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Abstract

We state sufficient conditions under which choice data alone suffices to identify preferences when

consumers are not fully informed about attributes of goods. Canonical models will be biased: the

value of hidden attributes will be understated because consumers will be unresponsive to some vari-

ation in those attributes. In our baseline case, consumers search goods in order of the component of

utility observable to them without search. Under our assumptions, an alternative method of recov-

ering preferences using cross derivatives of choice probabilities succeeds under both full information

and a range of search models and is thus robust to what consumers know when they choose. Our

approach can be used to recover preferences from choices made by imperfectly informed consumers,

to test for full information, and to forecast how consumers will respond to information. We verify

in a lab experiment that our approach succeeds in forecasting the response to new information and

assessing the value of that information when consumers engage in costly search.
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1 Introduction

When consumers purchase cars, houses, food, insurance, schooling and much else, they are often

imperfectly informed about the attributes of relevant products in ways that substantially alter their

choices (Allcott and Knittel 2019; Woodward and Hall 2012; Abaluck and Gruber 2011; Allcott,

Lockwood, and Taubinsky 2019; Hastings and Weinstein 2008). Given this, models which assume full

information may generate wrong conclusions about welfare and cannot be used to assess how choices

would respond to more information. However, despite the emergence of behavioral economics as a

major subfield of economic analysis, most work in applied economics continues to assume that choices

are fully informed. We count 350 articles published in the AER, QJE, JPE, ECTA or ReStud since

2015 that estimate discrete choice models. Of these 350, 315 (90%) assume that consumers are fully

informed.1

We believe this occurs for three reasons. First, for some positive purposes, it is irrelevant whether

choices are informed since all that is required is to estimate how demand responds to price (Berry

and Haile 2014). For instance, price elasticities are sufficient to predict equilibrium prices after a

counterfactual merger between two firms.2 Second, the data necessary to directly measure consumers’

beliefs is often unavailable, and even when it is available, survey data is viewed with suspicion (Gul

and Pesendorfer 2008). Full information is viewed as a parsimonious assumption in the absence of

evidence to the contrary. Third, choice data alone does not suffice to separately identify preferences

and beliefs without further assumptions (Manski 2002). Structural search models in which consumer

beliefs can be identified (e.g., Ursu (2018)) require assumptions regarding whether consumers take into

account option value, whether they solve an optimal stopping problem or “satisfice”, distributional

assumptions about prior beliefs and search costs, and whether choices are simultaneous or sequential,

among others. The empirical literature suggests that canonical assumptions in all of these cases are

often rejected by the data (respectively, Gabaix et al. (2006), Schwartz et al. (2002), Jindal and

Aribarg (2018), Honka and Chintagunta (2016)), limiting the applicability of structural search models.

In this paper, we state what we believe is a more plausible condition under which choice data alone

suffices to recover preferences whether consumers are fully or only partially informed. The approach

relies on what we call visible utility, the component of utility visible to consumers prior to search (but

not to the econometrician). In our baseline model, we impose that consumers search in decreasing

order of visible utility (a condition we make precise below). We show that if this condition is satisfied,

along with a few additional mild restrictions, there is a function of choice probabilities which recovers

preferences whether consumers are fully or partially informed. Our approach does not require the

researcher to fully specify a structural search model beyond the visible utility assumption. Specifically,

1The list of papers and their classification is available upon request from the authors.

2Even among the 126 articles in our survey that conduct welfare analyses and thus must take a stand on whether
consumers are informed, 109 (86.5%) assume full information without testing this assumption.
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no additional assumptions about option value, optimization vs. satisficing, simultaneous or sequential

search, or distributional assumptions about beliefs and preferences are necessary for identification of

preferences.

