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Abstract

This study provides a structural analysis of detailed, alternating-offer bargaining data from

eBay, deriving bounds on buyers and sellers private value distributions using a range of assump-

tions on behavior. These assumptions range from very weak (assuming only that acceptance and

rejection decisions are rational) to less weak (e.g., assuming that bargaining offers are weakly

increasing in players’ private values). We estimate the bounds and show what they imply for

consumer negotiation behavior in theory and practice. For the median product, bargaining ends

in impasses in 43% of negotiations even when the buyer values the good more than the seller.
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1 Introduction

Bilateral bargaining is one of the oldest and most common forms of trade. A large theoretical

literature, and a growing structural empirical literature, examines various aspects of bargaining

situations, but the modeling choices of theorists and empiricists diverges widely, especially in how

they consider the issue of impasse. Theoretical work (e.g., Myerson and Satterthwaite 1983) al-

lows for the possibility that negotiators fail to agree even when gains from trade exist, whereas

the workhorse model for empirical studies — Nash bargaining, in various forms — assumes that

inefficient impasse never occurs. In these empirical models, negotiating agents know the opposing

party’s value precisely, and hence agents only negotiate over how to split a pie of known size. In

many real-world settings, these strong assumptions are immediately rejected by data. In this pa-

per, we analyze a large, detailed dataset of alternating-offer bargaining sequences from consumers

negotiating online. We propose an approach to bound buyers’ and sellers’ values and the degree of

inefficient impasse in the market. Unlike Nash bargaining, our approach is robust to the presence

of incomplete information.

The data we study comes from consumers negotiating with sellers on eBay’s Best Offer platform.

The data contains thousands of eBay listings, each corresponding to a particular product identifier

(such as an iPhone 6 or X-Box). For each listing, the seller posts a list price (a Buy-It-Now

price) and a buyer begins negotiating by proposing a counteroffer. We observe these prices and all

subsequent counteroffers between any buyer-seller pair.

We model each such bilateral bargaining pair as a buyer with value B ∼ FB negotiating se-

quentially with a seller with value S ∼ FS . The key objects we wish to estimate are FB, FS , and

P (B ≥ S), the probability that the buyer values the good more than the seller. This object corre-

sponds to the probability of trade in a first-best world. We observe in the data the probability of

trade that is actually realized, so comparing this moment in the data to P (B ≥ S) offers a measure

of the degree of inefficient impasse relative to the first-best outcome.

The challenge we face is, first, S and B are not observed in the data, and second, there is

no theoretical characterization of equilibria in the game we study (bilateral negotiations in which

both parties potentially have incomplete information and both parties can make offers), and hence

no obvious way to back out estimates of FS and FB from observed bargaining actions.1 Indeed,

1Previous theoretical analysis of incomplete-information bargaining has highlighted a variety of challenges. For
example, Fudenberg and Tirole (1991) claimed that “the theory of bargaining under incomplete information is cur-
rently more a series of examples than a coherent set of results. This is unfortunate because bargaining derives much
of its interest from incomplete information.” Binmore et al. (1992) observed, “In spite of this progress [in bargaining
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unlike auction games or complete-information bargaining games (e.g. the Rubinstein 1982 model of

non-cooperative bargaining with complete information), there is no canonical model of bargaining

under incomplete information. This dearth is especially pertinent for studying price negotiations

in consumer markets, where agents meet and negotiated infrequently and where it is arguably

especially unrealistic to model agents as perfectly informed about the game structure or opponents’

values (as Nash bargaining presumes).

To study this setting empirically, we propose a bounds approach based on an incomplete model.

We first derive bounds on the marginal distributions of buyer and seller values, FB and FS . Our

approach starts with weak rationality assumptions on agents’ behavior. We then build on these

assumptions by proposing stronger conditions on behavior and on the information environment.

Our first additional assumption is that a seller’s first offer (the Buy-It-Now price she chooses

on eBay) is stochastically increasing in her value. Then we consider the stronger assumption

that it is weakly increasing in her value. Next we propose an assumption that the buyer’s value

is stochastically increasing in the seller’s first offer, capturing a notion of dependence between

buyer and seller values. We then consider the stronger assumption that the two are independent.

We propose similar assumptions that reverse the role between buyer and seller. Each of these

assumptions yields a set of bounds on the marginal distribution of buyer and seller values. Building

on these assumptions, we derive bounds on the first-best probability of trade that can inform us

about the degree of inefficient impasse in the eBay data and the degree to which agents indeed face

uncertainty about the gains from trade in this marketplace.

The bounds we derive under any given set of assumptions are sharp. The bounds are also

nonparametrically identified. We propose estimation of these bounds using kernel estimators. We

estimate the bounds separately product-by-product, limiting to products for which we have at least

100 bargaining sequences. The validity of the assumptions underlying our bounds can be analyzed

by looking for cases where the bounds cross. We find evidence that our strongest assumptions

(monotonicity of the seller’s first offer or independence of the buyer’s value and seller’s first offer) are

violated. Bounds based on our weaker assumptions, such as stochastic monotonicity or monotonicity

of the buyer’s first offer conditional on the seller’s, do not cross.

We also exploit an additional piece of information unique to the eBay setting that allows us

to test the validity and strength of our bounds. On eBay, sellers are permitted (but not required)

theory], important challenges are still ahead. The most pressing is that of establishing a properly founded theory of
bargaining under incomplete information. A resolution of this difficulty must presumably await a major breakthrough
in the general theory of games of incomplete information.” These statements remain true several decades later.
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to report an auto-accept and auto-decline price to the platform. Any prices outside this range are

automatically accepted or declined by eBay, without the seller needing to manually respond to the

offer. These secret boundaries are themselves bounds on the marginal distribution of seller values.

We demonstrate that, in the sample where sellers report auto accept/decline prices, our preferred

bounds correspond surprisingly well to these secret bounds (which are not explicitly used anywhere

in computing our bounds).

Having demonstrated the informativeness of these bounds on the marginal distributions, we

then estimate bounds on the first-best probability of trade separately for each product in our

sample. Under our weakest assumptions, the bounds we obtain on this object are uninformative,

with the lower bound corresponding to the probability of sale observed in the data and the upper

bound corresponding to 1. Under our strongest assumptions, the bounds can cross. We propose

assumptions of intermediate strength that are informative and do not cross.

A lower bound on the first-best probability of trade, compared to the probability of the trade in

the data, contains information about the degree of inefficient impasse. For example, for a popular

computer product in our sample, agents agree in the real-world negotiations 22.3% of the time.

Under our preferred assumptions, we find that the counterfactual first-best probability of trade is

0.374, suggesting that 40% of the time (1 − 0.223/0.374), agents fail to reach an agreement even

when the buyer truly values the good more than the seller. For the median product, this percentage

of inefficient impasse is 43%, and ranges from 8.3% to 68.9% across all products.

An upper bound on the first-best probability of trade provides information on the uncertainty

agents face. If agents have no uncertainty about whether gains from trade exist, they would agree

100% of the time in a first-best world. We find that, for the median product, an upper bound on

the first-best probability of trade is below 1 for most products, suggesting that consumers in this

market do indeed face uncertainty about whether gains from trade exist.

Our study contributes to both the theoretical and empirical bargaining literatures. Theory work

on incomplete-information bargaining studies this topic either by explicitly modeling the extensive

form of the game or by applying mechanism design tools. When agents’ values are independent,

even our strongest behavioral assumptions (monotonicity of agents’ first offers in their values) are

satisfied in the equilibria of extensive-form games focused on in the literature (e.g. Perry 1986,

Grossman and Perry 1986, and Cramton 1992).2 We demonstrate, however, that in the presence of

unobserved game-level heterogeneity (i.e., features of the negotiation that shift or scale the values

2See Ausubel et al. (2002) for a survey of the incomplete-information bargaining literature.
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of both agents in a given instance of the game, but that are unobservable to the econometrician),

monotonicity assumptions can fail. This is not an indication that these theoretical equilibria cannot

possibly describe real-world bargaining games well, but rather that data limitations (unobserved

heterogeneity) can invalidate any attempt to use these existing theoretical results to analyze bar-

gaining, even if the researcher is confident that she knows which of many equilibria generates the

data. We show that our milder assumptions, such as stochastic monotonicity, can still be satisfied

under game-level heterogeneity.

In the mechanism design literature, our study is most closely related to Myerson and Satterth-

waite (1983), who demonstrated that when agents face uncertainty about whether gains from trade

exist, no incentive-compatible, individually rational mechanism will realize the first-best gains from

trade without running a deficit. In his extensive-form game, Cramton (1992) showed that the first-

best probability of trade is attainable if agents burn surplus to signal their values. Our study

examines two dimensions of these points. First, we quantify how close eBay participants get to the

first-best probability of trade. Second, we study how much uncertainty agents face on eBay about

whether gains from trade exist.

Our study relates to a small but recently growing literature estimating structural models of

incomplete-information bargaining games. The most closely related studies are those of Keniston

(2011), who studied bargaining for auto-rickshaw rides in India, and Larsen (2021), who analyzed

bargaining between used-car businesses. Our study is distinct in several dimensions. First, we study

negotiation in setting where both agents may be inexperienced negotiators (unlike the drivers

in Keniston 2011 or used-car businesses in Larsen 2021). The importance of this distinction is

that these previous studies make assumptions on the optimality of negotiators’ behavior or their

knowledge of the game outcomes that, while plausible for the frequent market participants and

professionals in those studies, are unlikely to hold when applied to consumers in a marketplace like

eBay. Our study develops a new, incomplete-model approach that relies on a series of intuitive (and

falsifiable) assumptions, and takes these bounds to real-world consumer negotiation data to estimate

private values and the degree of inefficient impasse. Our study is also distinct methodologically.

Keniston (2011) relied on inequality bounds generated from a two-step dynamic game method, as in

Bajari et al. (2007). Larsen (2021) relied on auction outcomes in addition to bargaining data, and

used an identification and estimation approach which is a special case of one of the many bounds

we propose herein (our independence bounds for one party — the seller only).3 In contrast, the

3Two structural empirical studies that also examined the used-car setting are Larsen and Zhang (2018) and Larsen
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methodology we develop does not rely on any auction data, only sequential-offer bargaining data,

and extends well beyond the independence case.

Several structural empirical studies have focused on models where bargaining consists of a

take-it-or-leave-it offer (e.g. Silveira 2017, studying bargaining in judicial settings) or sequential

bargaining with all offers made by one party (Ambrus et al. 2018, studying ransom negotiations for

Spaniards taken captive by North African pirates in the seventeenth century). Li and Liu (2015)

studied incomplete-information bargaining that takes the form of a k double auction, where each

party simultaneously make a single offer. Our study focuses instead on a setting where multiple

offers from both parties can and frequently do occur in the data, and hence the frameworks of these

previous papers are not appropriate for our setting.

Our work also relates to a literature that exploits eBay as a laboratory for studying fundamental

questions of price discovery and efficiency in large, decentralized markets. The structural literature

examining efficiency of eBay trading mechanisms has largely focused on auctions (e.g. Hendricks

and Sorensen 2018; Bodoh-Creed et al. 2021). Backus et al. (2020) and Keniston et al. (2021)

offered descriptive analyses of eBay bargaining data, using a superset of the data we analyze here,

and documented a number of patterns consistent with the existence of incomplete information

and cognitive limitations in this marketplace, underscoring the benefit of our flexible approach to

bounding agents’ values without assuming a complete model of fully rational equilibrium behavior.

2 eBay’s Best Offer Platform

While eBay is most well known for its auction and Buy-It-Now (posted-price) transactions, a fast-

growing sales mechanism on the platform is the Best Offer option, which was introduced around

2006. This option allows a seller and buyer to haggle over an item’s price. When creating a posted-

price listing, the seller is given the option to “allow offers”, and this option has, for many years,

been enabled by default on every listing. If this option is selected, a prospective buyer viewing the

listing will see the Buy-It-Now price (which we will refer to here are the list price) as well as a

Make Offer button, illustrated for an iPhone 8 listing in Figure 1.

Clicking this Make Offer button allows the buyer to propose an offer to the seller. The seller

can then respond by declining, accepting, or making a counteroffer. If the seller accepts, the parties

et al. (2021). The latter paper relied on the methodology of Larsen (2021) and examined the impact of intermediaries
in bargaining, while the former studied bargaining power using incentive compatibility and optimality assumptions
that, while plausible in the used-car market setting — which only includes experienced professional negotiators —
are unlikely hold in the consumer negotiations we study herein.
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Figure 1: Illustration of Best Offer Listing

trade at that accepted price. If the seller counters, it is then the buyer’s turn to accept, decline, or

counter. If the seller declines, the buyer may still choose to make another counteroffer. The buyer

and seller are each limited to three offers, and the buyer is permitted to purchase at the list price

at any time.4 If any agent fails to respond to an offer within 48 hours, the offer expires (essentially

equivalent to the offer having been declined).

When creating the listing, the seller is permitted to specify an auto-accept and auto-decline

price. Any buyer offer above the auto-accept price is automatically accepted by the platform,

without the seller needing to manually respond. And any buyer offer below the auto-decline price

is automatically declined by the platform. In our analysis below, we take advantage of these secretly

reported thresholds to examine the validity of our bounds.

Buyers in this marketplace are typically retail consumers. Sellers in this marketplace may be

a business or an individual. Thus, our data comes from a mix of business-to-consumer (B2C)

and consumer-to-consumer (C2C) price negotiations. Consumers thus play an important role in

this market, in contrast to the professional negotiators studied in Ambrus et al. (2018) or Larsen

(2021). As some consumers may be particularly inexperienced with the eBay game, our study

adopts a robust bounds approach to analyzing the game that does not require a complete model of

equilibrium behavior.

Our sample is a subset of the data created for the descriptive analysis in Backus et al. (2020).

The full dataset contains the 25 million bargaining sequences that occurred on the U.S. eBay site

4This three-offer limit was in place at the time period from our data comes. In more recent years, eBay moved
to a five-offer limit.

6



from June 2012 through May 2013. For this paper, we focus on a subset of bargaining sequences

corresponding to products that have well-labeled product identifiers. These include products such

as “Apple iPhone 8 64 GB” or “Xbox 360”. We observe each item’s condition type (used vs. new),

and we consider a product to be a combination of this condition type and its product identifier.

For each product, we construct a reference price using all non-Best-Offer posted-price sales of that

same product during our sample period.5 As we perform estimation separately for each product,

the reference price plays no role other than as a normalization, putting each product on a similar

scale by dividing prices/offers by its reference price.

We limit our sample to listings to which a buyer makes an offer. This means we drop cases

where a buyer arrives at a Best Offer listing but leaves the page without making an offer, or selects

to purchase at the Buy-It-Now price. Our motivation for focusing on these listings is that we wish

to analyze the degree of inefficient impasse conditional on both the buyer and seller indicating an

interest in negotiating.

We also impose several other sample restrictions. In our analysis, we wish to analyze bargaining

within a given bilateral pair. Our data includes buyer and seller identifiers, and thus we can see if

a given buyer negotiated with one seller of a product and then, after failing to reach an agreement,

negotiated with another seller of the same product. In these cases, we have no way to knowing

whether the buyer wanted multiple copies of the same product or only one. We also observe sellers

negotiating with multiple buyers on the same listing. We focus on only the first seller of a given

product with which a given buyer negotiates, and, among these negotiating pairs, the first buyer

which which a given seller negotiates. This gives us a unique set of buyers and sellers in each

bargaining sequence. We also limit to products for which we observe at least 100 negotiation

sequences. After imposing these sample restrictions, we are left with 70,807 bargaining sequences

corresponding to 363 products.

The data does not specify the exact title of each product (only an anonymous product identifier)

but does specify the category of the product on the eBay platform. Table 1 displays descriptive

statistics for the top-selling product in each of the eight categories appearing in our final sample.

These products are varied in their reference price (the second column). As described above, this

price is computed using non-Best-Offer fixed price sales on eBay. These prices range from $15 for

the music product to $432 for the home and garden product. The final price as a fraction of the

5We restrict the sample to products that have at least ten non-Best-Offer posted-price sales for the construction
of the reference price.
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Table 1: Descriptive Statistics: Highest-Selling Product per Category and Full Sample

Category Reference n P (sale) Final Price Buyer Price Seller Price
Price ($) Over List Over List Over List

(if trade) (if no trade) (if no trade)

Electronics 51.44 577 0.31 0.77 0.6 0.96
Cameras 60.23 159 0.38 0.76 0.54 0.95
Sports 180.98 190 0.31 0.82 0.68 0.97
Video Games 80.78 487 0.29 0.83 0.65 0.96
Musical 15.4 123 0.72 0.74 0.54 0.85
Home/Garden 432.54 150 0.2 0.92 0.73 0.98
Cell Phones 224.82 2,501 0.13 0.88 0.73 0.98
Computers 131.68 497 0.22 0.87 0.7 0.98

All Products 213.75 70,807 0.21 0.84 0.68 0.97
Notes: First eight rows show descriptive statistics for the top-selling product in each category. Final row shows
same statistics for the full sample of 363 products (70,807 observations). The object n represents the number of
observations.

list price, when trade occurs, ranges from 0.74 to 0.92. When trade fails, the highest price offered

by the buyer as a fraction of the list price (the second-to-last column) ranges from 0.54 to 0.73,

whereas the lowest price offered by the seller in these disagreement cases ranges from 0.85 to 0.98.

