0.00 0.00 0.00

10−19 0.21 0.00 0.00 0.00 0.00

10−20 0.21 0.00 0.00 0.00 0.00

Table 5: P-values of the test (5.3) of the finite second moment condition for the root-n asymp-

totic normality with the market share data from DFF for the product category of canned tuna

data, where zero empirical market shares are replaced by ∆ = 10−5, 10−6, ..., 10−19, 10−20.

finite anyway, it appears to only produce a 44% point mass of absolutely very large yet finite

constants. As such, these small numbers do not seem to contribute to heavy tails by themselves.

To see what is going on behind our test rejecting the null hypotheses, we display eight scatter

plots in Figures 2 and 3. Figure 2 displays plots of (A) log(share) on A1(θ̂) for ∆ = 10−5; (B)
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log(share) on A2(θ̂) for ∆ = 10−5; (C) log(share) on A1(θ̂) for ∆ = 10−10; and (D) log(share)

on A2(θ̂) for ∆ = 10−10. Figure 3 displays plots of (A) log(share) on A1(θ̂) for ∆ = 10−15; (B)

log(share) on A2(θ̂) for ∆ = 10−15; (C) log(share) on A1(θ̂) for ∆ = 10−20; and (D) log(share)

on A2(θ̂) for ∆ = 10−20. Those observations above the top 0.0001-quantile of A1(θ̂) and A2(θ̂)

are marked by black crosses, while all else are marked by gray dots.

In each of the panels in Figures 2 and 3, note that the observations with originally zero

market share appear on the horizontal line at the vertical level of log(∆). As ∆ becomes smaller,

these lines move downward and they tend to behave as observations with an absolutely large

Y value. However, these observations with originally zero shares are not necessarily outliers by

themselves because as many as 44% of the observations exist on this line. Instead, many of the

outliers (i.e., observations marked by the black crosses) stem from the group of observations

with originally non-zero market shares. Furthermore, the horizontal distances between those

marked by the black crosses and the major cluster of observations marked by gray dots widen

as ∆ becomes smaller, i.e., the horizontal spread is the smallest in Figure 2 (A)–(B) and the

largest in Figure 3 (C)–(D). This pattern implies that, while most of the 44% of observations

with originally zero market share are not outliers by themselves despite the isolated levels

of log(∆), smaller values of ∆ are turning some of the observations with originally non-zero

market shares into outliers to larger extents. These results that the residuals of originally non-

zero market shares move ‘more’ with ∆ imply that the observations with originally zero market

shares exercise more leverage in the regression estimation.

8 Summary and Discussions

Many empirical studies in economics rely on the GMM and M estimators including, but not

limited to, the OLS, GLS, QMLE, and 2SLS. Furthermore, they usually rely on the consistency

and the root-n asymptotic normality of these estimators when drawing scientific conclusions
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(A) log(share) on A1(θ̂) for ∆ = 10−5 (B) log(share) on A2(θ̂) for ∆ = 10−5

(C) log(share) on A1(θ̂) for ∆ = 10−10 (D) log(share) on A2(θ̂) for ∆ = 10−10

Figure 2: Scatter plots of (A) log(share) on A1(θ̂) for ∆ = 10−5; (B) log(share) on A2(θ̂) for

∆ = 10−5; (C) log(share) on A1(θ̂) for ∆ = 10−10; and (D) log(share) on A2(θ̂) for ∆ = 10−10.

Observations with the top 0.0001-quantile of A1(θ̂) and A2(θ̂) are marked by black crosses.
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(A) log(share) on A1(θ̂) for ∆ = 10−15 (B) log(share) on A2(θ̂) for ∆ = 10−15

(C) log(share) on A1(θ̂) for ∆ = 10−20 (D) log(share) on A2(θ̂) for ∆ = 10−20

Figure 3: Scatter plots of (A) log(share) on A1(θ̂) for ∆ = 10−15; (B) log(share) on A2(θ̂) for

∆ = 10−15; (C) log(share) on A1(θ̂) for ∆ = 10−20; and (D) log(share) on A2(θ̂) for ∆ = 10−20.

Observations with the top 0.0001-quantile of A1(θ̂) and A2(θ̂) are marked by black crosses.
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via statistical inference. Although the conditions for the consistency and the root-n asymptotic

normality are usually taken for granted as such, they may not be always plausibly satisfied.

In this light, this paper proposes a method of testing the hypothesis of finite first and second

moments of scores, which serve as key conditions of the consistency and the root-n asymptotic

normality, respectively.