Recovering preferences under partial information has many applications. First, one can forecast

the impact of informing consumers about attributes of goods prior to conducting such interventions,

and compute the associated welfare benefits.3 As another example, our approach can inform firms’

advertising strategies by, e.g., identifying product attributes that consumers care about but might not

be currently aware of. Further, in settings where one would otherwise assume full information, the

visible utility assumption provides a generalization which allows for both full and partial information,

thus permitting a more realistic normative evaluation of choices. For example, Allcott, Lockwood,

and Taubinsky (2019) propose taxing sugar-sweetened beverages to promote long-term health. A cost

of this proposal might be that these foods are more desirable on other dimensions (e.g., tastiness),

and conventional models would imply this if consumers appear willing to pay for high calorie foods.

Allowing for imperfect information might reveal that consumers prefer low calorie foods once they

are informed (e.g., for their physical appearance). In this case, the policy would be a win-win rather

than one where health benefits must be weighed against short-term tastes. Finally, given preferences

recovered by our approach, we show that it is possible to identify other primitives of interest under a

maintained model of search. For example, in a sequential search model à la Weitzman (1979), one can

identify the distribution of search costs and use them to simulate how information acquisition (and

welfare) will vary across different contexts.

One can think of our approach as a data-driven method of isolating consumers who maximize

utility. Consider the example of consumers purchasing items in a grocery store: nutritional information

is accessible, but at some cost. Consumers may fail to maximize utility if they do not pay the cost

to examine labels. In this case, visible utility represents utility from all non-nutrient sources, e.g. a

combination of prices and perceived taste. Our assumption states that if you bother to check the

nutrition label for good j, you will first check the label for a good j′ that you would otherwise prefer

were it equally nutritious. This assumption implies that consumers who search the most nutritious

good always choose the good that maximizes utility among all options (which is not necessarily the most

nutritious good). To see this, note that if some other good has higher utility than the most nutritious

good, it must have higher visible utility and thus is searched and then chosen by the consumer. Further,

only consumers who search the most nutritious good are sensitive to nutrient content for that good.

Therefore, by looking at the sensitivity of choices to the nutrient content of the most nutritious good

we are able to isolate consumers that behave as if they were fully informed; standard arguments then

recover their preferences.

To spell things out in more detail, consider first a J-good model with linear utility Uij = xjα +

3If an information intervention also reduces search costs, then the welfare gains via better choices given by our approach
can be viewed as a lower bound to the total increase in welfare.

3



zjβ + εij where α > 0 and β > 0.4 In the text, we extend this result to allow vector-valued xj and zj ,

as well as random coefficients and nonlinear utility. Suppose that consumer i observes xj and εij for

all goods, but needs to engage in search to observe zj . On the other hand, the researcher observes xj ,

zj , and choice probabilities sj , but not εij . With full information, we have sj = P (Uij ≥ Uij′ ∀j′ 6= j)

and we could estimate marginal rates of substitution using
∂sj
∂zj
/
∂sj
∂xj

= β/α; in other words, β/α is

identified by whether the choice probability for good j is more sensitive to zj or xj . If the underlying

model is a search model in which consumers are informed about zj only for some alternatives, then

the standard approach will suffer from attenuation bias:
∣∣∣∂sj∂zj

/
∂sj
∂xj

∣∣∣ < |β/α|. Some consumers will be

insensitive to zj variation not because they don’t value it, but because they are not aware of it; thus,

the observed sensitivity of choices to zj will understate consumers’ valuation of zj . For each individual

i and good j, we define visible utility as V Uij ≡ xjα + εij . We call this quantity “visible utility”

because it defines the utility that i receives from good j based only on xj and εij , the attributes of

goods that consumers can observe without engaging in search (our main result also holds when εij is

only visible to consumers conditional on search, and so is not part of visible utility). In our baseline

case, we assume that consumers search in decreasing order of visible utility. In other words, consumers

always search first the goods that look more desirable given the information available to them. Note

that the econometrician cannot tell the order of search since we do not observe εij ; this implies that

observationally identical consumers can search in different orders.