One object of interest in this study is the fourth column, the probability that negotiation ends in

agreement. The probability varies widely — from 0.13 for the cell phone product (which was the

subject of 2,501 negotiating sequences) to 0.72 for the music product (which was the subject of

123 negotiating sequences). Our empirical approach allows us to compute counterfactual bounds

on what the probability of trade would be in a first-best world.

3 Bounds on Values in a Bargaining Game

In this section we present bounds on buyers’ and sellers’ values in an alternating-offers bargaining

game, the game used on eBay’s Best Offer platform.6 We begin with bounds under minimal

assumptions, using revealed preference arguments only. We then introduce assumptions on the

strategic behavior of the agents and the dependence of the buyer and seller values to tighten these

bounds.

3.1. Bargaining Game Setup and Notation. A seller with value S ∼ FS and buyer with

value B ∼ FB engage in an alternating-offer bargaining game.7 If the buyer and the seller agree

to trade at a price P , the buyer’s payoff is B − P and the seller’s payoff is P (less any bargaining

6The bounds we derive can be modified to allow for protocol other than alternating offers.
7Throughout, we use uppercase letters to denote random variables and lowercase to denote realizations.
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costs). If they break up the bargaining (i.e., some agent chooses to quit), the seller gets S and

the buyer gets 0 (again, less any costs of bargaining). We remain agnostic about the form of any

bargaining costs, such as discounting or per-period additive costs, which are the two most common

forms assumed in the extensive-form bargaining literature. Maintaining the assumptions that we

do in this paper (which we make explicit below), the bounds we derive are robust to ignoring such

costs. Throughout the paper, we maintain the assumption that, in a given instance of the game, S

and B are realized before any actions take place and are held fixed throughout the game.8

To match the structure of eBay’s Best Offer platform, we treat the first bargaining offer as

coming from the seller. This first offer is the list price posted by the seller. The buyer makes the

second offer. The seller can then choose to accept, counter, or quit. We refer to each turn as a

period. We denote the beginning period of the game as t = 1. The buyer then responds at t = 2,

and so on, with t odd being the seller’s turn and t even being the buyer’s.

Denote the offers of the seller in period t by PSt (if t is a period in which seller gets to make an

offer) and the offer by the buyer as PBt (if t is a period in which the buyer gets to make an offer).9

Denote the decision of the buyer in period t by DB
t ∈ {A,C,Q} (representing “accept”, “counter”,

and “quit”). Similarly, let DS
t be the decision of the seller when t is the seller’s turn. Either player

choosing to accept or quit ends the game. For a given instance of the game, the data available to

the econometrician consists of the sequence of offers made and any decision made by the buyer or

seller to accept or quit.

We define the following random variables at the level of the bargaining sequence rather than at

the level of a period (t) within a bargaining sequence: Let DS = A (without a t subscript) if the

seller ever accepts or counters in a given bargaining sequence, and DS = Q if the seller ever quits.

Similarly, let DB = A if the buyer ever accepts or counters and DB = Q if the buyer ever quits. Let

XS
AC = min{{PBt : DS

t+1 = A},mint{PSt : DS
t = C}}. Thus, XS

AC is the smallest offer the seller ever

makes or accepts in a given bargaining sequence (where the notation “AC” stands for “accepting

or countering”). Note that XS
AC is always defined because the seller always makes the first offer

(so DS
1 = C). Also, let XS

Q = max{{PBt : DS
t+1 = Q}, 0} be the offer a seller quits at if indeed the

seller quits, and 0 otherwise. Notice that it is only possible for there to be at most one offer in a

8We allow for the buyer and seller to be learning about their opponents’ values during the game, but not for
agents to learn any additional information about their own values (such as learning about the quality of the good),
which Desai and Jindal (2020) show in laboratory experiments is certainly a possibility. We also do not consider the
possibility of a buyer’s outside option changing during the bargaining game.

9The superscripts S and B are not strictly necessary given that odd t correspond to the seller and even t to the
buyer, but we maintain the superscripts for additional clarify.
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bargaining sequence at which a seller quits. The definition ensures that XS
Q is well defined even if

DS 6= Q. Let XB
AC = max{{PSt : DB

t+1 = A},maxt{PBt : DB
t = C}, 0} be the largest price a buyer

accepted or offered in a given bargaining sequence. Finally, let XB
Q = min{{PSt : DB

t+1 = Q},∞}

be the offer a buyer quits at, if indeed the buyer quits, and ∞ if DB 6= Q. The infinite support

points are conservative and can easily be replaced with less conservative assumptions. In the same

spirit, we could use −∞ rather than 0 as the lower bound of the support of seller values in defining

XS
Q.

For all of our results in the body of the paper, we focus on the case where the buyer always

counters in the second period (DB
2 = C). In the proofs, found in Appendix A, we derive bounds

for the case that is slightly more general (but more cumbersome in terms of notation) in which the

buyer may accept or quit in the second period rather than counter, immediately ending the game

with no buyer offers occurring.

A number of the arguments we derive below rely on the following identities, which are repre-

sentations for FS and FB relying on the law of iterated expectations:

P (S ≤ x) =

∫
P (S ≤ x | PS1 = y)dFPS

1
(y) (1)

P (B ≤ x) =

∫
P (B ≤ x | PS1 = y, PB2 = z)dFPS

1 ,P
B
2

(y, z) (2)

where FPS
1

is the CDF of sellers’ first offers, PS1 , and FPS
1 ,P

B
2

is the joint distribution of sellers’ and

buyers’ first offer, PS1 and PB2 . When written as a function, P (·) represents the probability of a

given event (e.g., P (S ≤ x)).

As a final piece of notation, for given random variables X and Y , let supp(Y | X ≥ a) and

supp(Y | X ≥ a) be the maximum and minimum of the support of Y given X ≥ a, respectively.

Define XS∗
AC(y) ≡ supp(XS

AC : PS1 ≥ y) and XS∗
Q (y) ≡ supp(XS

Q : PS1 ≤ y). Thus, XS∗
AC(y) is

the smallest accept/counter price of sellers conditional on events where the first offer of sellers is

at least y. XS∗
Q (y) has a similar interpretation. For all (y, z) on the support of (PS1 , P

B
2 ), define

XB∗
AC(y, z) ≡ supp(XB

AC : PB2 ≤ z, PS1 = y) and XB∗
Q (y, z) ≡ supp(XB

Q : PB2 ≥ z, PS1 = y).

Conditional on PS1 , XB∗
AC(y, z) is the largest accept/counter price of buyers conditional on events

where the second offer of buyers is at most z. XB∗
Q (y, z) has a similar interpretation.

3.2. Unconditional Bounds on Value Distributions. We now describe the range of assump-

tions we make about equilibrium behavior that yield bounds on buyer and seller marginal value

distributions. Our first and weakest assumption is the following:
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Assumption 1 (Revealed Preferences). (i) The seller never accepts (or counters) at a price P < S

or quits at a price P > S, and (ii) the buyer never accepts (or counters) at a price P > B or quits

at a price P < B.

These revealed preference assumptions are similar to those employed in Haile and Tamer (2003)

for English auctions. There, the authors assume that (i) a bidder never bids above her value,

analogous in our setting to a buyer never accepting or countering at a price above B; and (ii) a

bidder never lets another agent win the auction at a price she would have been willing to beat,

analogous in our setting to the assumption that a buyer never quits when doing so yields a payoff

(i.e., 0) that is lower than the payoff from accepting (B − P ). Our seller assumptions have a

similar interpretation.10 Importantly, Assumption 1 imposes only weak rationality conditions, and

does not impose that agents behave according to any particular equilibrium concept, although the

conditions are weak enough to be satisfied by standard equilibrium concepts, such as Bayes Nash

or Perfect Bayes Equilibrium.

We maintain Assumption 1 everywhere in the paper, without restating it each time it is used.

Its important implications, used throughout the paper, are

XS
Q ≤ S ≤ XS

AC (3)

XB
AC ≤ B ≤ XB

Q . (4)

These inequalities immediately imply bounds on FS and FB, which we refer to as our unconditional

bounds:

P (XS
AC ≤ x) ≤ FS(x) ≤ P (XS

Q ≤ x) (5)

P (XB
Q ≤ x) ≤FB(x) ≤ P (XB

AC ≤ x) (6)

We formally state these bounds as the following theorem:

Theorem 1. Under Assumption 1.i, (5) bounds FS, and under Assumption 1.ii, (6) bounds FB.

The proof of this result (Appendix A) follows immediately from XS
Q ≤ S ≤ XS

AC and XB
AC ≤

10An important distinction, however, is that, in the auction setting of Haile and Tamer (2003), upper and lower
bounds exist for each observation in the data (a lower bound is given by a buyer’s bid and an upper bound is given
by exploiting the minimum bid increment). In contrast, in the eBay two-sided bargaining game, a given realization of
the game may end with many potential bargaining actions never being observed (for example, if the negotiation ends
in agreement, no upper bound on the buyer’s value is observed). We handle this extra complication of our setting by
relying on probabilities of certain events occurring, rather than on empirical CDFs of prices/bids alone.
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B ≤ XB
Q . These bounds are sharp. Specifically, given that we place no restrictions on behavior

other than Assumption 1, nothing in the data or in the assumptions rules out the possibility that

the play of the game is such that XS
AC = S. For the upper bound, nothing in the data or in the

assumptions rules out the possibility that, in any sequence in which the seller quits (DS = Q),

XS
Q = S, and in any sequence in which the seller does not quit (DS 6= Q), the seller has a value of

S = 0.11 This same line of reasoning applies to the buyer bounds. These bounds can be relatively

tight in some cases and quite lose in others. Appendix C offers Monte Carlo simulations illustrating

this point.

The bounds are also nonparametric. Each of the above bounds are weakly increasing and lie

in [0, 1], and thus can correspond themselves to a cumulative distribution function. The bounds

will be valid even if the game has multiple equilibria, and, in particular, even if the data is not all

generated by the same equilibrium or by any standard notion of equilibrium play. Furthermore, if

the true data generating process does not in fact entail sellers all drawing for the same distribution

FS — that is, if sellers (or, analogously, buyers) are asymmetric — then the bounds will still remain

valid for the mixture distribution of values in the data.

These bounds do not place any restrictions on the dependence between B and S. For example,

the bounds allow for the possibility that B and S are correlated through game-level heterogeneity

that is either unobservable or observable to the econometrician. One form of such heterogeneity is

S = W + S̃ and B = W + B̃, where S̃, B̃, and W are independent, and where W is known to both

agents but not the econometrician. In this scenario, S and B are independent conditional on W ,

but, from the perspective of the analyst, are correlated across instances of the game through the

presence of W . A related possibility is multiplicative separability, where S = WS̃ and B = WB̃.12

These two structures are not imposed anywhere in our paper but we highlight them below as special

cases that are allowed for by our moderate assumptions and ruled out by our strongest assumptions

(and by some existing theoretical models).

3.3. Bounds Based on Agent’s Value and Agent’s Offer. Our next assumptions describe

how an agent’s first offer relates to her own value:

Assumption 2 (Monotonicity). (i) PS1 is weakly increasing in S, and (ii) PB2 is weakly increasing

11Throughout the paper we will use the term “lower bound” on a CDF to refer to a bound lying graphically below
that CDF (and vice-versa for “upper bound”), although a graphical lower bound is in fact an upper bound on the
random variable in the stochastic dominance sense.

12Multiplicative or additive separability are two structures commonly assumed in empirical auction work (e.g.,
Krasnokutskaya 2011; Freyberger and Larsen 2020).
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in B conditional on PS1 .

Assumption 2.i describes own-offer weak monotoniticy for the seller. Under this assumption, for

y < y′, a seller with PS1 = y must have a weakly lower value than a second seller who has chooses

PS1 = y′, and therefore the lowest price at which the second seller counters or accepts is an upper

bound on the value of the first seller. This is precisely what is represented by XS∗
AC(y), defined in

Section 3.1. Similarly, Assumption 2.i implies that the highest quit price among sellers with first

offers less than y provides a lower bound on the value of the seller who has PS1 = y. Part (ii) of

Assumption 2, monotonicity for the buyer, is weaker, as it is conditional on the seller’s first offer.

These arguments yield the following bounds:

∫
1(XS∗

AC(y) ≤ x)dFPS
1

(y) ≤ FS(x) ≤
∫

1(XS∗
Q (y) ≤ x)dFPS

1
(y) (7)∫

1(XB∗
Q (y, z) ≤ x)dFPS

1 ,P
B
2

(y, z) ≤ FB(x) ≤
∫

1(XB∗
AC(y, z) ≤ x)dFPS

1 ,P
B
2

(y, z) (8)

where 1(·) represents the indicator function. These bounds are derived as follows: Under Assump-

tion 2, we have XS∗
Q (y) ≤ S ≤ XS∗

AC(y), and, conditional on PS1 , the objects XS∗
AC(y) and XS∗

Q (y)

are non-random. We plug these objects into the iterated expecations representation from (1) to

obtain (7). The buyer bounds follow similarly.

We refer to these bounds as monotonicity bounds. These bounds improve upon the uncondi-

tional bounds by comparing the accept/counter or quit actions of agents across instances of the

game. Appendix C includes Monte Carlo simulations that illustrate cases where the bounds can

be narrow and cases where they will not improve upon the unconditional bounds.

Assumption 2 may be too strong for our online bargaining setting; a weaker assumption that

also exploits comparisons across instances of the game is own-offer stochastic monotonicity:

Assumption 3 (Stochastic Monotonicity). (i) P (S ≤ x | PS1 = y) weakly decreases in y ∀ x, and

(ii) P (B ≤ x | PS1 = y, PB2 = z) weakly decreases in z ∀ y, x.

Assumption 3 means that an agent’s value is more likely high when her first offer is high, and

this assumption is thus implied by Assumption 2.13 Combining Assumption 3 with the iterated

expectation representations from (1) and (2), we obtain the following, which we refer to as the

13In another recent application of a similar assumption to obtain partial identification, Frandsen and Lefgren
(2021) exploit stochastic monotonicity to bound treatment effects of attending a charter school.
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stochastic monotonicity bounds:

∫
max
y′≥y

P (XS
AC ≤ x | PS1 = y′)dFPS

1
(y) ≤ FS(x) ≤

∫
min
y′≤y

P (XS
Q ≤ x | PS1 = y′)dFPS

1
(y) (9)∫

max
z′≥z

mB
Q(x, y, z′)dFPS

1 ,P
B
2

(y, z) ≤ FB(x) ≤
∫

min
z′≤z

mB
AC(x, y, z′)dFPS

1 ,P
B
2

(y, z) (10)

where mB
Q(x, y, z) = P (XB

Q ≤ x | PS1 = y, PB2 = z) and mB
AC(x, y, z) = P (XB

AC ≤ x | PS1 = y, PB2 =

z).

We state the monotonicity and stochastic monotonicity bounds as the following theorem. The

proof of this theorem derives the bounds step by step.

Theorem 2. The following bounds hold: (i) under Assumption 2.i, (7) bounds FS; (ii) under

Assumption 2.ii, (8) bounds FB; (iii) under Assumption 3.i, (9) bounds FS; and (iv) under As-

sumption 3.ii, (10) bounds FB.

These bounds are again sharp: under their corresponding assumptions, it is impossible to rule

out that the bounds hold with equality. To provide intuition and motivation for these assumptions,

in Appendix D we walk through equilibria considered in Perry (1986) and Cramton (1992). Our

bounds allow for a much wider range of possible outcomes than these equilibria; indeed, these

equilibria are among the infinitely many outcomes that our bounds allow for. We focus on these

examples only because, to our knowledge, they are some of the few extensive-form equilibria studied

anywhere in the literature from a bargaining game that comes close in generality to the game

we study — a bargaining game with two-sided incomplete information and a continuous value

distribution where both parties are allowed to make offers in equilibrium.14 Monotonicity (and

hence, stochastic monotonicity as well) is satisfied in the environments of Perry (1986) and Cramton

(1992), which assume independent private values with no unobserved game-level heterogeneity. But

monotonicity can be violated in a more general environments, such as additive (e.g., S = W + S̃

and B = W + B̃) or multiplicative (e.g., S = WS̃ and B = WB̃) unobserved heterogeneity, as

described in Section 3.2. Importantly, stochastic monotonicity — our weaker assumption — will

still be satisfied in the presence of unobserved heterogeneity.