There are two desired properties of our proposed test in practice. First, unlike other ap-

proaches in extreme value theory that require a sequence of tuning parameter values that change

as the sample size grows, our test is valid for any predetermined fixed number k of order statis-

tics to be used to construct the test. This is a useful property in practice because it relieves

researchers from worrying about a ‘valid’ data driven choice of tuning parameters for the pur-

pose of size control. Second, our test has a size control property over the set of data generating

processes for which the finite moment condition holds. Monte Carlo simulation studies indeed

support this theoretical property for two of the most commonly used econometric frameworks,

namely the linear regression model and the linear IV model.

A failure of the consistency and the root-n asymptotic normality may be caused by the

following two cases among others. First, some dependent variables (e.g., wealth, infant birth

weight, murder rate, city size, stock returns) are reported to exhibit heavy-tailed distributions,

and they can induce infinite first and second moments of the score of an estimator. Second,

when a dependent variable is the logarithm of a variable, practitioners sometimes employ an ad

hoc procedure of replacing zeros by infinitesimal values. This practice can lead to heavy-tailed

distribution of the residuals for observations with originally non-zero market shares. In our

empirical application, we highlighted the latter case. Using scanner data from the Dominick’s

Finer Foods (DFF) retail chain, we reject the consistency and the root-n asymptotic normality

for demand estimators based on such an ad hoc practice.

Finally, we conclude this paper by remarking that the test can be used to enhance the

quality and credibility of past and future empirical studies. On one hand, if our test supports
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the finite moment conditions for consistency and the root-n asymptotic normality for a selected

empirical work, then the test result reinforces the credibility of scientific conclusions reported

by that work. On the other hand, if our test fails to support the finite moment conditions for

a selected empirical work, then a researcher may want to consider one of the alternative robust

approaches for more credible empirical research.
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Appendix

A Proofs

A.1 Proof of Lemma 1

Proof. First consider ξ < 1. The result follows readily from Karamata’s theorem (e.g., Resnick,

2007, Theorem 2.1 with ρ = −1/ξ < −1). Specifically, we have that

1− FA(a) = a−1/ξL(a),

where L(a) → 1 as a → ∞ (e.g., Resnick, 2007, Ch.2). Using integration by parts, we have

that

E [A] = −
∫ ∞

0

ad (1− FA (a))

= − lim
a→∞

a (1− FA (a)) +

∫ ∞
0

(1− FA (a)) da.

Both of the two terms on the right-hand side above are finite as implied by Karamata’s theorem.

Next, we establish that ξ > 1 implies E [A] =∞. To this end, let QA (s) denote the quantile

function of A. The regular variation condition implies that QA (1− 1/n) = O
(
nξ
)

as n→∞.

Then

E [A] =

∫ 1

0

QA (s) ds

≥ n−1QA (1− 1/n)

= O
(
nξ−1

)
→∞ as n→∞.

Now, it remains to consider the boundary case with ξ = 1. Since L(·) is bounded below (say,

2



[Supplementary Material]

by c > 0), we have

E [A] = −
∫ ∞

0

ad (1− FA (a))

= − lim
a→∞

a (1− FA (a)) +

∫ ∞
0

(1− FA (a)) da

= − lim
a→∞
L (a) +

∫ ∞
0

a−1/ξL (a) da

≥ −1 + c

∫ ∞
0

a−1da =∞.

This completes the proof.

A.2 Proof of Lemma 2

Proof. First, by extreme value theory, Condition 1.(i) (Di is i.i.d.) and Condition 1.(ii)

(FAr(θ0) ∈ D (Gξ)) imply

Ar (θ0)− bn
an

d→ V, (A.1)

where V is jointly extreme value distributed with tail index ξ. By Corollary 1.2.4 and Re-

mark 1.2.7 in De Haan and Ferreira (2006), the constants an and bn can be chosen as an =

QAr(θ0) (1− 1/n) = O(nξ) and bn = 0. By construction, these constants satisfy that 1 −

FAr(θ0) (any + bn) = O (n−1) for every y > 0.

Now, let I = (I1, . . . , Ik) ∈ {1, . . . , n}k be the k random indices such that Ar(j) (θ0) = ArIj (θ0),

j = 1, . . . , k, and let Î be the corresponding indices such that Ar(j)

(
θ̂
)

= Ar
Îj

(
θ̂
)

. Then, the

convergence of Ar
(
θ̂
)

follows from (A.1) once we establish |Ar
Îj

(θ̂) − ArIj (θ0) | = op(an) for

j = 1, . . . , k. We present the case of k = 1, but the argument for a general k is similar. Denote

εi ≡ Ari (θ̂)− Ari (θ0).