The visible utility assumption is consistent with a broad class of search models. For example, in

a Weitzman (1979) search model where the priors and search costs are the same across goods (but

the latter vary across consumers), it is optimal to search the good in decreasing order of visible utility

and decide whether to search the next good by comparing the expected benefits with search costs.

Alternatively, consumers may myopically decide whether to continue searching by comparing utility

in hand with expected utility of the next good (the “directed cognition” model of Gabaix, Laibson,

Moloche, and Weinberg (2006)), consumers might engage in “satisficing,” i.e. searching in order of

visible utility and stopping whenever utility in hand is good enough, or they might simultaneously

search all goods with visible utility above a certain threshold and then give up. In many cases, the

underlying search process is simply unknown; in these cases, the conventional approach is to assume

full information (potentially leading to biased estimates). Our approach is more general, allowing for

full information, as well as a range of partial information models.

Our main result (for the case with linear utility and no random coefficients) is that, under the

visible utility assumption and other conditions we make precise below, ∂2s1
∂z1∂zj

/ ∂2s1
∂z1∂xj

= β/α for j 6= 1,

where good 1 is defined as the good with the largest value of the hidden attribute z (which, again,

is known to the econometrician but not necessarily to the consumer). This expression holds for any

models where consumers search according to our assumptions above, including the full information

4We will show that the signs of α and β are identified, so assuming they are positive is without loss.
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case; it is thus robust to whether consumers are fully or partially informed under our assumptions.

The main downside of our approach relative to the full information assumption is that it is more

demanding of the data, but this may be tolerable in large datasets typical of modern empirical work.

The intuition for our result parallels the nutrition label example above: the expression ∂s1
∂z1

is only non-

zero for consumers who maximize utility, and consumers who maximize utility respond to attributes

of rival goods (zj and xj) in proportion to their preferences. α is also separately identified from choice

data alone,5 and so our approach fully identifies preferences, not just marginal rates of substitution,

and can be used for welfare analysis.

How general is this result? Using additional derivatives of the choice probability function, we can

recover nonlinear utility functions Uij = v(xj , zj) + εij . Additionally, the approach extends to random

coefficients on product characteristics. Specifically, letting Uij = xjαi + zjβi + εij , we can recover

the distribution of random coefficients (αi, βi) over a known grid. With a sufficiently long panel and

time-invariant preferences, Uijt = vi(xj , zj)+εijt, we can recover individual-specific, possibly nonlinear

utility functions vi(xj , zj). Thus, we can allow for a similar degree of unobserved heterogeneity as

other constructive results on discrete choice demand with full information.6 We also consider cases

where the visible utility assumption is not satisfied, such as models with search costs varying across

goods. We extend our model to allow for cases where (i) search costs vary with observables (e.g., rank

on a webpage), (ii) consumers form expectations about z based on x, (iii) search reveals unobservable

information, and (iv) either x or z is endogenous and valid instruments are available.

Our identification proof lends itself naturally to estimation and testing. If one can nonparamet-

rically estimate choice probabilities as a function of product attributes, then our results can be used

to directly recover preferences. We also suggest an alternative parametric approach to estimate cross-

derivatives that works well in simulations for larger numbers of goods. Given estimates of choice

probabilities, one can use our result to test for full information by checking whether our “search-

robust” estimates of preferences are equal to the conventional estimates based on first derivatives.

This implies that one does not need to take an a priori stance on whether or not the attribute z is

uncovered only after searching a good. That hypothesis can be tested provided that the data contains

attributes x that can be assumed to be part of visible utility. Additionally, our model is overidentified;

5When zj is the same for all goods, consumers maximize utility (although they themselves do not necessarily know
this), so conventional methods suffice to recover α.