14See Table A9 of Larsen (2021) for a breakdown of the theoretical literature modeling extensive-form, incomplete-
information bargaining games. This literature largely focuses on models where only one side has a private value,
only one side is allowed to make offers, or agents have only two possible values. In Appendix D, in addition to the
models of Perry (1986) and Cramton (1992), we also highlight the equilibrium of Grossman and Perry (1986), which
is less general than the other two in that only one party has incomplete information. Recent work by Keniston et al.
(2021) derives a Perfect Bayes Equilibrium of a two-sided incomplete-information, alternating-offer game in which
offers along the equilibrium path do not depend on an agent’s value, but rather split the difference between the two
most recent offers.
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This raises an important point for empirical work: theoretical equilibrium models of bargaining,

even if they describe behavior well, may be unhelpful for empirical work if their results do not hold

in the presence of unobserved heterogeneity across instances of the game. It is precisely empirical

challenges such as this that motivate our incomplete modeling approach and our more moderate

assumptions, which can help bridge the gap between restrictive, extensive-form (and complete)

models and analysis of bargaining in actual negotiation data.

3.4. Bounds Based on Agent’s Value and Opponent’s Offer. We now consider how one

player’s value relates to another player’s offer :

Assumption 4 (Independence). (i) S is independent of PB2 conditional on PS1 , and (ii) B is

independent of PS1 .

As the seller makes the first move in the game, a natural assumption is that the seller’s first

offer depends on S. Assumption 4.ii takes this one step further and assumes that the seller’s first

offer does not depend on the buyer’s value; Assumption 4.i describes a similar condition for the

seller’s value, but this condition is weaker, as it is conditional on the seller’s first offer. Through

this relationship between an agent’s value and an opponents’ offer, Assumption 4 captures a notion

of independence between buyer and seller values.

We obtain the following bounds under Assumption 4, which we refer to as independence bounds:

∫
max
z
mS
AC(x, y, z)dFPS

1
(y) ≤ FS(x) ≤

∫
min
z
mS
Q(x, y, z)dFPS

1
(y) (11)

max
y′

P (XB
Q ≤ x | PS1 = y′) ≤ FB(x) ≤ min

y′
P (XB

AC ≤ x | PS1 = y′) (12)

where mS
AC(x, y, z) = P (XS

AC ≤ x | PS1 = y, PB2 = z) and mS
Q(x, y, z) = P (XS

Q ≤ x | PS1 = y, PB2 =

z). These bounds are obtained by combining Assumption 4 with (3) and (4), and applying the

iterated expectation representation of (1) and (2). These bounds can be narrow or wide in practice;

Monte Carlo simulations in Appendix C illustrate both cases and discusses data features affecting

the bounds’ width.

Like Assumption 2, Assumption 4 may be too strong for the eBay bargaining platform. A

weaker alternative is the following:

Assumption 5 (Positive correlation). (i) P (S ≤ x | PS1 = y, PB2 = z) is weakly decreasing in z

for all y and x, and (ii) P (B ≤ x | PS1 = y) is weakly decreasing in y for all x.
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Assumption 5 states that one agent’s value is stochastically increasing in the other agent’s first

offer, capturing a notion of correlation between buyer and seller values. Assumption 5 is implied

by Assumption 4. Under Assumption 5 we obtain

∫
max
z′≥z

mS
AC(x, y, z′)dFPS

1 ,P
B
2

(y, z) ≤ FS(x) ≤
∫

min
z′≤z

mS
Q(x, y, z′)dFPS

1 ,P
B
2

(y, z) (13)∫
max
y′≥y

P (XB
Q ≤ x | PS1 = y′)dFPS

1
(y) ≤ FB(x) ≤

∫
min
y′≤y

P (XB
AC ≤ x | PS1 = y′)dFPS

1
(y) (14)

We refer to these bounds as the positive correlation bounds to distinguish them from Assumption

3, stochastic monotonicity.

We formally state the independence and positive correlation bounds as follows:

Theorem 3. The following bounds hold: (i) under Assumption 4.i, (11) bounds FS; (ii) under

Assumption 4.ii, (12) bounds FB; (iii) under Assumption 5.i, (13) bounds FS; and (iv) under

Assumption 5.ii, (14) bounds FB.

The bounds described in Theorem 3 are sharp. Returning to our examples of theoretical models,

Perry (1986) and Cramton (1992), we note that independence (and hence also positive correlation)

is satisfied in those models. However, in a modified version of their settings, with unobserved game-

level heterogeneity, Assumption 4 can be violated, even while the weaker condition, Assumption 5,

still holds. We demonstrate these results in Appendix D. As discussed above, we highlight these

equilibria only as examples; our bounds do not rely on these models in any form.

3.5. Combining Assumptions on Marginal Distributions. Assumptions 2–5 can be com-

bined with one another to obtain tighter bounds. For example, we can combine Assumptions 2 and

4 — monotonicity and independence — our two strongest assumptions. Or we can combine As-

sumptions 3 and 5 — stochastic monotonicity and positive correlation — two weaker assumptions.

Appendix B derives bounds based on such combinations. As with all of our bounds, these bounds

are sharp.

4 Estimation

In this section we describe estimators for the bounds from Section 3. In our data, an observation

i = {1, ..., n} consists of a buyer-seller pair and their corresponding bargaining sequence.

4.1. Preliminary Ingredients for Estimation. For each i, the variables XS
AC,i, X

S
Q,i, X

B
AC,i,

and XB
Q,i are directly observed. Using these variables, we estimate the conditional probability
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P (XB
Q ≤ x | PS1 = y′) = E

[
1(XB

Q ≤ x) | PS1 = y′
]

for each value of x using the Nadaraya-Watson

kernel estimator with an Epanechnikov kernel and bandwidth n−1/5. This bandwidth choice yields,

under certain assumptions, the optimal rate of convergence (Stone 1982). Let P̂ (XB
Q ≤ x | PS1 = y′)

denote the estimator. We proceed analogously for P (XB
AC ≥ x | PS1 = y′), P (XS

AC ≤ x | PS1 = y′),

and P (XS
Q ≥ x | PS1 = y′). We restrict all estimators to be in the interval [0, 1] and rearrange them

such that the estimated functions are monotone in x.

Similarly, we estimate the function mB
Q(x, y, z) using the Nadaraya-Watson kernel estimator

with an Epanechnikov kernel and bandwidth n−1/6. Here, due to the higher dimension, the optimal

bandwidth converges at a slower rate. Again, we restrict the estimators to be in the interval [0, 1]

and rearrange them such that they are monotone in x. We denote the estimator by m̂B
Q(x, y, z).

We estimate m̂B
AC(x, y, z), m̂S

AC(x, y, z), and m̂S
Q(x, y, z) analogously.

Finally, we need estimates of XS∗
AC(y), XS∗

Q (y), XB∗
AC(y, z), and XB∗

Q (y, z). The variables XS∗
AC(y)

and XS∗
Q (y) can be estimated with sample analogs. That is,

X̂S∗
AC(y) = max

i:PS
1,i≥y

XS
AC,i and X̂S∗

Q (y) = max
i:PS

1,i≤y
XS
Q,i

XB∗
AC(y, z) and XB∗

Q (y, z) are more complicated to estimate because we condition on a specific value

of the continuous variable PS1 . To do so, let N(y) = {z ∈ R : |z− y| ≤ hn(y)} be a neighborhood of

y where the neighborhood size hn(y) is sample-size dependent and decreases to 0 as n→∞. Now

define

X̂B∗
AC(y, z) = max

i:PB
2,i≤z,PS

1,i∈N(y)
XB
AC,i and X̂B∗

Q (y, z) = max
i:PB

2,i≥z,PS
1,i∈N(y)

XB
Q,i

To choose hn(y), we use a matching approach. Let Kn be the number of neighbors and let hn(y)

be such that
∑n

i=1 1(|PS1,i − y| ≤ hn(y)) = Kn. We choose Kn = n1/4. If the density of PS1 (y) is

bounded and bounded away from 0 in a neighborhood of y, then hn(y) is proportional to n−3/4

and therefore goes to 0 as n→∞.

While we use kernel estimators for each of the above functions, we find similar results using

series estimators. Note also that we do not explicitly discuss conditioning on covariates in these

estimators, as we perform estimation product-by-product and, under the assumptions we maintain,

our bounds are robust to omitting such controls. However, our bounds arguments could be applied

conditional on covariates by including them in the estimated conditional probability functions. In

this case, a parametric approximation, such as a probit model, may be preferred to the nonpara-
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metric estimators we propose here. The matching approach described above could then be used to

estimate the support bounds for the monotonicity assumptions.

4.2. Estimation of Bounds. With the ingredients from above, we can estimate the bounds from

Section 3. For brevity, we describe here the estimation of each lower bound; the estimators for the

upper bounds are analogous. To estimate the unconditional lower bounds, we simply plug in the

empirical analogs of (5) and (6):

1

n

n∑
i=1

1(XS
AC,1 ≤ x) and

1

n

n∑
i=1

1(XB
Q,i ≤ x).

To estimate the monotonicity bounds, note that

∫
1(XS∗

AC(y) ≤ x)dFPS
1

(y) = EPS
1

[1(XS∗
AC(PS1 ) ≤ x)].

We therefore estimate the lower bounds from (7) and (8) by

1

n

n∑
i=1

1(X̂S∗
AC(PS1,i) ≤ x) and

1

n

n∑
i=1

1(X̂B∗
Q (PS1,i, P

B
2,i) ≤ x).

We estimate the stochastic monotonicity lower bounds in (9) and (10) by

1

n

n∑
i=1

max
y′∈{y:y≥PS

1,i,Q0.05(PS
1,i)≤y≤Q0.95(PS

1,i)}∪{PS
1,i}

P̂ (XS
AC ≤ x | PS1 = y′)

and
1

n

n∑
i=1

max
z′∈{z:z≥PB

2,i,Q0.05(PB
2,i)≤z≤Q0.95(PB

2,i)}∪{PB
2,i}

m̂B
Q(x, PS1,i, z

′)

where Qα(PS1,i) and Qα(PB2,i) denote the α quantiles of PS1,i and PB2,i, respectively. Notice that the

sample analog estimator of the seller’s stochastic monotonicity lower bounds is

1

n

n∑
i=1

max
y′≥PS

1,i

P̂ (XS
AC ≤ x | PS1 = y′)

Here, we use the additional constraint that Q0.05(P
S
1,i) ≤ y ≤ Q0.95(P

S
1,i) because the function

P (XS
AC ≤ x | PS1 = y′) can be poorly estimated at the boundary of the support. To ensure the set

is never empty, we always include PS1,i. Note that applying this tail truncation yields conservative

estimates of the bounds; the same is true for all estimators in the paper that use this truncation.
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We estimate the independence lower bounds in (11) and (12) by

1

n

n∑
i=1

max
Q0.05(PB

2,i)≤z≤Q0.95(PB
2,i)
m̂S
AC(x, PS1,i, z) and max

Q0.05(PS
1,i)≤y′≤Q0.95(PS

1,i)
P̂ (XB

Q ≤ x | PS1 = y′).

Finally, we estimate the positive correlation lower bounds in (13) and (14) by

1

n

n∑
i=1

max
z′∈{z:z≥PB

2,i,Q0.05(PB
2,i)≤z≤Q0.95(PB

2,i)}∪{PB
2,i}

m̂S
AC(x, PS1,i, z

′)

and
1

n

n∑
i=1

max
y′∈{y:y≥PS

1,i,Q0.05(PS
1,i)≤y≤Q0.95(PS

1,i)}∪{PS
1,i}

P̂ (XB
Q ≤ x | PS1 = y′).

The estimators of our bounds obtained by combining assumptions together are similar, and are

described in Appendix B.

5 Bounding Values in eBay Bargaining

5.1. Bounds on Buyer and Seller Values for Cell Phones. We now apply the estimators

derived above to obtain bounds on the distributions of buyer and seller values. As described in

Section 2, we do this estimation separately for each product in our data, limiting to products for

which we observe at least 100 negotiation sequences. We normalize prices by the product’s reference

price for ease of interpretation. For illustrative purposes, we begin by focusing on one particular

product — the most popular cell phone from Table 1. Figure 2 displays the bounds on the buyer

value CDF for this cell phone product under different assumptions. Every panel also shows the

unconditional bounds for comparison. Upper bounds are shown with dashed lines and lower bounds

with solid lines.

These results demonstrate that the unconditional bounds — which rely on very weak assump-

tions — can be very wide, the lower bound in particular. This is because it is constructed using

prices at which a buyer quits (walking away from bargaining), which are unobserved if a sequence

either ends in agreement or if the seller quits (rather than the buyer). In such cases, we cannot

rule out the buyer having a very large value, and hence the lower bound is very low. The upper

bound, on the other hand, relies on prices at which the buyer accepts or counters, and at least one

of these prices is always available in the data we analyze, as we focus only on listings that include
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a buyer proposing an offer (PB2 ).15

Depending on the product, some additional assumptions do little to improve the unconditional

bounds. For example, for this product, the stochastic monotonicity bounds (top left panel), are

nearly as wide as the unconditional bounds. This does not imply the assumption is violated, rather

that is just too weak to tighten the bounds for this product. Stochastic monotonicity implies that,

conditional on the seller’s first offer, a buyer with a higher first offer is more likely to have a higher

value. This assumption will lead to a tightening of the lower bound if, for example, in some instances

of the game in which buyers have relatively high first offers the buyer ends up accepting a relatively

low seller offer. This can happen due to the randomness in which seller the buyer is matched to,

or to other features of the game that generate later offers, which we make no assumptions about.

If this is not true — that is, if buyers with higher values always end up accepting higher prices, the

stochastic monotonicity assumption (though satisfied) will not tighten the bounds.

A similar argument applies to the positive correlation bounds (left middle panel). These bounds

rely on the assumption that the buyer’s value is stochastically increasing in the seller’s first offer,

and will only lead to a tighter upper bound, say, if some games in which the seller makes a relatively

high first price end with a buyer quitting at a relatively low offer. If this is not the case, the positive

correlation bounds, while not rejected by the data, will do little to improve the bounds.

We reiterate that all of our bounds are sharp, which implies that they are the best possible

bounds under their corresponding assumptions. Any tightening of the bounds necessarily requires

stronger assumptions. The monotonicity bounds (shown in the top right panel), illustrate this

point, as they drastically improve upon the unconditional bounds, especially the lower bound.

This suggests that there are buyers in the data who propose relatively high PB2 and yet end up

accepting relatively low offers later in the game.

Figure 2 also illustrates the potential for bounds to cross, especially under somewhat stronger

assumption such as independence (middle right panel). Here we observe the lower bound crossing

the upper at low buyer values. Therefore, this assumption is not consistent with our data. This

assumption does not allow for any unobserved game-level heterogeneity, such as features of the cell

phone that both the buyer and seller observe (e.g., a cracked screen in a listing photo or a protective

covering included with the phone). Such heterogeneity can generate positive correlation (from the

econometrician’s perspective) in the buyer’s value and seller’s first offer, and indeed our positive

correlation bounds, which allow for this type of heterogeneity, do not cross. This highlights the

15The upper bound will thus, by construction, be surjective (i.e., mapping to each value in [0,1]).

20



Figure 2: Bounds on Buyer Distribution for Cell Phone
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Notes: Each panel displays the estimated bounds on the buyer distribution for the most popular cell phone product
in the data. The top two panels show the stochastic monotonicity bounds (left) and monotonicity bounds (right).
The middle panels show the positive correlation bounds (left) and independence bounds (right). The bottom panels
show the combined positive correlation + stochastic monotonicity bounds (left) and combined positive correlation +
monotonicity bounds (right). Every panel also shows the unconditional bounds for comparison. In each panel, upper
bounds are shown with dashed lines and lower bounds with solid lines. All prices are scaled by the reference price
for the product, and thus units on the horizontal axis are fraction of the reference price.

value of our moderately weak bounds, which the data from this product do not reject. The bottom

right panel of Figure 2 displays the combined positive correlation and monotonicity bounds — the

tightest bounds we can impose for this product that do not cross. These bounds improve slightly

upon the monotonicity bounds alone.

In Figure 3 we display analogous estimates for the seller distribution using the same set of cell

phone listings. Here we observe that the bounds are much narrower overall, and the upper bound is

less tightly estimated than the lower bound (whereas the opposite occurs for the buyer distribution).

This is because it is the upper bound on the seller value distribution that can be identified by accept

and counter behavior of the seller (and the seller always has at least one such price — the list price,
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PS1 ) and it is the upper bound that is identified by quitting behavior of the seller. Quits for the

seller will not be observed if the negotiation ends in agreement or if the buyer ends the negotiation

by quitting. The stochastic monotonicity and positive correlation assumptions, as well as their

combination, shown in the three left panels, help to tighten this upper bound slightly.