Finally, Condition 1.(iii) yields that

sup
i
|εi| = sup

i

∣∣∣Ari (θ̂)− Ari (θ0)
∣∣∣

≤ sup
i

sup
θ∈Bηn (θ0)

∣∣∣∣∣∣∣∣∂Ari (θ)

∂θ

∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣θ̂ − θ0

∣∣∣∣∣∣
= op(an).
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Given this result, we have that, on one hand, Ar
Î
(θ̂) = maxi{Ari (θ0)+εi} ≤ ArI (θ0)+supi |εi| =

ArI (θ0) + op(an); and, on the other hand, Ar
Î
(θ̂) = maxi{Ari (θ0) + εi} ≥ maxi{Ari (θ0) +

mini{εi}} ≥ ArI (θ0) + mini{εi} ≥ ArI(θ0) − supi |εi| = ArI(θ0) − op(an). Therefore, |Ar
Îj

(θ̂) −

ArIj (θ0) | ≤ op(an) holds.

A.3 Proof of Theorem 1

Proof. By Lemma 1 and the continuous mapping theorem, we have Ar
∗

(
θ̂
)

d→ V∗. Since

the density fV∗ is continuous, Eξ [ϕ (V∗)] as a function of ξ and cv is also continuous in

both arguments for any given Λ (·). Therefore, we can choose a large enough cv so that

supξ∈(0,1) Eξ [ϕ (V∗)] ≤ α.

Remark 1. Since Λ in the last part of the above proof can be arbitrary in theory, we provide an

empirical guide for determining a nearly optimal Λ in the following section.

B Computational Details

This section provides computational details about constructing the test (5.3), which is based

on the limit observation V∗. The density of V∗ is given by (5.2), which is computed by

Gaussian Quadrature. To construct the test (5.3), we specify the weight W to be the uniform

distribution for simplicity of exposition. The weight W reflects the importance attached by

the econometrician to different alternatives, which can be easily changed. Then, it remains to

determine a suitable candidate for the weight Λ. We do this by the generic algorithm provided

by Elliott, Müller, and Watson (2015).

The idea is as follows. For expositional ease, we can always subsume cv into Λ, which now

does not necessarily integrate to one. First, we can discretize Ξ into a grid Ξa and determine

Λ accordingly as the point masses. Then we can simulate N random draws of V∗ from ξ ∈ Ξa

and estimate Pξ(ϕΛ(V∗) = 1) by sample fractions, where the subscripts ξ and Λ respectively
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emphasize that the rejection probability depends on the ξ that generates the data and the test

depends on Λ. By iteratively increasing or decreasing the point masses as a function of whether

the estimated Pξ(ϕΛ(V∗) = 1) is larger or smaller than the nominal level, we can always find

a candidate Λ∗. Note that such Λ∗ always exists since we allow Pξ(ϕΛ∗(V∗) = 1) < α for some

ξ. The continuity of fV∗ entails that Pξ(ϕΛ(V∗) = 1) as a function of ξ is also continuous.

Therefore, the size control over ξ ∈ (0, 1) is guaranteed as we consider a fine enough grid Ξa.

In practice, we can determine the point masses by the following concrete steps. It turns out

that Λ puts all mass on the point ξ = 1.

Algorithm:

1. Simulate N = 10,000 i.i.d. random draws from some proposal density with ξ drawn

uniformly from Ξa, which is an equally spaced grid on [0.01, 1] with 50 points.

2. Start with Λ(0) = {1/50, 1/50, . . . , 1/50}ᵀ. Calculate the (estimated) rejection probabili-

ties Pj = Pξj(ϕΛ(0)
(V∗) = 1) for every ξj ∈ Ξa using importance sampling. Denote them

by P = (P1, ..., P50)ᵀ.

3. Update Λ by setting Λ(s+1) = Λ(s) + ηΛ(P − 0.05) with some step-length constant ηΛ > 0,

so that the j-th point mass in Λ is increased/decreased if the rejection probability for ξj

is larger/smaller than the nominal level.

4. Keep the integration for 500 times. Then, the resulting Λ(500) is a valid candidate. Then

normalize Λ(500) to obtain cv.

5. Numerically check if ϕΛ(500)
indeed controls the size uniformly by simulating the rejection

probabilities over a much finer grid on Ξ. If not, go back to step 2 with a finer Ξa.
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