6Fox and Gandhi (2016) provide identification results for more general models allowing for both nonlinearity and
flexible heterogeneity but these results are non-constructive and assume utility maximization; we use their result to
identify parameters in corner cases where consumers maximize utility, but they otherwise are difficult to adapt to the
more general case where choice probabilities need not maximize utility. This is in contrast to the constructive methods in
Fox, Kim, Ryan, and Bajari (2012), who recover distributions satisfying the “Carleman condition,” which implies that the
distribution of preferences is uniquely characterized by its moments. Alternatively, we recover weights for distributions
supported on a known and fixed grid, in line with the approach of Fox, Kim, Ryan, and Bajari (2011). Berry and Haile
(2009) and Berry and Haile (2014) also provide related results on nonparametric demand estimation. Their focus is on
recovery of the conditional distribution of utilities rather than the structural parameters of utility; the latter are essential
for our task of assessing whether consumers are informed about relevant attributes.
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in the case of homogeneous, linear preferences, for example, ∂2s1
∂z1∂zj

/ ∂2s1
∂z1∂xj

will be equal for all goods

j 6= 1. We also show that the assumptions in our model imply nontrivial bounds on choice probabilities

that can be checked in the data.

To validate our approach, we attempt to recover preferences in a lab experiment where individuals

engage in costly search. Individuals choose from sets of three books with visible titles, authors, genre,

star ratings and prices, but hidden discounts that can only be observed at some cost. We place no

restrictions on which goods consumers search given these constraints. In particular, we do not constrain

search to satisfy the visible utility assumption. For each individual, we also observe treatments where

consumers choose given full information. As expected, conventional logit estimates using the costly

search data give attenuated coefficients on the discount variable relative to the full-information case. By

contrast, our search-robust estimates successfully recover full-information preferences. We show that

our model successfully predicts the impact of an information intervention and permits an accurate

welfare evaluation before the intervention is conducted. Estimated choice probabilities also satisfy

bounds implied by the visible utility assumption.

Our result relates to several existing literatures. A large theoretical and empirical literature inves-

tigates the formation of “consideration sets”.7 This paper considers the complementary problem of

imperfect information at the level of attributes rather than goods.8 A few papers, such as Mehta, Ra-

jiv, and Srinivasan (2003), Honka and Chintagunta (2016) and Ursu (2018) consider estimating utility

by specifying full search models. We are, as far as we know, the first to provide formal identification

results for preferences for a class of models without the need to commit to a specific structural search

model.9,10 A second related literature attempts to analyze whether consumers make informed choices

by comparing the choices of regular consumers to that of a more informed subgroup. Bronnenberg,

Dubé, Gentzkow, and Shapiro (2015) ask whether pharmacists make similar prescription drug choices to

7Roberts and Lattin (1991), Conlon and Mortimer (2013), Goeree (2008), Gaynor, Propper, and Seiler (2016), and
Barseghyan, Coughlin, Molinari, and Teitelbaum (2020). These papers attempt to estimate preferences when consumers
may only consider some alternatives. Manzini and Mariotti (2014) and Abaluck and Adams (2017) are particularly closely
related in attempting to characterize when we can recover consideration probabilities for alternative goods using choice
data alone.

8The recent theoretical literature on this question includes Branco, Sun, and Villas-Boas (2012), Ke, Shen, and
Villas-Boas (2016) and Gabaix (2019).

9There is one special case where the problem of imperfect information about attributes has been addressed in the
existing literature. This is the case in which all attributes can be expressed in dollar terms. For example, consumers
should not care whether a health insurance plan saves them $100 in premiums or out of pocket costs (see Abaluck and
Gruber (2011)), or whether a light bulb saves them money in upfront costs or shelf life (as in Allcott and Taubinsky
(2015)). If one dollar-equivalent attribute is assumed to be visible to consumers, it can provide a benchmark for how
consumers should respond to a hidden dollar-equivalent attribute. However, in many cases, attributes cannot easily be
translated into dollars without first estimating consumer preferences. In these cases, our results still allow one to recover
preferences given imperfectly informed consumers.