Figure 3: Bounds on Seller Distribution for Cell Phone
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Notes: Each panel displays the estimated bounds on the seller distribution for the most popular cell phone product in
the data. The top two panels show the stochastic monotonicity bounds (left) and monotonicity bounds (right). The
middle panels show the positive correlation bounds (left) and independence bounds (right). The bottom panels show
the combined positive correlation + stochastic monotonicity bounds (left) and combined independence + stochastic
monotonicity bounds (right). Every panel also shows the unconditional bounds for comparison. In each panel, upper
bounds are shown with dashed lines and lower bounds with solid lines. All prices are scaled by the reference price
for the product, and thus units on the horizontal axis are fraction of the reference price.

For the seller distribution for this product, we observe that the monotonicity assumption is

grossly violated. This can be seen by the solid line (the lower bound) lying above the dashed line

(the upper bound), and above the unconditional upper bound. This finding is the opposite of what

we found for the buyer distribution. This is because, for the seller distribution, the monotonicity

assumption is particularly strong. It requires that a seller with a higher first offer must have a
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higher value, and hence behavior across sellers with different first offers can be used to tighten the

bound on any seller’s value. The monotonicity assumption in the buyer case is weaker, requiring

only that, conditional on the seller’s first offer, a buyer’s value be higher at higher buyer offers.

This finding — that seller own-offer monotonicity is violated — highlights the importance of our

weaker assumption (stochastic monotonicity), which is not rejected by the data.

The independence assumption for the seller distribution is not violated, unlike the buyer dis-

tribution case. This is because the independence assumption for the seller is weaker than for the

buyer. It requires only that the seller value be independent of the buyer’s first offer (PB2 ) conditional

on the seller’s first offer (PS1 ). This weaker assumption allows the bounds to capture some degree

of unobserved game-level heterogeneity, for example, that would violate buyer independence.

In the bottom right panel, we display the tightest bounds for this product that do not cross,

which are the combined independence and stochastic monotonicity assumptions. The Monte Carlo

simulations in Appendix C demonstrate that any of these bounds — even the unconditional bounds

— can be quite narrow or wide, depending on features of the data.

5.2. Exploring All Products. We now apply our bounds to all 363 products in our sample.

In Table 2, we show, under each assumption or set of assumptions, the fraction of products for

which a violation of the bounds occurs. Here we define a violation as any product for which the

estimated upper bound crosses the estimated lower bound at any point other than in the extreme

tails.16 Such a crossing indicates that the assumption(s) underlying the bounds is violated. We

also compute the integrated violation error (IVE), which takes on values from 0 to 1 and measures

the average difference between the upper and lower bound in cases where they cross.17

Table 2 shows that the results from Figures 2–3 are quite representative of products in our

data. In particular, we find that the monotonicity bounds for seller values (Assumption 2.i) cross

for 96% of products, with the upper monotonicity bound violating the lower monotonicity bound

by an average of 16.8% (the IVE). For buyer values, where the monotonicity assumption is weaker,

the bounds never cross. The opposite is true for the independence bounds (Assumption 4), which

16In order to focus on violations that do not occur primarily at the tails of the distribution, Table 2 only considers
violations that occur at points in the support where the upper bound is above 0.05 and the lower bound is below
0.95. Thus, denoting a generic upper and lower bound by FU and FL, we consider the bounds as crossing at least
once if there exists some x such that FU (x) ≥ 0.05, FL(x) ≤ 0.95, and FU (x) < FL(x).

17For a generic upper and lower bound by FU and FL, the IVE is given by
∫

max{FL(x)−FU (x), 0}dG(x), where
the distribution function G is equal the unconditional lower bound in the case of sellers and the unconditional buyer
bound in the case of buyers. We choose these distributions as they are surjective on [0, 1] (mapping to every point in
[0, 1]), as the seller lower bound depends on PS

1 and the buyer upper bound depends on PB
2 , which are both always

observed in our sample.
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Table 2: Measuring Bound Crossings Under Different Assumptions

Seller Bounds Buyer Bounds

Fraction Integrated Fraction Integrated
Bounds Violation Bounds Violation
Crossing Error Crossing Error

Unconditional (A1) 0 0 0 0
Monotonicity (A2) 0.9642 0.1683 0 0
Stochastic Monotonicity (A3) 0 0 0 0
Independence (A4) 0.0248 0.0001 0.4876 0.0246
Positive Correlation (A5) 0.0055 0 0 0
Pos. Corr. & Stoch. Mon. (A5 + A3) 0.0055 0 0 0
Indep. & Stoch. Mon. (A4 + A3) 0.0689 0.0004 0.4298 0.0199
Pos. Corr. & Mon. (A5 + A2) 0.9642 0.1683 0.0055 0
Indep. & Mon. (A4 + A2) 0.9642 0.1683 0.8595 0.1546

Notes: Across all products in the full sample, table shows the fraction of products for which seller lower bound crosses
the upper bound, as well corresponding average integrated violation error of these crossings. Table shows similar
quantities for the buyer bounds.

cross for 48.8% of products when bounding buyer values but only 2.5% of products for seller values,

where the assumption is weaker. Even with 48.8% of products exhibiting at least one crossing under

the buyer independence assumption, the IVE is only 2.5% on average. However, when combined

with monotonicity (the final row of Table 2), the IVE is 15.5% on average for buyer values. Bounds

based on combinations of assumptions naturally cross at least as often as any of the the underlying

bounds. Our moderate assumptions, such as stochastic monotonicity (Assumption 3), never cross

for buyer or seller values for any product. Positive correlation bounds (Assumption 5) never cross

for the buyer CDF, and cross for fewer than 1% of products for the seller CDF, with an IVE that

rounds to zero.

In Table 3, for which a given set of bounds, we display statistics across products on the tightness

of the bounds, limiting to products for which the bounds do not cross. We first compute the average

width of the bounds for a given product by integrating the upper bound minus the lower bound.18

This average width metric is similar to the IVE, ranging from 0 to 1, with a lower number meaning

the bounds are tighter.

We find that the unconditional seller bounds can be relatively tight for some products, with an

average probability gap of 0.328 for the minimum-width product, and quite wide for others, with

an average gap that is nearly twice as high (0.631) for the maximum-gap product. The average

width for some bounds — such as the stochastic monotonicity bounds — is quite similar to that

18We integrate this difference against the density of the unconditional lower bound in the case of seller values and
the unconditional upper bound in the case of buyer values, as with the IVE.
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Table 3: Statistics Across Products on Width of Bounds

Seller Bounds Buyer Bounds

Min Mean Max Min Mean Max

Unconditional (A1) 0.328 0.428 0.631 0.350 0.403 0.448
Monotonicity (A2) 0.000 0.008 0.040 0.193 0.303 0.409
Stochastic Monotonicity (A3) 0.320 0.417 0.627 0.330 0.396 0.439
Independence (A4) 0.137 0.281 0.521 0.033 0.176 0.307
Positive Correlation (A5) 0.144 0.377 0.580 0.321 0.388 0.426
Pos. Corr. & Stoch. Mon. (A5 + A3) 0.146 0.373 0.582 0.316 0.387 0.432
Indep. & Stoch. Mon. (A4 + A3) 0.121 0.266 0.510 0.061 0.190 0.329
Pos. Corr. & Mon. (A5 + A2) 0.000 0.008 0.040 0.179 0.282 0.393
Indep. & Mon. (A4 + A2) 0.000 0.008 0.040 0.012 0.137 0.269

Notes: Table shows the minimum, mean, and max (across products) of the average width of the bounds, where the
average width for a given product is computed by the upper minus lower bound integrated against the density of the
unconditional lower bound for sellers or the unconditional upper bound for buyers. These statistics are computed for
a given set of bounds only for products for which the bounds do not cross.

of the unconditional bounds. Given that these bounds (and all of the bounds we study) are sharp

under their corresponding assumptions, this implies that a bargaining model may need to satisfy

stronger assumptions in order to lead to tighter bounds. We find that independence and positive

correlation assumptions for the seller do much to improve the bounds for some products, decreasing

the minimum average width to 0.14. For the buyer bounds, monotonicity drastically improves the

tightness of the bounds over the unconditional bounds, with a minimum average width of 0.193.19

5.3. Auto-Accept/Decline Prices: A Novel Check on Validity. We now exploit the

additional information available in sellers’ auto accept/decline prices. This information serves as a

valuable check on the validity of our bounds — a piece of private information known to the seller

(and reported secretly to the platform) that offers an immediate upper and lower bound on the

true CDF of seller values. Indeed, to a degree, this allows us to partially identify the true CDF of

seller values and compare this to our bounds.

In Figure 4, we display the same bounds as in Figure 3, for the same cell phone product, but

estimated using only the subset of observations for this product for which the seller reported an

auto-accept and auto-decline price. The empirical CDF of these auto-accept and auto-decline prices

are shown in gray dotted lines in every panel. We observe that each of our assumptions shown in

Figure 4 are consistent almost everywhere with the tight bounds implied by the secret prices.

In Table 4, we extend this auto accept/decline analysis to the full set of products that each

19The seller monotonicity and buyer independence bounds also drastically improve upon the unconditional bounds,
but as highlighted above, these bounds cross for many products and the Table 3 results only reflect those products
for which bounds do not cross.
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Figure 4: Bounds on Seller Distribution Compared to Auto Accept/Decline Prices
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Notes: This figure is equivalent to Figure 3 but estimated using only the subset of observations for this product for
which the seller reported a non-zero auto-accept and auto-decline price. The empirical CDF of these auto-accept and
auto-decline prices are shown in gray dotted lines in every panel. All prices are scaled by the reference price for the
product, and thus units on the horizontal axis are fraction of the reference price.

have at least 100 sequences in which auto accept/decline prices are recorded, which includes 16

products. Here we record a crossing of the seller lower bound as a case where it lies above the CDF

of auto-decline prices (which is an upper bound on the true seller value distribution). Similarly,

we define a crossing of the seller upper bound as a case where it lies below the CDF of auto-accept

prices (which is a lower bound on the true seller CDF). We count these violations and compute the

IVE, as in Table 2.

In Table 4, we observe a large fraction of products in which the seller monotonicity bounds

violate the auto-decline or auto-accept CDFs, which is not surprising given that the monotonicity

bounds themselves frequently cross. We observe that our moderate assumptions, such as stochastic

monotonicity, positive correlation, or the combination of the two, even if they cross the auto-

accept/decline prices, do so by very little, having low IVE (well below 1%). The seller independence
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Table 4: Measuring Bound Crossings Relative to Auto Accept/Decline Prices

Lower Bound v. Upper Bound v.
Auto-Decline Auto-Accept

Fraction Integrated Fraction Integrated
Bounds Violation Bounds Violation
Crossing Error Crossing Error

Unconditional (A1) 0 0 0 0
Monotonicity (A2) 0.9375 0.0493 0.875 0.0085
Stochastic Monotonicity (A3) 0 0 0 0.0001
Independence (A4) 0.4375 0.0047 0.0625 0
Positive Correlation (A5) 0.125 0.0001 0 0
Pos. Corr. & Stoch. Mon. (A5 + A3) 0.125 0.0002 0.0625 0.0001
Indep. & Stoch. Mon. (A4 + A3) 0.5 0.0059 0.0625 0.0002
Pos. Corr. & Mon. (A5 + A2) 0.9375 0.0493 0.875 0.0085
Indep. & Mon. (A4 + A2) 0.9375 0.0493 0.875 0.0085

Notes: Among products with at least 100 sequences for which the seller reported an auto-accept and auto-decline
price, table shows the fraction of products for which seller lower bound crosses the auto-decline price CDF and the
corresponding average integrated violation error of these crossings. Table shows similar quantities for the seller upper
bound compared to the auto-accept price CDF.

assumptions cross the auto-decline price CDF for 44% of products, but not by much: the IVE is

again less than 1%. Table 4 lends credence to our bounds and the assumptions underlying them

— in particular for the moderate assumptions.

6 Quantifying Inefficient Impasse and Uncertainty

We now consider bounds on the counterfactual first-best probability of trade. In a first-best world,

a buyer with value B and seller with value S will trade whenever S ≤ B. The Myerson and

Satterthwaite (1983) Theorem demonstrated that achieving the surplus offered by such a mechanism

is infeasible when buyers and sellers have incomplete information and overlapping support of values.

Cramton (1992) demonstrated that, while the first-best surplus is infeasible, it is possible for

negotiators to achieve the first-best quantity of trade after costly delay. The first-best quantity

of trade will be weakly higher than the realized volume of trade in the data; the question is, how

much higher? A lower bound of P (S ≤ B) can be compared to the probability of sale in the data

to examine how much inefficient impasse occurs in the data that would be avoided in a first-best

world.20

20Note that the gains from trade (i.e. surplus) and the probability of trade are intimately related; the former is
weakly increasing in the latter. The probability of trade is a much more useful object for our empirical purposes
because the real-world probability of trade is observable in the data, whereas the real-world surplus is not. Specifically,
whenever trade occurs, trade must be the efficient outcome, but the size of those gains is not necessarily identified.
Whenever trade fails even though gains from trade exist, the outcome is necessarily inefficient, but the size of the
loss is not necessarily identified.
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An upper bound on P (S ≤ B) contains different information than a lower bound. An upper

bound offers a metric for how much uncertainty agents have about whether gains from trade exist.

An upper bound that is well below 1 implies that, even in a first-best world, negotiations would

sometimes fail. Why would agents still negotiate, even if the first-best outcome is to disagree?

The only justification for such behavior is that agents must be uncertain about whether gains from

trade actually exist (i.e., about whether S ≤ B). If agents were to have complete information, they

would not engage in bargaining in cases where gains from trade do not exist.21

As important as the object P (S ≤ B) is for studying the impasse and uncertainty, existing

empirical tools and theoretical models are insufficient for identifying it. Real-world bargaining

data from settings where agents have private information will not typically contain data on those

private values themselves (S and B). Our bounds herein build on the assumptions and bounds on

marginal distributions derived above. We describe each of these assumptions in turn and display

estimated bounds on P (S ≤ B) under these assumptions in Table 5, with lower bounds in panel

A and upper bounds in panel B. Below each estimate, we display 95% bootstrapped confidence

intervals based on the method of Fang and Santos (2018).22 Here we focus on the eight most

popular products — the same products shown in Table 1. Columns 1 through 4 order the bounds

from those relying on our weakest to strongest assumptions.

Our first set of bounds rely only on our weakest assumption, Assumption 1, and as such are

generally uninformative, corresponding to [P (sale), 1], where P (sale) is the fraction of negotiations

in the data that end in trade. To see this, note that Assumption 1 implies P (S ≤ B) ≥ P (XS
AC ≤

XB
AC). Buyers will generally not accept or counter at a price that is strictly higher than the seller

(as this would be strange behavior indeed). Therefore, P (XS
AC ≤ XB

AC) typically corresponds to

P (XS
AC = XB

AC), which is equal to P (sale), as this represents cases where one agent accepts a price

the other proposes. For the upper bound, Assumption 1 implies P (S ≤ B) ≤ P (XS
Q ≤ XB

Q ). This

latter probability is always equal to 1, because only one party (the buyer or seller, not both) can

quit in a given negotiation. When the seller quits, XB
Q = ∞, and when the buyer quits, XS

Q = 0.

Thus, under our unconditional bounds, the most we learn is that P (S ≤ B) ∈ [P (sale), 1]. In

21If an agent has incomplete information about her opponent’s value but knows that the support of possible buyer
values lies fully above that of seller values (what is referred to in Fudenberg and Tirole (1991) as the “gap” case),
then the first-best probability of trade would also be P (S ≤ B) = 1.

22Our estimators involve maxima and minima of estimated conditional mean functions and the asymptotic distri-
butions of the estimated upper and lower bounds are therefore non-normal. Even though the estimated bounds are
not fully differentiable functions of the estimated conditional mean functions, they are directionally differentiable, and
we can obtain confidence intervals by using an extension of the delta method. We calculate the directional derivatives
analytically and use 500 bootstrap samples.

28



Table 5: Bounds on First-Best Probability of Trade for Most Popular Products

A. Lower Bounds (1) (2) (3) (4)
n A1 (P (sale)) A6 & A2.ii A7 & A2.ii A2.i & A2.ii

Electronics 577 0.319 0.348 0.622 0.842
[0.281,0.357] [0.317,0.400] [0.583,0.662] [0.813,0.872]

Cameras 159 0.377 0.384 0.509 0.679
[0.302,0.453] [0.296,0.446] [0.431,0.587] [0.606,0.752]

Sports 190 0.311 0.321 0.563 0.768
[0.245,0.376] [0.238,0.380] [0.492,0.634] [0.708,0.829]

Video Games 487 0.29 0.328 0.472 0.739
[0.249,0.330] [0.274,0.355] [0.428,0.517] [0.700,0.778]

Musical 123 0.724 0.794 0.902 0.894
[0.645,0.803] [0.721,0.883] [0.850,0.955] [0.840,0.949]

Home/Garden 150 0.207 0.211 0.313 0.593
[0.142,0.271] [0.142,0.269] [0.239,0.388] [0.514,0.672]

Cell Phones 2501 0.13 0.142 0.409 0.933
[0.117,0.143] [0.134,0.161] [0.390,0.429] [0.923,0.943]

Computers 497 0.223 0.227 0.374 0.757
[0.187,0.260] [0.196,0.263] [0.332,0.417] [0.719,0.794]

B. Upper Bounds (1) (2) (3) (4)
n A1 A6 & A2.ii A7 & A2.ii A2.i & A2.ii

Electronics 577 1 0.998 0.917 0.875
[0.996,0.998] [0.894,0.939] [0.848,0.902]

Cameras 159 1 1 0.981 0.95
[1.000,1.000] [0.960,1.000] [0.916,0.984]

Sports 190 1 1 0.979 0.958
[1.000,1.000] [0.958,0.999] [0.929,0.987]

Video Games 487 1 0.994 0.867 0.77
[0.988,0.994] [0.836,0.897] [0.733,0.807]

Musical 123 1 1 1 0.927
[1.000,1.000] [1.000,1.000] [0.881,0.973]

Home/Garden 150 1 1 0.927 0.847
[1.000,1.000] [0.885,0.969] [0.789,0.905]

Cell Phones 2501 1 0.992 0.677 0.487
[0.985,0.992] [0.659,0.695] [0.468,0.507]

Computers 497 1 0.995 0.94 0.769
[0.989,0.999] [0.919,0.961] [0.731,0.806]

Notes: For the most popular products with each category, table displays lower bounds (panel A) and upper bounds
(panel B) on the counterfactual first-best probability of trade (P (S ≤ B)) under different assumptions. Bootstrapped
95% confidence intervals are shown in square braces below each estimate.

column 1 of Table 5, we therefore display P (sale) in panel A and 1 in panel B.

The bounds in Table 5 that rely on our strongest assumptions are those shown in column 4,

where we maintain Assumption 2, monotonicity, for both the buyer and the seller. In light of the

results shown in Section 5, monotonicity is a reasonable assumption for buyers but not for sellers.

We nonetheless estimate bounds assuming monotonicity for both parties to illustrate that these

bounds are indeed too strong, and can cross. Under this assumption, bounds on P (S ≤ B) are
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given by [P (XS∗
AC ≤ XB∗

AC), P (XS∗
Q ≤ XB∗

Q )]. We display these bounds in column 4 of Table 5.

Taking these estimates at face value, we see evidence of gross inefficiencies in these markets. For

example, for the cell phone product, sales occur in the data with probability 0.13, but the bounds

imply that trade would occur 93% of the time in a first-best world. The upper bounds under these

assumptions, shown in Panel B, suggest that incomplete information is present for each of these

products: the confidence intervals are well below 1. However, the cell phone row illustrates that

these bounds can cross — the upper bound is 0.487 — indicating a violation of the monotonicity

assumption. In a number of other rows the confidence intervals cross for the lower and upper

bounds. This is not surprising given that Table 2 shows that seller monotonicity (Assumption 2.i)

is violated for most products.

We next examine bounds that drop the assumption of seller monotonicity and instead rely on

buyer monotonicity (Assumption 2.ii) and on the following weak assumption on S −B:

Assumption 6. P (S −B ≤ x | PS1 = y, PB2 = z) is increasing in z for all y.

Sufficient conditions for Assumption 6 are a strict version of Assumption 2.ii (buyer monotonic-

ity) and Assumption 4.i (seller independence), two assumptions for which we do not find large

crossings in Section 5.23 While implied by buyer monotonicity and seller independence, the as-

sumption is far weaker than these two. It is akin to our stochastic monotonicity assumption on

values applied instead to the difference in values. It does not directly rely on any assumptions

about the correlation structure between S and B. Indeed, any restriction on that correlation has

little bite when examining the difference S −B.

We display estimates of bounds on P (S ≤ B) under these assumptions in column 2 of Table

5.24 For each product, the point estimates of the lower bound are higher than P (sale) observed

in the data. For example, for the electronics product, the probability of sale in the data is 0.319,

and the counterfactual first-best probability of trade in column 2 is 0.348, suggesting that the real-

world bargaining misses some efficient trades. However, the confidence intervals for most products

in panel A contain P (sale), and thus the evidence of inefficient impasse under this assumption

23To see that these assumptions are sufficient, suppose we can write PB
2 = f(B,PS

1 ) where f(·, PS
1 ) is increasing

for all PS
1 with inverse function g(·, PS

1 ). Then the conditional probability statement in Assumption 6 can be written
P (S − B ≤ x | PS

1 = y,B = g(z, y)) = P (S − g(z, y) ≤ x | PS
1 = y,B = g(z, y)). This latter statement is equivalent

to P (S − g(z, y) ≤ x | PS
1 = y), which is increasing in z for all y.

24Estimation of these bounds is similar to that of the marginal distribution bounds. We first estimate
P (XS

AC ≤ XB∗
AC | PS

1 = y, PB
2 = z) using the Nadaraya-Watson kernel estimator with an Epanechnikov ker-

nel function and bandwidth n−1/6. Denote the estimator by m̂S−B(y, z). The estimated lower bound is then
1
n

∑n
i=1 maxz′∈{z:z≥PB

2,i,Q0.05(P
B
2,i)≤z≤Q0.95(P

B
2,i)}∪{P

B
2,i}

m̂S−B(PS
1,i, z

′). The upper bound estimator is analogous.
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is relatively weak. Column 2 of panel B shows that the estimated upper bound on the first-best

probability of trade is generally very close to 1 (or even equal to 1 for some products). Together,

the lower and upper bound estimates in column 2 offer little information beyond the unconditional

bounds in column 1.

The final bounds we consider invoke buyer monotonicity and the following:

Assumption 7. PB2 is weakly decreasing in S −B conditional on PS1 .

This assumption is a stronger version of Assumption 6, but is still weaker than assuming mono-

tonicity for both the buyer and seller: strict versions of Assumption 2.i and 2.ii are sufficient for

Assumption 7 to hold, but not necessary.25 As Assumption 6 is akin to a stochastic monotonicity

assumption applied to S−B, Assumption 7 is akin to weak monotonicity applied to this difference.

In column 3 of Table 5, we estimate bounds relying on Assumption 7 and buyer monotonicity.26

Unlike columns 1 and 2, in column 3 we find informative lower bounds for all products, with con-

fidence intervals lying well above P (sale) for all products. We also find informative upper bounds

for most products, with confidence intervals lying below 1. We also find that these bounds do

not cross, unlike those shown in column 4. These bounds suggest that the real-world bargaining

exhibits inefficient impasse, but not as much as implied by the (overly strong) assumption of seller

monotonicity. For example, for computers, the probability of trade in the data is 0.223, but in

column 3 we find that it would be as high as 0.374 in a first-best world, suggesting that, when the

buyer values the computer more than the seller, the pair still fails to reach an agreement 40% of

the time (i.e., 1− 0.223/0.374). We also find that at least 6% of negotiations would end in impasse

even in a first-best world, as the upper bound estimate is 0.94, suggesting that agents do indeed

negotiate under uncertainty (and that assuming Nash bargaining, for example, would be incorrect

and potentially yield misleading conclusions).

In Figure 5, we extend this analysis to each of our 363 products. In each panel, we order

products on the horizontal axis according to their sales probability in the data. On vertical axes,

an “×” represents the estimated upper bound and a hollow circle the estimated lower bound. These

hollow circles are made solid for products where the estimated bounds cross (i.e., where the lower

25To see that these assumptions are sufficient, suppose we can write PS
1 = f1(S) and PB

2 = f2(B,PS
1 ) where f1(·)

and f2(·, PS
1 ) are increasing with inverse functions g1(·) and g2(·, PS

1 ), respectively. Then S−B = g1(PS
1 )−g2(PB

2 , P
S
1 )

and, conditional on PS
1 , this latter difference is a decreasing function of PB

2 .
26Estimation of the bounds in column 3 of Table 5 is similar to those in column 2. First define X̂S−B∗

AC (y, z) ≡
mini:PB

2,i≤z,PS
1,i∈N(y)(X

S
AC,i −XB

AC,i), where the neighborhood N(y) is as in Section 4. The estimated lower bound is

then 1
n

∑n
i 1(X̂S−B∗

AC (PS
1,i, P

B
2,i) ≤ 0). The estimator of the upper bound is analogous.
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Figure 5: Bounds on P (S ≤ B), All Products

(A) Assumptions 6 and 2.ii (B) Assumptions 7 and 2.ii

(C) Assumptions 2.i and 2.ii

Notes: Figure display upper bounds (marked with “×” and lower bounds (marked with hollow circles) for the
counterfactual first-best probability of trade (P (S ≤ B)) under different assumptions, for each product in the full
sample. Each panel ranks products on the horizontal axis by the product’s sale probability in the data. The solid
line represents the 45-degree line. In panel A the assumptions are Assumptions 6 and 2.ii; in panel B they are
Assumptions 7 and 2.ii; and in panel C they are Assumptions 2.i and 2.ii.

bound lies above the upper bound). Panel A displays bounds relying on Assumptions 6 and 2.ii,

corresponding to column 2 of Table 5. Panel B displays bounds relying on Assumptions 7 and 2.ii,

corresponding to column 3 of Table 5. Panel C displays bounds relying on Assumptions 2.i and 2.ii,

corresponding to column 3 of Table 5. As in Table 5, Panel A shows that the estimates relying on

Assumptions 6 and 2.ii are too weak to be informative, as they correspond closely to P (sale) and

1. In Panel C, we find that assuming monotonicity for both agents yields bounds that are tighter,

but violated for many products (42 out of 363).

The Goldilocks-like assumptions are those in panel B, where we observe informative bounds
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that do not cross. Here the lower bounds suggest that the real-world bargaining indeed exhibits

inefficient impasse, and to a large degree for some products. Across all products, the percentage of

negotiations in which gains from trade exist and yet agents disagree ranges from 8.3% to 68.9%.

For the median product, this inefficient impasse occurs 43% of the time. The upper bounds in

panel C offer evidence that agents in these markets face uncertainty about whether efficient trade

is possible. The upper bound ranges from 0.673 to 1.000, depending on the product, with a median

of 0.936. This suggests that, even in a first-best world, agents would only trade at most 94% of the

time, and thus must face some uncertainty about the gains from trade. For most products, this

upper bound point estimate is below 1.

7 Discussion and Conclusion

This study provides bounds on the private-value distributions of buyers and sellers and on the

first-best probability of trade from real-world, sequential-offer bargaining data from eBay’s Best

Offer platform. These bounds are sharp, nonparametric, and robust to the presence of two-sided

uncertainty (i.e. both buyer and seller may have private values). Our approach relies on revealed

preferences arguments and other assumptions on behavior without specifying a full model of equi-

librium play. The assumptions we invoke range from quite weak to strong. We find that bounds

relying on our strongest assumptions (monotonicity of sellers’ first offers and independence between

buyer’s values and seller’s first offers) can cross. While these strong assumptions are satisfied in

equilibria of two-sided incomplete-information bargaining games analyzed in the theoretical liter-

ature, they appear too strong for empirical work. This underscores the importance of our more

moderate assumptions, which allow for empirical features such as unobserved game-level hetero-

geneity.

Our bounds approach circumvents a major theoretical problem arising in bargaining games

of incomplete information: signaling. Each action taking by a player signals information to the

opposing player, yielding a multiplicity (even a continuum) of equilibria that are qualitatively very

different depending on how off-equilibrium beliefs are specified.27 The bounds we propose do not

rely on any specification of beliefs, equilibrium refinement, or equilibrium selection, allowing us to

study how well bargaining performs in this real-world market (eBay) without strongly constraining

27In the earliest game-theoretic work on incomplete-information bargaining, a number of equilibrium refinements
were introduced, but these were necessarily ad hoc in nature, and in some cases equilibria satisfying these restrictions
can fail to exist (see discussion in Ausubel et al. 2002). Binmore et al. (1992) emphasized that bargaining models
were one of the main motivations behind much of the refinements literature.
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the answer a priori.

Given that the bounds we propose rely only on very weak assumptions, they are naturally wide

in some cases. We demonstrate that, in spite of this, the bounds can be useful in allowing us to

examine what behavioral properties are satisfied in real-world bargaining. The bounds also also

us to examine questions of impasse and uncertainty — questions that are not possible to address

under complete-information frameworks such as Nash bargaining: when trade fails, how often is

it the case that the buyer actually values the good more than the seller, and hence the parties

should have agreed in a fully efficient world? Under our moderate assumptions, we find evidence

of inefficient impasse: for the median product, at least 43% of efficient trades never occur. Thus

viewing consumer negotiations in this market through the lens of a complete-information model

would be incorrect. We also find that it would be misleading to impose too strong of an assumption

on behavior. Though satisfied by existing theoretical models, the strongest assumptions we explore

would suggest that inefficient breakdown is far more prevalent. We are able to falsify these strong

assumptions and focus on our more moderate assumptions.

It is possible that the assumptions we use — even those that are not the strongest — are still too

strong. There are relatively few empirical estimates of bargaining under incomplete information to

which ours can be directly compared — and none, to our knowledge, from real-world negotiations

involving consumers. However, several studies offer useful comparisons. First, Valley et al. (2002)

studied laboratory participants in a two-sided incomplete-information bargaining game, and find

that participants fail to trade in 46% of cases where gains from trade exist. They found that this

impasse is reduced substantially (to 15%) when negotiators are allowed to communicate. Bochet

et al. (2020) and Huang et al. (2020) also studied two-sided incomplete-information experimentally,

finding a corresponding level of inefficient impasse of 30% and 17%, respectively. Larsen (2021),

studying professionals negotiating over used-car inventory, found that at least 21% of first-best

trades fail, and Larsen et al. (2021) found that skilled mediators substantially reduce this inefficient

breakdown.28 Relative to these numbers, our estimates of inefficient impasse for the median product

suggest that the performance of bargaining in real-world consumer settings is in the ballpark of

(but perhaps more inefficient than) those involving laboratory participants or business-to-business

negotiations. We see our findings as useful benchmarks to which additional studies of bargaining

in various contexts may be compared.

28The percentages reported in this paragraph are found in (or can be constructed from) Table 1 of Valley et al.
(2002), Figure 3 of Bochet et al. (2020), Table 2 of Huang et al. (2020), and Table 3 of Larsen (2021). Note that in
Huang et al. (2020), gains from trade always exist, which is not the case for the other experimental studies.
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We view these results as highlighting the importance of allowing for realistic features such as

two-sided incomplete information when analyzing bargaining empirically. Analysis allowing for

these features has thus far been scarce. Indeed, our analysis and results stand in stark contrast

to the standard approach to studying bargaining settings in the empirical economics literature

(i.e. complete information/Nash bargaining), which does not allow for the possibility of inefficient

impasse.

References

Ambrus, A., Chaney, E., and Salitskiy, I. (2018). Pirates of the Mediterranean: An empirical
investigation of bargaining with asymmetric information. Quantitative Economics, 9(1):217–246.

Ausubel, L., Cramton, P., and Deneckere, R. (2002). Bargaining with incomplete information.
Handbook of Game Theory, 3:1897–1945.

Backus, M., Blake, T., Larsen, B., and Tadelis, S. (2020). Sequential bargaining in the field:
Evidence from millions of online bargaining interactions. Quarterly Journal of Economics,
135(3):1319–1361.

Bajari, P., Benkard, C. L., and Levin, J. (2007). Estimating dynamic models of imperfect compe-
tition. Econometrica, 75(5):1331–1370.

Binmore, K., Osborne, M., and Rubinstein, A. (1992). Noncooperative models of bargaining.
Handbook of Game Theory, 1:179–225.

Bochet, O., Khanna, M., and Siegenthaler, S. (2020). Beyond dividing the pie: An experimental
study on bargaining over multiple issues. Available at SSRN 3414288.

Bodoh-Creed, A., Boehnke, J., and Hickman, B. (2021). How efficient are decentralized auction
platforms? Review of Economic Studies, 88(1):91–125.

Cramton, P. (1992). Strategic delay in bargaining with two-sided uncertainty. Review of Economic
Studies, 59:205–225.

Desai, P. S. and Jindal, P. (2020). Does bargaining increase product valuation? The upside of
bargaining costs. Working paper, available at SSRN: https://ssrn.com/abstract=3756608.

Fang, Z. and Santos, A. (2018). Inference on directionally differentiable functions. Review of
Economic Studies, 86(1):377–412.

Frandsen, B. R. and Lefgren, L. J. (2021). Partial identification of the distribution of treatment
effects with an application to the Knowledge is Power Program (KIPP). Quantitative Economics,
12(1):143–171.

Freyberger, J. and Larsen, B. (2020). Identification in ascending auctions, with an application to
digital rights management. Quantitative Economics, forthcoming.

Fudenberg, D. and Tirole, J. (1991). Game Theory. Cambridge: MIT Press.