10An assumption in our model is that the searched attributes are observable to the econometrician, even if they are
not known without searching to consumers. Ericson, Kircher, Spinnewijn, and Starc (2015) consider the related problem
of inferring risk preferences separately from risk types using insurance choices. Their model differs from ours in that, in
the special case they consider, the covariate “risk type” is not observed by the econometrician either.
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consumers, Handel and Kolstad (2015) ask whether better informed consumers make different health

insurance choices, and Johnson and Rehavi (2016) study whether physicians treat differently when

their patients are other physicians. Rather than identifying informed consumers, our paper develops

a data-driven way of identifying consumers who maximize utility (despite not necessarily searching all

goods) and whose choices can thus be used to recover preferences.

Section 2 lays out our formal framework and proves our identification results, Section 3 considers

several empirically important extensions such as endogenous attributes, Section 4 provides details

of estimation and simulation results, Section 5 discusses the (counterfactual) questions that can be

addressed using our approach, Section 6 reports results from our experiment, and Section 7 concludes.

2 Model

There are J ≥ 2 goods indexed by j = 1, ..., J with attributes xj observed by consumers and the

econometrician and attribute zj observed by the econometrician but not necessarily by consumers.11,12

We assume that xj and zj are continuously distributed. For simplicity, we let xj be scalar for all j,

but our results immediately extend to the case of vector-valued xj ’s. For now, we also focus on the

case where zj is a scalar and we let good 1 be the good with the largest value of zj .
13,14

Let individual i’s utility from alternative j be denoted by Uij(xj , zj). In what follows, we often

omit the dependence of Uij on (xj , zj) unless it is necessary to avoid confusion. We can always write:

Uij = aij(xj) + bij(xj , zj) where bij(xj , 0) = 0 (to see this, define bij(xj , zj) = Uij(xj , zj)− Uij(xj , 0)).

Since in our setting aij(xj) is the component of utility that is known to the consumer before engaging

in search, we label it “visible utility,” V Uij . We make the following assumptions on the utility function.

Assumption 1. (i) For all i and j, Uij is strictly monotonic in zj .

(ii) For all i, the function bij(xj , zj) is not alternative-specific, i.e. bij(xj , zj) = bi(xj , zj) for all j,

and continuous in its first argument.

The class of utility functions satisfying Assumption 1 is broad and subsumes most specifica-

tions commonly used in empirical work as special cases, including logit with possibly nonlinear-in-

characteristics utilities15 and mixed-logit. For instance, in a mixed-logit model, one may specify

Uij = αixj + βizj + εij . To map this specification into our notation, let aij(xj) = αixj + εij , and

11Our model also permits the more general case where attributes are potentially both good and individual-specific, but
we write xj and zj rather than xij and zij for notational simplicity.

12Since our model only requires variation in x and z for two goods, any of the remaining J − 2 goods may be taken to
be the outside option.

13If there are multiple hidden attributes for each good, our results immediately apply if the data contains a choice set
in which a good is more preferable than all other goods on each of the z attributes. Appendix A.2 shows that this can
be relaxed in the homogeneous linear utility case.

14The definition of good 1 requires ruling out ties among the top two values of zj .

15We allow for nonlinearities subject to Assumption 1(i) being satisfied.
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bi(xj , zj) = βizj . As another example, consider the logit specification Uij = αxj + βzj + γxjzj + εij .

This is subsumed in our notation by letting aij(xj) = αxj + εij , and bi(xj , zj) = βzj + γxjzj .

Next, we state the assumptions that characterize the class of search models we consider.

Assumption 2. (i) Consumer i searches goods in decreasing order of V Uij .

(ii) Conditional on having utility ū in hand, consumer i searches j if and only if gi(xj , εij , ū) ≥ 0

where gi is decreasing in ū.16

(iii) Consumers choose the good which maximizes utility among searched goods.

(iv) Only the value of zj is unknown to consumers prior to search, and search fully reveals zj .

We discuss these conditions at length in Section 2.5. To briefly clarify, Assumption 2(i) states that

consumers search goods in order of the component of utility visible to them without search (although

not entirely visible to the econometrician). We view this as the strongest restriction in our model;

Section 3 considers two relaxations that are relevant for empirical work. Assumption 2(ii) states

that consumers decide whether or not to search a good based on their utility in hand and the visible

utility of the good they are considering searching. This rules out, for example, a sequential search

protocol whereby one stops searching after discovering a good with large z irrespective of utility in

hand. Further, Assumption 2(ii) also accommodates simultaneous search models in which consumers

decide which goods to uncover based on visible utilities and then proceed to jointly search them.

In this case, utility in hand is not a well-defined object and the function gi does not vary with its

second argument. We subscript the function g by i to emphasize that the function may depend on

any individual (unobserved) heterogeneity in utility or search. For example, in a Weitzman search

model, the stopping rule would depend on consumer i’s reservation value, which in turn depends on

i’s search cost. Assumption 2(iii) simply states that consumers must search a good before choosing

it. Assumption 2(iv)—implicit in the model already—states that the econometrician observes all the

information which is revealed by search, and that search is fully informative about the hidden attribute.

We pause here to highlight that Assumption 2 accommodates several commonly used models of

search.

Example 1 (Sequential Search). Suppose that utility takes the form Uij = xjαi+zjβi+εij, consumers

search sequentially and consumer i must pay a cost ci every time she uncovers the z attribute for a good.

Further, assume that the consumer has the same prior Fz for all goods. Then, following Weitzman

(1979), the consumer will rank goods according to their reservation value rv′ij defined implicitly by

ci =

∫ ∞
rv′ij

(
u− rv′ij

)
dFUij (u) =

∫ ∞
rvi

βi (t− rvi) dFz (t) (1)

16Assumption 2(ii) can be weakened to allow the function gi to depend on a good-specific unobservable, such as search
costs; however, good-specific search costs may lead to violations of Assumption 2(i). In Section 3, we extend our model
to permit search costs to vary across goods with observable factors.
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where rvi ≡
rv′ij−αixj−εij

βi
and the last steps follows from a change of variable. We can interpret rvi

as the reservation value in units of z. To see this, note that consumer i ranks goods according to the

visible utility xjαi + εij and for each good j′ she chooses to uncover zj′ if and only if the maximum

utility secured so far is lower than xj′αi + rviβi + εij′. Once she stops searching, she maximizes utility

among the searched goods. Thus, Assumption 2 is satisfied with gi (xj , εij , ū) = xjαi + rviβi + εij − ū.

Example 2 (Directed Cognition Model). Suppose that utility takes the form Uij = xjαi + zjβi + εij.

Further, as in the model of Gabaix, Laibson, Moloche, and Weinberg (2006), consumers rank goods in

terms of expected utility17 and myopically check whether searching the next good is worth the cost. The

directed cognition model has the same gi function as the Weitzman model,18 but the order of search

(and which goods are ultimately searched) may differ.

Example 3 (Satisficing). Suppose that consumer i searches in order of visible utility and stops when-

ever utility in hand is above a threshold τi. Then, Assumption 2 is satisfied with gi (xj , εij , ū) = τi− ū.

Example 4 (Full Information). The full information model is subsumed within the previous example

by letting τi =∞ for all i.

Example 5 (Simultaneous Search). Suppose that utility takes the form Uij = xjαi + zjβi + εij and

that consumer i simultaneously searches all goods that have visible utility above a threshold τ̃i. Then,

Assumption 2 is satisfied with gi (xj , εij , ū) = αxj + εij − τ̃i.

Our results will not require the researcher to take a stand on the specific model of search that

consumers follow (provided that our assumptions are met). Therefore, as illustrated by the examples

above, the approach will be agnostic as to whether consumers search sequentially or simultaneously,

are forward-looking or myopic and have biased or unbiased beliefs, among other things. In contrast,

fully specifying a structural model requires one to take a stand on each of these dimensions.