35



Grossman, S. and Perry, M. (1986). Sequential bargaining under asymmetric information. Journal
of Economic Theory, 39(1):120–154.

Haile, P. A. and Tamer, E. (2003). Inference with an incomplete model of english auctions. Journal
of Political Economy, 111(1):1–51.

Hendricks, K. and Sorensen, A. (2018). Dynamics and efficiency in decentralized online auction
markets. NBER Working Paper 25002.

Huang, J., Kessler, J. B., and Niederle, M. (2020). Fairness concerns are less relevant when agents
are less informed. Working Paper, University of Pennsylvania.

Keniston, D. (2011). Bargaining and welfare: A dynamic structural analysis. Working paper, Yale.

Keniston, D., Larsen, B., Li, S., Prescott, J., Silveira, B., and Yu, C. (2021). Fairness in incomplete-
information bargaining: Theory and widespread evidence from the field. NBER Working Paper
29111.

Krasnokutskaya, E. (2011). Identification and estimation of auction models with unobserved het-
erogeneity. Review of Economic Studies, 78(1):293–327.

Larsen, B., Lu, C., and Zhang, A. L. (2021). Intermediaries in bargaining: Evidence from business-
to-business used-car inventory negotiations. NBER Working Paper 29159.

Larsen, B. and Zhang, A. (2018). A mechanism design approach to identification and estimation.
NBER Working Paper 24837.

Larsen, B. J. (2021). The efficiency of real-world bargaining: Evidence from wholesale used-auto
auctions. Review of Economic Studies, 88(2):851–882.

Li, H. and Liu, N. (2015). Nonparametric identification and estimation of double auctions with
bargaining. Working paper, Penn State.

Myerson, R. and Satterthwaite, M. (1983). Efficient mechanisms for bilateral trading. Journal of
Economic Theory, 29(2):265–281.

Perry, M. (1986). An example of price formation in bilateral situations: A bargaining model with
incomplete information. Econometrica, 54(2):313–321.

Rubinstein, A. (1982). Perfect equilibrium in a bargaining model. Econometrica, pages 97–109.

Silveira, B. S. (2017). Bargaining with asymmetric information: An empirical study of plea nego-
tiations. Econometrica, 85(2):419–452.

Stone, C. J. (1982). Optimal global rates of convergence for nonparametric regression. Annals of
Statistics, 10(4):1040 – 1053.

Valley, K., Thompson, L., Gibbons, R., and Bazerman, M. H. (2002). How communication improves
efficiency in bargaining games. Games and Economic Behavior, 38(1):127–155.

36



A Proofs

For the proofs in this section we consider a more general setup than in the body of the paper,

in which it is possible that the buyer never makes an offer, which is the event DB
2 6= C. This

generalization affects seller bounds under Assumption 3 and the buyer bounds under Assumption

2. In case the bounds differ to those in the body of the paper, we state them at the beginning of

the corresponding proof.

Proof of Theorem 1.

Proof. Since XS
Q ≤ S ≤ XS

AC we have P (XS
AC ≤ x) ≤ P (S ≤ x) ≤ P (XS

Q ≤ x). Similarly, since

XB
AC ≤ B ≤ XB

Q , we have P (XB
Q ≤ x) ≤ P (B ≤ x) ≤ P (XB

AC ≤ x).

Proof of Theorem 2.

Proof. Monotonicity. For the buyer, we will show that

P (B ≤ x) ≥
∫

1(XB∗
Q (y, z) ≤ x)dFPS

1 ,P
B
2 |DB

2 =C(y, z)P (DB
2 = C) + P (XB

Q ≤ x,DB
2 6= C)

P (B ≤ x) ≤
∫

1(XB∗
AC(y, z) ≤ x)dFPS

1 ,P
B
2 |DB

2 =C(y, z)P (DB
2 = C) + P (XB

AC ≤ x,DB
2 6= C)

To do so, first write

P (B ≤ x) = P (B ≤ x,DB
2 = C | DB

2 = C)P (DB
2 = C)) + P (B ≤ x,DB

2 6= C)

=

∫
P (B ≤ x | DB

2 = C,PS1 = y, PB2 = z)dFPS
1 ,P

B
2 |DB

2 =C(y, z)P (DB
2 = C)

+ P (B ≤ x,DB
2 6= C).

Conditional on PS1 = y, PB2 = z, and DB
2 = C, we have XB∗

AC(y, z) ≤ B ≤ XB∗
Q (y, z) and XB∗

AC(y, z)

and XB∗
Q (y, z) are non-random. In addition XB

AC ≤ B ≤ XB
Q . Therefore,

P (B ≤ x) ≥
∫

1(XB∗
Q (y, z) ≤ x)dFPS

1 ,P
B
2 |DB

2 =C(y, z)P (DB
2 = C) + P (XB

Q ≤ x,DB
2 6= Q).

We obtain the upper bound analogously.

For the seller, note that, conditional on y and by Assumption 2, we have XS∗
Q (y) ≤ S ≤ XS∗

AC(y).
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Also note that XS∗
Q (y) and XS∗

AC(y) are non-random. Therefore, applying (1), we have

∫
1(XS∗

AC(y) ≤ x)dFPS
1

(y) ≤ P (S ≤ x) ≤
∫

1(XS∗
Q (y) ≤ x)dFPS

1
(y).

Stochastic Monotonicity. For the buyer, we will show that

P (B ≤ x) ≥
∫

max
z′≥z

mB
Q(x, y, z′)dFPS

1 ,P
B
2 |DB

2 =C(y, z)P (DB
2 = C) + P (XB

Q ≤ x,DB
2 6= C)

P (B ≤ x) ≤
∫

min
z′≤z

mB
AC(x, y, z′)dFPS

1 ,P
B
2 |DB

2 =C(y, z)P (DB
2 = C) + P (XB

AC ≤ x,DB
2 6= C)

To do so, first write

P (B ≤ x) =

∫
P (B ≤ x | DB

2 = C,PS1 = y, PB2 = z)dFPS
1 ,P

B
2 |DB

2 =C(y, z)P (DB
2 = C)

+ P (B ≤ x,DB
2 6= C)

=

∫
max
z′≥z

P (B ≤ x | DB
2 = C,PS1 = y, PB2 = z′)dFPS

1 ,P
B
2 |DB

2 =C(y, z)P (DB
2 = C)

+ P (B ≤ x,DB
2 6= C)

Moreover,

P (B ≤ x) =

∫
min
z′≤z

P (B ≤ x | DB
2 = C,PS1 = y, PB2 = z′)dFPS

1 ,P
B
2 |DB

2 =C(y, z)P (DB
2 = C)

+ P (B ≤ x,DB
2 6= C)

The bounds now follow from XB
AC ≤ B ≤ XB

Q .

For the seller, we have, by (1) and Assumption 3, P (S ≤ x) =
∫

maxy′≥y P (S ≤ x | PS1 =

y′)dFPS
1

(y) and P (S ≤ x) =
∫

miny′≤y P (S ≤ x | PS1 = y′)dFPS
1

(y). The seller bounds then follow

from XS
Q ≤ S ≤ XS

AC .

Proof of Theorem 3.

Proof. Independence. For the seller, we will show that

P (S ≤ x) ≥
∫

max
z
P (XS

AC ≤ x | PS1 = y, PB2 = z,DB
2 = C)dFPS

1 |DB
2 =C(y)P (DB

2 = C)

+ P (XS
AC ≤ x,DB

2 6= C)

38



P (S ≤ x) ≤
∫

min
z
P (XS

Q ≤ x | PS1 = y, PB2 = z,DB
2 = C)dFPS

1 |DB
2 =C(y)P (DB

2 = C)

+ P (XS
Q ≤ x,DB

2 6= C)

To do so, first write

P (S ≤ x) = P (S ≤ x | DB
2 = C)P (DB

2 = C) + P (S ≤ x,DB
2 6= C)

Moreover

P (S ≤ x | DB
2 = C) =

∫
P (S ≤ x | PS1 = y,DB

2 = C)dFPS
1 |DB

2 =C(y)

=

∫
max
z
P (S ≤ x | PS1 = y, PB2 = z,DB

2 = C)dFPS
1 |DB

2 =C(y)

The lower bound then follows from using S ≤ XS
AC . Analogous arguments with S ≥ XS

Q yield the

upper bound.

For the buyer, we have P (B ≤ x) = maxy P (B ≤ x | PS1 = y) and P (B ≤ x) = miny P (B ≤ x |

PS1 = y), and the bounds now follow from XB
AC ≤ B ≤ XB

Q .

Positive Correlation. For the seller, we will show that

P (S ≤ x) ≥
∫

max
z′≥z

P (XS
AC ≤ x | PS1 = y, PB2 = z′, DB

2 = C)dFPS
1 ,P

B
2 |DB

2 =C(y, z)P (DB
2 = C)

+ P (XS
AC ≤ x,DB

2 6= C)

P (S ≤ x) ≤
∫

min
z′≤z

P (XS
Q ≤ x | PS1 = y, PB2 = z′, DB

2 = C)dFPS
1 ,P

B
2 |DB

2 =C(y, z)P (DB
2 = C)

+ P (XS
Q ≤ x,DB

2 6= C)

To do so, first write

P (S ≤ x) = P (S ≤ x | DB
2 = C)P (DB

2 = C) + P (S ≤ x,DB
2 6= C)

Moreover

P (S ≤ x | DB
2 = C) =

∫
P (S ≤ x | PS1 = y, PB2 = z,DB

2 = C)dFPS
1 ,P

B
2 |DB

2 =C(y, z)

=

∫
max
z′≥z

P (S ≤ x | PS1 = y, PB2 = z′, DB
2 = C)dFPS

1 ,P
B
2 |DB

2 =C(y, z)
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The lower bound then follows from S ≤ XS
AC . Analogous arguments with S ≥ XS

Q yield the upper

bound.

For the buyer, we have P (B ≤ x) =
∫

maxy′≥y P (B ≤ x | PS1 = y′)dFPS
1

(y) and P (B ≤ x) =∫
miny′≤y P (B ≤ x | PS1 = y′)dFPS

1
(y). The bounds then follow from XB

AC ≤ B ≤ XB
Q .

B Bounds Based on Combined Assumptions

B.1. Derivation of Bounds Combining Assumptions. We can combine Assumptions 2–5

in several ways to obtain tighter bounds. As with the proofs of the single-assumption bounds in

Appendix A, for each of these combined-assumption bounds we prove the general case where it is

possible that the buyer quits or accepts in period 2 of the game (i.e., it is possible that DB
2 6= C).

Independence Plus Monotonicity. Combining independence and monotonicity assumptions —

our two strongest assumptions — we obtain the following bounds. First, we note that imposing

independence on top of monotonicity yields no additional information for the seller distribution

bounds, but can tighten the buyer distribution bounds.

Theorem 4. Suppose Assumptions 2 and 4 hold. Then (7) bounds FS, and

P (B ≤ x) ≥ max
y

(∫
1(XB∗

Q (y, z) ≤ x)dFPB
2 |PS

1 ,D
B
2 =C(z|y)P (DB

2 = C | PS1 = y)

+ P (XB
Q ≤ x,DB

2 6= C | PS1 = y)
)

P (B ≤ x) ≤ min
y

(∫
1(XB∗

AC(y, z) ≤ x)dFPB
2 |PS

1 ,D
B
2 =C(z|y)P (DB

2 = C | PS1 = y)

+ P (XB
AC ≤ x,DB

2 6= C | PS1 = y)
)

Proof. For the buyer, we have P (B ≤ x) = maxy P (B ≤ x | PS1 = y), and

P (B ≤ x | PS1 = y) = P (B ≤ x | PS1 = y,DB
2 = C)P (DB

2 = C | PS1 = y)

+ P (B ≤ x,DB
2 6= C | PS1 = y)

=

∫
P (B ≤ x | PS1 = y, PB2 = z,DB

2 = C)dFPB
2 |PS

1 ,D
B
2 =C(z|y)

× P (DB
2 = C | PS1 = y) + P (B ≤ x,DB

2 6= C | PS1 = y)

≥
∫

1(XB∗
Q (y, z) ≤ x)dFPB

2 |PS
1 ,D

B
2 =C(z|y)P (DB

2 = C | PS1 = y)

+ P (XB
Q ≤ x,DB

2 6= C | PS1 = y)
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Similar arguments yield the upper bound.

Positive Correlation Plus Monotonicity. We obtain similar results combining monotonicity

and positive correlation. Note that, as with independence, imposing positive correlation on top of

monotonicity yields no additional information for the seller distribution bounds, but can tighten

the buyer distribution bounds.

Theorem 5. Suppose Assumptions 2 and 5 hold. Then (7) bounds FS, and

FB(x) ≥
∫

max
y′≥y

(∫
1(XB∗

Q (y′, z) ≤ x)dFPB
2 |PS

1 ,D
B
2 =C(z|y)P (DB

2 = C | PS1 = y′)

+ P (XB
Q ≤ x,DB

2 6= C | PS1 = y′)
)
dFPS

1
(y)

FB(x) ≤
∫

min
y′≤y

(∫
1(XB∗

AC(y′, z) ≤ x)dFPB
2 |PS

1 ,D
B
2 =C(z|y)P (DB

2 = C | PS1 = y′)

+ P (XB
AC ≤ x,DB

2 6= C | PS1 = y′)
)
dFPS

1
(y)

Proof. For the buyer, P (B ≤ x) =
∫

maxy′≥y P (B ≤ x | PS1 = y′)dFPS
1

(y) and

P (B ≤ x | PS1 = y) = P (B ≤ x | PS1 = y,DB
2 = C)P (DB

2 = C | PS1 = y)

+ P (B ≤ x,DB
2 6= C | PS1 = y)

=

∫
P (B ≤ x | PS1 = y, PB2 = z,DB

2 = C)dFPB
2 |PS

1 ,D
B
2 =C(z|y)

× P (DB
2 = C | PS1 = y) + P (B ≤ x,DB

2 6= C | PS1 = y)

≥
∫

1(XB∗
Q (y, z) ≤ x)dFPB

2 |PS
1 ,D

B
2 =C(z|y)P (DB

2 = C | PS1 = y)

+ P (XB
Q ≤ x,DB

2 6= C | PS1 = y)

Analogous arguments yield the upper bound.

Independence Plus Stochastic Monotonicity. We now combine the stochastic monotonicity

and independence assumptions:

Theorem 6. Suppose Assumptions 3 and 4 hold. Then

FS(x) ≥
∫

max
y′≥y

(
max
z
mS
AC(x, y′, z)P (DB

2 = C | PS1 = y′)

+ P (XS
AC ≤ x,DB

2 6= C | PS1 = y′)
)
dFPS

1
(y)
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FS(x) ≤
∫

min
y′≤y

(
min
z
mS
Q(x, y′, z)P (DB

2 = C | PS1 = y′)

+ P (XS
Q ≤ x,DB

2 6= C | PS1 = y′)
)
dFPS

1
(y)

and

FB(x) ≥max
y

(∫
max
z′≥z

mB
Q(x, y, z′)dFPB

2 |PS
1 ,D

B
2 =C(z|y)P (DB

2 = C | PS1 = y)

+ P (XB
Q ≤ x,DB

2 6= C | PS1 = y)
)

FB(x) ≤min
y

(∫
max
z′≥z

mB
AC(x, y, z′)dFPB

2 |PS
1 ,D

B
2 =C(z|y)P (DB

2 = C | PS1 = y)

+ P (XB
AC ≤ x,DB

2 6= C | PS1 = y)
)

Proof. For the seller, we have P (S ≤ x) =
∫

maxy′≥y P (S ≤ x | PS1 = y′)dFPS
1

(y). Moreover,

P (S ≤ x | PS1 = y′) = P (S ≤ x | PS1 = y′, DB
2 = C)P (DB

2 = C | PS1 = y′)

+ P (S ≤ x,DB
2 6= C | PS1 = y′)

= max
z
P (S ≤ x | PS1 = y′, PB2 = z,DB

2 = C)P (DB
2 = C | PS1 = y′)

+ P (S ≤ x,DB
2 6= C | PS1 = y′)

The lower bound then follows from using S ≤ XS
AC . Analogous arguments with S ≥ XS

Q yield the

upper bound.

For the buyer we have P (B ≤ x) = maxy P (B ≤ x | PS1 = y) and

P (B ≤ x | PS1 = y) = P (B ≤ x | PS1 = y,DB
2 = C)P (DB

2 = C | PS1 = y)

+ P (B ≤ x,DB
2 6= C | PS1 = y)

=

∫
P (B ≤ x | PS1 = y, PB2 = z,DB

2 = C)dFPB
2 |PS

1 ,D
B
2 =C(z|y)

× P (DB
2 = C | PS1 = y) + P (B ≤ x,DB

2 6= C | PS1 = y)

=

∫
max
z′≥z

P (B ≤ x | PS1 = y, PB2 = z,DB
2 = C)dFPB

2 |PS
1 ,D

B
2 =C(z|y)

× P (DB
2 = C | PS1 = y) + P (B ≤ x,DB

2 6= C | PS1 = y)

and the lower bound now follows from B ≤ XB
Q . Analogous arguments and XB

AC ≤ B yield the

upper bound.
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Positive Correlation Plus Stochastic Monotonicity. Here we combine stochastic monotonic-

ity and positive correlation, our weakest combination of assumptions:

Theorem 7. Suppose Assumptions 3 and 5 hold. Then

FS(x) ≥
∫

max
y′≥y

(∫
max
z′≥z

mS
AC(x, y′, z′)dFPB

2 |PS
1 ,D

B
2 =C(z|y′)P (DB

2 = C | PS1 = y′)

+ P (XS
AC ≤ x,DB

2 6= C | PS1 = y′)
)
dFPS

1
(y)

FS(x) ≤
∫

min
y′≤y

(∫
min
z′≥z

mS
Q(x, y′, z′)dFPB

2 |PS
1 ,D

B
2 =C(z|y′)P (DB

2 = C | PS1 = y′)

+ P (XS
Q ≤ x,DB

2 6= C | PS1 = y′)
)
dFPS

1
(y)dy

and

FB(x) ≥
∫

max
y′≥y

(∫
max
z′≥z

mB
Q(x, y′, z′)dFPB

2 |PS
1 ,D

B
2 =C(z|y′)P (DB

2 = C | PS1 = y′)

+ P (XB
Q ≤ x,DB

2 6= C | PS1 = y′)
)
dFPS

1
(y)

FB(x) ≤
∫

min
y′≤y

(∫
min
z′≥z

mB
AC(x, y′, z′)dFPB

2 |PS
1 ,D

B
2 =C(z|y′)P (DB

2 = C | PS1 = y′)

+ P (XB
AC ≤ x,DB

2 6= C | PS1 = y′)
)
dFPS

1
(y)

Proof. We have, for the seller, P (S ≤ x) =
∫

maxy′≥y P (S ≤ x | PS1 = y′)dFPS
1

(y). Moreover,

P (S ≤ x | PS1 = y′) = P (S ≤ x | PS1 = y′, DB
2 = C)P (DB

2 = C | PS1 = y′)

+ P (S ≤ x,DB
2 6= C | PS1 = y′)

=

∫
P (S ≤ x | PS1 = y′, PB2 = z,DB

2 = C)dFPB
2 |PS

1 ,D
B
2 =C(z|y′)

× P (DB
2 = C | PS1 = y′) + P (S ≤ x,DB

2 6= C | PS1 = y′)

=

∫
max
z′≥z

P (S ≤ x | PS1 = y′, PB2 = z,DB
2 = C)dFPB

2 |PS
1 ,D

B
2 =C(z|y′)

× P (DB
2 = C | PS1 = y′) + P (S ≤ x,DB

2 6= C | PS1 = y′)

The lower bound then follows from using S ≤ XS
AC . Analogous arguments with S ≥ XS

Q yield

the upper bound.

Similarly, for the buyer we have P (B ≤ x) =
∫

maxy′≥y P (B ≤ x | PS1 = y′)dFPS
1

(y) and

P (B ≤ x | PS1 = y′) = P (B ≤ x | PS1 = y′, DB
2 = C)P (DB

2 = C | PS1 = y′)
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+ P (B ≤ x,DB
2 6= C | PS1 = y′)

=

∫
P (B ≤ x | PS1 = y′, PB2 = z,DB

2 = C)dFPB
2 |PS

1 ,D
B
2 =C(z|y′)

× P (DB
2 = C | PS1 = y′) + P (B ≤ x,DB

2 6= C | PS1 = y′)

=

∫
max
z′≥z

P (B ≤ x | PS1 = y′, PB2 = z,DB
2 = C)dFPB

2 |PS
1 ,D

B
2 =C(z|y′)

× P (DB
2 = C | PS1 = y′) + P (B ≤ x,DB

2 6= C | PS1 = y′)

The lower bound now follows from B ≤ XB
Q . Analogous arguments and XB

AC ≤ B yield the upper

bound.

B.2. Estimation of Bounds Combining Assumptions. Here we focus only on lower bound

estimators and the case where P (DB
2 = C) = 1. The upper bound estimators are analogous. We

first consider the bounds in Theorem 4. For the seller, these bounds do not differ from the bounds

that only assume monotonicity. For the buyer lower bound, we first write the lower bound as

max
y

(∫
1(XB∗

Q (y, z) ≤ x)dFPB
2 |PS

1
(z|y)

)
= max

y

(
P (XB∗

Q (y, PB2 ) ≤ x | PS1 = y)
)

= max
y
P (XB∗

Q (PS1 , P
B
2 ) ≤ x | PS1 = y)

To estimate this bound, we estimate P (XB∗
Q (PS1 , P

B
2 ) ≤ x | PS1 = y) using the Nadaraya-Watson

kernel estimator with an Epanechnikov kernel and bandwidth n−1/5 for each value of x. We restrict

all estimators to be in the interval [0, 1] and rearrange them such that the estimated functions are

monotone in x.

We now consider the bounds in Theorem 5. Again, these bounds only differ from the mono-

tonicity bounds for the buyer. For the buyer, we can use arguments as in the previous paragraph

to write the lower bound as

∫
max
y′≥y

P (XB∗
Q (y′, PB2 ) ≤ x | PS1 = y′)dFPS

1
(y) =

∫
max
y′≥y

P (XB∗
Q (PS1 , P

B
2 ) ≤ x | PS1 = y′)dFPS

1
(y)

Using the estimator P̂ (X̂B∗
Q (PS1 , P

B
2 ) ≤ x | PS1 = y′) from above, we estimate the lower bound by

1

n

n∑
i=1

max
y′∈{y:y≥PS

1,i,Q0.05(PS
1,i)≤y≤Q0.95(PS

1,i)}∪{PS
1,i}

P̂ (X̂B∗
Q (PS1 , P

B
2 ) ≤ x | PS1 = y′)

For the bounds in Theorem 6, we estimate the seller lower bound using the following sample

44



analog:

1

n

n∑
i=1

max
y′∈{y:y≥PS

1,i,Q0.05(PS
1,i)≤y≤Q0.95(PS

1,i)}∪{PS
1,i}

(
max
z
m̂S
AC(x, y′, z)

)

For the buyer, define gBQ(x, y, z) = maxz′≥zm
B
Q(x, y, z′). Then we can write the lower bound as

max
y

(
E[gBQ(x, PS1 , P

B
2 ) | PS1 = y]

)
For each x, we estimate E[gBQ(x, PS1 , P

B
2 ) | PS1 = y] using the Nadaraya-Watson kernel estimator

with an Epanechnikov kernel function and bandwidth n−1/5. Let Ê[gBQ(x, PS1 , P
B
2 ) | PS1 = y] denote

the estimator. Our estimator is

max
Q0.05(PS

1,i)≤y≤Q0.95(PS
1,i)

(
Ê[gBQ(x, PS1 , P

B
2 ) | PS1 = y]

)

where gBQ(x, y, PB2 ) = maxz′∈{z:z≥PB
2,i,Q0.05(PB

2,i)≤z≤Q0.95(PB
2,i)}∪{PB

2,i}
mB
Q(x, y, z′).

For the bounds from Theorem 7, we estimate the seller value lower bound by

1

n

n∑
i=1

max
y′∈{y:y≥PS

1,i,Q0.05(PS
1,i)≤y≤Q0.95(PS

1,i)}∪{PS
1,i}

(
Ê[gSAC(x, PS1 , P

B
2 ) | PS1 = y′]

)

and the buyer value lower bound by

1

n

n∑
i=1

max
y′∈{y:y≥PS

1,i,Q0.05(PS
1,i)≤y≤Q0.95(PS

1,i)}∪{PS
1,i}

(
Ê[gBQ(x, PS1 , P

B
2 ) | PS1 = y′]

)

C Monte Carlo Simulations

This section presents a Monte Carlo study of the buyer and seller marginal distribution bounds.

There is naturally a great deal of flexibility in how to simulate two-sided bargaining; here we simply

simulate outcome data consistent with our assumptions. We do not simulate actual equilibrium

play of a two-sided bargaining game, as none of the equilibria that have been analyzed in the

existing literature (Perry 1986; Grossman and Perry 1986; Cramton 1992) result in multiple offers

by a given party that vary with the party’s value.

C.1. Algorithm for Simulating Bargaining Data. Here we describe our algorithm for simu-

lating bargaining data. The primary parameters we will vary in in this simulation exercise are αb
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and αs, which we refer to as shade factors; the probability that a buyers and sellers accept/decline;

and the means of the buyer and seller value distributions. These shade factors allow us to vary how

agressive the agents’ offers are: a buyer with value b and shade factor αb makes the same offers as

a buyer with value b + αb and shade factor 0, and in this sense the shade factors set a minimum

level of offer shading. The probability that a buyer or seller accepts or quits (instead of making a

counteroffer) allows us to investigate how the frequency of counteroffering affects the tightness of

the bounds. Varying the means of the buyer and seller distributions allows us to vary the amount

of potential surplus in the bargaining game. The data generating process (DGP) is as follows:

Algorithm (Bargaining Simulation Data Generating Process).

Initialize: Draw buyer values B from CDF FB and seller value B from FS. Set buyer and

seller shade factors αB and αS, and set a cap Tmax on the number of rounds. Set functions

pBQ(k), pBA(k), pSQ(k), and pSA(k) specifying the probabilities, respectively, in round k, of

the buyer quitting, buyer accepting, seller quitting, or seller accepting.

Round 1: Seller offers PS1 = g1(S, αs, U1) where U1 ∼ U [0, 1] and the function g1 is weakly

increasing in all of its arguments. We vary g1 in our illustrations.

Round 2: Buyer offers PB2 = U2(B − αb) if PS1 > B and PB2 = U2 min{PS1 , B − αb} if

PS1 ≤ B, where U2 ∈ (0, 1) is random or fixed depending on the specific setup.

Round 3 ≥ k < Tmax , k odd: Seller responds to buyer’s last offer. Two cases:

Case 1 PBk−1 < S: Seller quits with probability pSQ(k), or else makes a counteroffer

PSk = U3P
S
k−2 + (1− U3)(S + αS), where U3 ∈ (0, 1) and its distribution depends on the

specific setup.

Case 2 PBk−1 ≥ S: Seller accepts with fixed probability pSA(k), or else makes a coun-

teroffer PSk = U3P
S
k−2 + (1− U3) max(PBk−1, S + αS).

Round 4 ≥ k < Tmax, k even: Buyer responds to seller’s last offer PSk−1. Two cases:

Case 1 PSk−1 > B: Buyer quits with probability pBQ(k), or else makes a counter offer

PBk = U4P
B
k−2 + (1− λ)(B − αB), where U4 ∈ (0, 1) and its distribution depends on the

specific setup.

Case 2 PSk−1 ≤ B: Buyer accepts with probability pBA(k), or else makes a counter offer

PBk = U4P
B
k−2 + (1− U4) min (PSk−1, b− αB).
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Round Tmax: Terminate with no trade occurring.

C.2. Results of Monte Carlo Exercise. Figure 6 illustrates several of our bounds estimated

using this simulated data. For each panel, we simulate 50 replications of the DGP and then report

estimated bounds averaged across these replications. In each example we set n = 250 and Tmax = 8.

We draw the values from a Beta distribution, which has support on [0, 1]. The Beta distribution

has two parameters, α and β. We set α = 2 and set β depending on which mean value we want

to achieve. We then add the maximum shading factor to ensure that bids are always non-negative.

We vary the parameters of the data generating process in each panel in order to illustrate what

features will lead to bounds that are loose (panels on the left) or tight (panels on the right). We

focus on three sets of bounds — the seller unconditional bounds, seller monotonicity bounds, and

buyer independence bounds — to conserve space and because the intuition gained by these three

cases extends to the other bounds in the paper. In each panel, lower bounds are shown with solid

lines, upper bounds with dashed lines, and the true CDF is shown with a dot-dash line.

We show the seller unconditional bounds in panels A and B. For the seller unconditional bounds

to be relatively tight, it must be the case that sellers quit at prices close to their values and also

counter at prices close to their values. As an example, consider a setting where buyer and seller

values are very highly correlated and have a similar mean. Suppose the typical play of the game is

that the seller offers a price a little above her value, the buyer counters at a price a little below the

seller’s value (and also below the buyer’s value, naturally), and the seller then quits. This sequence

of play is consistent with the weak revealed preference assumptions that the unconditional bounds

are built on (Assumption 1) and it yields the tight bounds on seller values illustrated in panel B.29

We can also easily generate wide unconditional bounds. For example, consider a case where the

seller typically makes offers far above her value and rarely quits. Such bounds are illustrated in

panel A.30 Here, the correlation structure between buyer and seller values plays no role.

We illustrate the seller monotonicity bounds in panels C and D. The monotonicity bounds

will improve upon the unconditional bounds when there is some probability that sellers who start

with relatively low first offers end the game at relatively high final accept/counter or quit prices.

This can occur due to randomness in the value of the buyer to whom the seller is matched and

29The specification for this case is as follows: both the buyer and the seller have mean values of 0.5 and their
correlation is 0.999. We set pBQ(k) = pBA(k) = pSA(k) = 0, pSQ(k) = 0.95, g1(S, αs, U1) = 1.1(S + αs), and
U2 = 0.9, U3 ∼ U [0, 0.5], U4 ∼ U [0, 0.5].

30The specification for this case is as follows: both the buyer and the seller have mean values of 0.5 and their
correlation is 0. We set pBQ(k) = pBA(k) = 1, pSA(k) = 0, pSQ(k) = 0.25, g1(S, αs, U1) = 1.5(S + αs) + 0.5, and
U2 = 0.9, U3 ∼ U [0, 0.5], U4 ∼ U [0, 0.5].
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Figure 6: Simulation Results

(A) Unconditional Bounds, Seller (Wide)
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(B) Unconditional Bounds, Seller (Tight)
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(C) Monotonicity Bounds, Seller (Wide)
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(D) Monotonicity Bounds, Seller (Tight)
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(E) Independence Bounds, Buyer (Wide)
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(F) Independence Bounds, Buyer (Tight)
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Notes: Table shows bounds estimated from simulated data under cases where bounds are wide (on left) vs. narrow
(on right). Panels A and B show unconditional seller bounds. Panels C and D show seller monotonicity bounds.
Panels E and F show buyer independence bounds. Lower bounds are shown with solid lines, upper bounds with
dashed lines, and true CDF with a dot-dash line. Panels C–F also show unconditional bounds for comparison.
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due to features of bargaining at later rounds of the game. We illustrate such a case in panel

D.31 If, however, the final accept/counter and quit prices of a seller are, like PS1 , deterministically

mononotonic in the seller’s value, the monotonicity assumption will do nothing to improve upon the

unconditional bounds (because XS∗
AC = XS

AC and XS∗
Q = XS

Q in that case, and the unconditional

bounds will equal the monotonicity bounds). We illustrate this situation in panel C, where the

monotonicity bounds are equally as wide as the unconditional bounds.32

Finally, we illustrate the buyer independence bounds in panels E and F. Recall that these

bounds are obtained by combining P (B ≤ x|PS1 = y) = P (B ≤ x) (buyer independence) with

weak rationality on the part of the buyer (XB
AC ≤ B for the buyer upper bound). The buyer

independence assumption will therefore yield no improvement over the buyer unconditional upper

bounds if XB
AC and XB

Q are, like B, independent of PS1 . This case is illustrated in panel E.33 It

is easy to generate a case in which the maximum accept/counter price of the buyer does depend

on PS1 , and this yields a much tighter upper bound. To do so, we generate data such that B is

independent of PS1 , but XB
AC and XB

Q are not because bids in later rounds directly depend on PS1 .34

D Related Extensive-Form Models

In this section we consider three extensive-form bargaining models: Cramton (1992), Perry (1986),

and Grossman and Perry (1986). In each case, when we discuss unobserved heterogeneity, we differ

slightly from the notation in the body of the paper in that we write a seller’s value with additively

separable unobserved heterogeneity included as S̃ = S + W (whereas in the body of the body of

the paper we instead write S = S̃ +W ). Similarly, for the multiplicative case, we write S̃ = SW .

We apply this notation to the buyer’s value and to buyer and seller offers as well. We adopt this

change in notation here so that variables without (̃·) always represent those absent unobserved

heterogeneity.

31The specification for this case is as follows: both the buyer and the seller have mean values of 0.5 and their
correlation is 0.999. We set pBQ(k) = pBA(k) = pSA(k) = 0, pSQ(k) = 0.5, g1(S, αs, U1) = 1.5(S+αs), and U2 = 0.5,
U2 ∼ U [0, 0.5], U3 ∼ U [0, 0.5].

32The specification for this case is as follows: both the buyer and the seller have mean values of 0.5 and their
correlation is 0.999. We set pBQ(k) = pSQ(k) = 1, pBA(k) = pSA(k) = 0, g1(S, αs, U1) = 1.5(S + αs), and U2 = 0.5,
U3 ∼ U [0, 0.5], U4 ∼ U [0, 0.5].

33The specification for this case is as follows: both the buyer and the seller have mean values of 0.5 and their
correlation is 0. We set pBQ(k) = 0.95, pSQ(k) = pBA(k) = pSA(k) = 0, g1(S, αs, U1) = U1 with U1 ∼ [1, 1.5], and
U2 ∼ U [0.75, 1], and U3 = U4 = U1.

34The specification for this case is as follows: both the buyer and the seller have mean values of 0.5 and their
correlation is 0. We set pBQ(k) = 0.95, pSQ(k) = pBA(k) = pSA(k) = 0, g1(S, αs, U1) = U1(S+αs) with U1 ∼ [1, 1.5],
and U2 ∼ U [0.75, 1], and U3 = U4 = max{1− PS

1 , 0}.
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D.1. Cramton (1992). This model studies a setting similar to ours, where a seller and buyer

with independent private values engage in bargaining. One possible outcome in the Cramton (1992)

equilibrium is for the seller to make the first offer, PS1 , which completely reveals the seller’s value

S. The buyer then either accepts, quits, or makes a counteroffer PB2 that completely reveals her

value B.35 These first two offers are

PS1 =
δS + γ(S)

1 + δ
(15)

PB2 =
δB + S

1 + δ
(16)

where δ is a discount factor and the object γ(S) is the buyer type who is indifferent between

accepting and rejecting the seller’s offer of PS1 given that the seller has revealed her type to be S.

For our arguments here, we assume γ(s) is differentiable with γ′(s) ∈ (−δ, 0). It is possible to show

that γ′(s) ∈ (−δ, 0) is satisfied with plenty of slack in the uniform distribution case, which we state

as the following lemma:36

Lemma 1. In the Cramton (1992) model, if buyer and seller values are uniformly distributed, the

function γ(·) satisfies, with slack, γ′(·) ∈ (−δ, 0).

Proof. In the equilibrium studied in Cramton (1992), the function γ(·) is quite complex, and de-

pends on the distribution of buyer values, FB, with density fB. Cramton (1992) shows that γ(s) is

the solution to the following, when the seller’s type is s and the seller believes the buyer’s value is

bounded above by some value b

FB(b)− FB(γ)− (1− δ2)(γ − s)fB(γ) =

∫ γ

s
δ3
(
b− s
γ − s

)1+δ

dFB(b) (17)

In the uniform case, γ(s) has a closed-form solution given by γ(s) = α − (2α − 1)s, where α is

defined by 1 − 2α = −δ
2+δ−δ2 . Note that α ∈ (12 ,

3
4) for δ ∈ (0, 1], and thus γ′(s) ∈ [−.5, 0) for

δ ∈ (0, 1], and thus γ′(s) < 0 is satisfied with slack in the uniform case.

35If the buyer chooses to make a counteroffer, PB , the buyer exploits this knowledge of the seller’s type and makes
an offer that corresponds to the Rubinstein (1982) equilibrium offer for the case where the buyer and seller know
each others’ values. Note that, in the Cramton (1992) equilibrium, the timing of these offers is also important in
revealing an agent’s value, but focusing on the level of the offers is sufficient for our point here.

36It is also possible to derive sufficient conditions for these properties to hold outside of the uniform case; these
would be similar to the assumption referred to as “(Fδ)” in Cramton (1992). These conditions are quite cumbersome.
Like Cramton, therefore, we instead show that these are satisfied for the case where buyer values are uniformly
distributed on [0, 1], while still having plenty of slack, and thus they do not appear to be overly restrictive.
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Note that γ′(s) = 1− 2α. Setting γ′(s) to be weakly greater than −δ yields

−δ
2 + δ − δ2

≥ −δ ⇐⇒ δ2 ≤ 2,

and thus γ′(s) > −δ is satisfied with slack in the uniform case.

An immediate result of this property is that the equilibrium offers (15) and (16) satisfy As-

sumption 2 (strictly, in fact): PS1 is strictly monotone in S because γ′(s) > −δ, and hence PB2 is

also strictly monotone in B conditional on PS1 .

Now consider a modification of the Cramton setting in which a buyer and seller play the equi-

librium of Cramton (1992), but in a given realization of the game buyer and seller values are both

shifted additively by a common amount, W , that is independent of B and S. Specifically, a buyer’s

value is given by B +W and a seller’s by S +W , where W = w is known to both agents but not

to the econometrician. Cramton’s model assumes, without loss of generality, that buyer values are

distributed on [0, 1]. In our modification, we instead have values distributed on [w, 1 + w]. In this

environment, the equilibrium offers simply shift additively by W as well, becoming PS1 + W and

PB2 +W , as we demonstrate in the following lemma:

Lemma 2. Suppose seller and buyer values in the Cramton (1992) setting are given by S + W

and B +W . If, when W = 0, the first two offers are given by PS1 = pS1 and PB2 = pB2 , then, when

W = w, these offers are given by pS1 + w and pB2 + w.

Proof. We first prove the following claim: The function γ(·) satisfies additive separability. Let

γ̃(s, w) represent the value of γ in a game in which W = w; thus γ(s) = γ̃(s, 0). We will show that

γ̃(s, w) = γ(s) +w. To see this, let b̃ = b+w, and s̃ = s+w, and let F̃B̃ and f̃B̃ be the distribution

and density of B̃.

The condition defining γ̃ is given by modifying (17) as follows:

F̃B̃(b̃)− F̃B̃(γ̃)− (1− δ2)(γ̃ − s̃)f̃B̃(γ̃) =

∫ γ̃

s̃
δ3
(
x− s̃
γ̃ − s̃

)1+δ

dF̃B̃(x)

Note that, for any number x, F̃B̃(x̃) = FB(x̃−w) and f̃B̃(x̃) = fB(x̃−w). We now apply a change

of variables from x to y = x− w in the integral, yielding

∫ γ̃−w

s
δ3
(
y + w − s̃
γ̃ − s̃

)1+δ

dFB(y)
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Combining these results yields

FB(b)− FB(γ̃ − w)− (1− δ2)(γ̃ − s̃)fB(γ̃ − w) =

∫ γ̃−w

s
δ3
(
y − s
γ̃ − s̃

)1+δ

dFB(y) (18)

Comparing (17) to (18) demonstrates that, if γ is the solution to the former then γ + w is the

solution to the latter, completing the proof of the claim.

Now consider the equilibrium of this game conditional on a realization of W . Offers will be

given by

p̃S1 =
δs̃+ γ̃(s, w)

1 + δ
=
δs+ γ(s)

1 + δ
+ w

p̃B2 =
δb̃+ s̃

1 + δ
=
δb+ s

1 + δ
+ w

Thus, additive separability of the offers is satisfied.

We now demonstrate that the presence of such unobserved heterogeneity can lead to a violation

of the monotonicity assumption, even though stochastic monotonicity is still satisfied.We show that

monotonicity of the sellers first offer P̃S in the seller’s value S̃ is violated in this setting, and we

prove an analogous result for the buyer. Note that here we are considering what this setting would

look like to us as econometricians, where we see observations of different instances of the game and

where realizations of W may vary across these observations.

Lemma 3. The Cramton (1992) equilibrium offers in a game with additive unobserved heterogeneity

can violate Assumption 2, but Assumption 3 is still satisfied.

Proof. Suppose s increases by 1 and w decreases by η < 1 (so s̃ increases overall). Because

γ(s)′ ∈ (−δ, 0), this means that the change in p̃S1 due to the change in s is at most an increase of

δ
1+δ , and the change in p̃S1 due to the change in w is a decrease of η. For any η ∈

(
δ

1+δ , 1
)

, p̃S1

decreases even though s̃ increases, violating seller monotonicity.

For buyer monotonicity, suppose that s increases by ηs and w decreases by ηw such that p̃S1

does not change. It then holds that 0 < ηw < ηs. Next suppose that b increases by ηb ∈ (ηw < ηs).

Then b̃ = b+ w decreases, but since

δ(b+ ηb) + (s+ ηs)

1 + δ
+ w − ηw >

δb+ s

1 + δ
+ w

p̃B2 increases.
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To see that stochastic monotonicity is satisfied for the seller, let g(s) ≡ s−γ(s)
1+δ , which is strictly

increasing assuming γ(·) is strictly decreasing. Then we have

P (S̃ ≤ x|P̃S1 = y) = P
(
S ≤ x−W |PS1 +W = y

)
=

∫
P (S ≤ x− y + f(S)|w = y − f(S),W = w) fW |w=y−f(S)(w)dw

=

∫
P

(
S ≤ x− y +

δS + γ(S)

1 + δ

∣∣∣∣∣w = y − f(S),W = w

)
fW (w)dw

=

∫
P (g(S) ≤ x− y|f(S) = y − w,W = w) fW (w)dw

=

∫
P (g(S) ≤ x− y|f(S) = y − w) fW (w)dw

=

∫
P
(
g(f−1(y − w)) ≤ x− y

)
fW (w)dw

=

∫
1
(
g(f−1(y − w)) ≤ x− y

)
fW (w)dw

Since g(f−1(·)) is a strictly increasing function, P (S̃ ≤ x|P̃S1 = y) is strictly decreasing in y. In the

third and fifth line, we use that W and S are independent.

Using similar arguments, we can also show that the stochastic monotonicity condition of the

buyer holds. To do so, write

P (B̃ ≤ x|P̃S1 = y, P̃B2 = z)

= P

(
B ≤ x−W

∣∣∣∣∣f(S) +W = y,
δB + S

1 + δ
+W = z

)

=

∫
P

(
B ≤ x− w

∣∣∣∣∣f(S) + w = y,
δB + S

1 + δ
+ w = z

)
fW (w)dw

=

∫
P

(
B ≤ x− w

∣∣∣∣∣S = f−1(y − w),
δB + f−1(y − w)

1 + δ
= z − w

)
fW (w)dw

=

∫
P

(
B ≤ x− w

∣∣∣∣∣S = f−1(y − w), B =
1

δ

(
(1 + δ)(z − w)− f−1(y − w)

))
fW (w)dw

=

∫
1

(
1

δ

(
(1 + δ)(z − w)− f−1(y − w)

)
≤ x− w

)
fW (w)dw

which is decreasing in z. In the third line, we used that W is independent of (S,B).

The Cramton model assumes independence of B and S, and this immediately yields the result

that the independence assumption for the seller is satisfied in his model: S is independent of PB2
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conditional on PS1 because PS1 completely reveals S to the buyer, and hence, conditional on PS1 ,

there is no variation left in S. However, even maintaining the independence of the components

B and S, if additive unobserved heterogeneity is introduced into the game, then B + W will be

correlated with PS1 + W , violating our buyer independence assumption. The proof of Lemma

4, focusing on the uniform distribution case, demonstrates that seller independence can also be

violated without violating positive correlation.

Lemma 4. The Cramton (1992) equilibrium offers in a game with additive unobserved heterogeneity

can violate Assumption 4.i for the seller and Assumption 4.ii for the buyer.

Proof. In the Cramton model with unobserved heterogeneity, clearly B̃ is correlated with P̃S1 through

W , so buyer independence (Assumption 4.ii) is violated. For seller independence (Assumption 4.i),

note from Lemma 3 that P̃B2 can be written as follows, where P̃S1 is fixed at y:

P̃B2 =
δB + f−1(y −W )

1 + δ
+W (19)

Now consider a change in S̃. Holding P̃S1 fixed at y, this change in S̃ must also correspond to a

change in W (or else P̃S1 could not remain constant).

This change in W will necessarily affect P̃B2 unless the terms in (19) depending on W completely

offset on another; that is, unless d
dw

(
f−1(y−w)

1+δ + w
)

= 0. To see that this is not the case, note

that γ′ ∈ (−δ, 0) implies f ′ ∈ (0, δ
1+δ ), and, by the inverse function theorem, f−1

′ ∈ (1+δδ ,∞). This

implies that
d

dw

f−1(y − w)

1 + δ
+ w ∈ (−∞,−1/δ + 1).

For any δ < 1, this derivative is non-zero, and thus variation in W also leads to variation in P̃B2 ,

violating seller independence.

D.2. Perry (1986). The Perry model has no discounting, and instead agents face a per-offer

additive cost of bargaining, cS for the seller and cB for the buyer. Both the buyer and seller have

private values, and they alternate offers. The equilibrium that Perry focuses on has the property

that only one player makes an offer and the other player accepts or rejects (and never makes a

counteroffer). One outcome in the Perry equilibrium is for the seller to make the first offer, PS1 ,

with this offer given by

PS1 =
1− FB(PS1 )

fB(PS1 )
+ S (20)
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where fB is the density of buyer values. In this equilibrium, the seller’s first offer, PS1 , clearly

satisfies monotonicity (Assumption 2.i), and hence also satisfies the weaker condition of stochastic

monotonicity (Assumption 3.i).

In an additively separable unobserved heterogeneity version of this model, the seller’s offer will

also be additively separable in the unobserved heteorogeneity. Specifically,

P̃S1 =
1− FB̃(P̃S1 )

fB̃(P̃S1 )
+ S̃ =

1− FB(P̃S1 −W )

fB(P̃S1 −W )
+ S +W = PS1 +W

Thus, P̃S1 = PS1 +W .

In this additively separable version of the model, seller monotonicity (Assumption 2.i) can be

violated. To show this, we re-write (20) as φ(pS1 ) = s, where φ(pS1 ) ≡ pS1 −
1−FB(pS1 )

fB(pS1 )
is the buyer’s

virtual value function. Implicit differentiation of φ(pS1 ) = s with respect to s yields
dpS1
ds = 1

φ′(pS1 )
.

Consider now a case where s increases by 1 and w decreases by η < 1, and hence s̃ increases overall.

The object p̃S1 will increase by 1
φ′(pS1 )

− η. For any distribution FB with φ′(·) > 1, there exists an

η < 1 such that pS1 will increase by less than when η when s increases by 1, and, in such a case, p̃S1

will decrease overall. The uniform distribution on [0,1] is one such example, where this condition

is satisfied with slack, with φ′(·) = 2.

Consider now a case in which agents play the equilibrium of Perry (1986), but in a given

realization of the game buyer and seller values are both scaled multiplicatively (rather than shifted

additively) by W (again, that is common knowledge to both agents). Thus, S̃ = WS and B̃ = WB.

In this case, it can be shown that

P̃S1 = WPS1 = W
1− FB(P̃S1 /W )

fB(P̃S1 /W )
+WS (21)

where PS1 is the offer the seller would make if the realization of W were 1. The presence of

this multiplicative heterogeneity can lead to violations of weak monotonicity across instances of

the game. Consider, for simplicity, the case where B ∼ U [0, 1]. In this case, (21) simplifies to

2pS1 = w + ws. Suppose s increases by 1 and w decreases, scaling down by some factor η ∈ (12 , 1);

overall, s̃ increases by a factor of 2η > 1. However, (21) then implies that p̃S1 = ηpS1 , and thus p̃S1

decreases.

Regarding independence, the independence of the buyer’s value from the seller’s first offer

(Assumption 4.ii) is clearly satisfied in this model absent unobserved heterogeneity. However,
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once unobserved heterogeneity is included, the seller’s first offer P̃S1 and buyer’s value B̃ will

clearly be correlated through W in both the additively or multiplicatively separable unobserved

heterogeneity models. The Perry model cannot serve for studying monotonicity of the buyer’s first

offer or independence of the buyer’s offer from the seller’s value because only one offer occurs in

equilibrium.

D.3. Grossman and Perry (1986). In this model, the buyer has a private value but the seller

does not (she has a value of 0). The parties alternate offers, with the seller moving first. Grossman

and Perry first focus on a two-period game, and then extend their results to an infinite-horizon

game, but the equilibrium they focus on is the same in both cases: the seller makes an offer to the

buyer and the buyer either accepts or makes a counteroffer at a price that the seller immediately

accepts (similar to the Cramton 1992 equilibrium). All sellers make the same first offer (because

sellers have no private value) and all buyers who make a counteroffer make the same counteroffer.

Because these offers do not depend on agents’ values, our buyer monotonicity and independence

assumptions are trivially satisfied by this model. Seller monotonicity and independence are also

trivially satisfied because the seller has no private value.

If the analysis were to be modified to include unobserved heterogeneity that varies across in-

stances of the game, seller and buyer monotonicity, as well as seller independence, would still be

satisfied because any variation in offers across games would necessarily be driven entirely by varia-

tion in unobserved heterogeneity. For example, conditioning on the first offer P̃S1 would effectively

condition on the realization of unobserved heterogeneity W , and, conditional on W , the buyer’s

offer P̃B2 is trivially weakly monotonic in the buyer’s value B (because it is constant). Buyer in-

dependence would be violated, because B̃ would be correlated with the seller’s first offer through

W .
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