Throughout the rest of the paper, we assume without loss that ∂bi
∂zj

> 0, i.e. we treat zj as an

attribute that customers value in good j.19 We are now ready to state and prove a lemma that is at

the core of our results.

Lemma 1. Let Assumptions 1 and 2 hold and let xj ∈ [x̄−η, x̄+η] for all j, for some η > 0 sufficiently

small. If consumer i searches good 1 (i.e. the good with the highest value of z), then i chooses the

utility-maximizing good.

17Note that we may assume without loss that E(zj) = 0 for all j since the mean value of the hidden attribute (known
by rational consumers before search) is subsumed by visible utility.

18The result that consumers in the fully rational Weitzman model decide whether to continue searching “as if” they
were myopic is one of the main insights of Weitzman (1979).

19Conditional on Assumption 1(i), this is without loss, since Assumption 2 implies that an increase in Uij can only
induce consumer i to switch from not choosing j to choosing j, but never vice versa. Thus, by the chain rule, the sign of
∂bi
∂zj

is identified by the sign of
∂sj
∂zj

, where sj is the choice probability function for good j from the data.
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Proof. If good 1 is searched but utility is not maximized, then for some unsearched j, Uij > Ui1. Since

z1 > zj , by monotonicity, bi(x̄, z1) > bi(x̄, zj). By continuity of bi in its first argument, this implies

that for η sufficiently small, bi(x1, z1) ≥ bi(xj , zj).20 Given this, Uij > Ui1 implies V Uij > V Ui1. But

by Assumption 2(i), this implies that good j is searched, which is a contradiction.

Note that Lemma 1 does not imply that good 1 always maximizes utility if it is searched. Rather,

it implies that if good 1 is searched, the utility-maximizing good will also be searched (whether it is

good 1 or not) and thus the consumer will choose that good. The lemma also does not mean that

consumers searching good 1 are fully informed (in a search model they typically will not be), but just

that those consumers act as if they were fully informed. When utility is linear, the same result holds

under weaker conditions on the variation in x across products, which we formalize next.21

Lemma 2. Let Uij = xjαi + zjβi + εij and let Assumption 2 hold. If consumer i searches good 1 (i.e.

the good with the highest value of z), then i chooses the utility-maximizing good.

Proof. If good 1 is searched but utility is not maximized, then for some unsearched j, Uij > Ui1. Since

z1 > zk for all k 6= 1, it must be that xjαi + εij > x1αi + εi1. But by Assumption 2(i), this implies

that good j is searched, which is a contradiction.

Lemmas 1 and 2 will have far-reaching implications. To understand them, it will be convenient to

define the choice probability for good j as:

sj ≡ P
({

Uij = max
k

Uik for k ∈ Gi
}
∩ {j ∈ Gi}

)
(2)

where Gi denotes the set of searched goods for individual i. Note that this probability is computed by

integrating over any individual-specific unobserved heterogeneity in utility or search. Therefore, sj is

a function of x ≡ [x1, · · · , xJ ] and z ≡ [z1, · · · , zJ ], but we will often omit the dependence from the

notation. Throughout the paper, the sources of unobserved heterogeneity will vary with the specific

models we consider, so the symbol P will denote integrals over different distributions depending on

the context.

Now, Lemmas 1 and 2 imply that z1 only impacts choice probabilities for individuals who maximize

utility. Therefore, looking at ∂s1
∂z1

will isolate individuals who maximize utility and allow us to recover

20More formally, by continuity, for all δ > 0 there exists η > 0 such that if |x1−xj | < 2η, then bi (xj , zj)−bi (x1, zj) ≤ δ.
Therefore, we have:

bi (xj , zj) = bi (x1, zj) + bi (xj , zj)− bi (x1, zj)

≤ bi (x1, zj) + δ

≤ bi (x1, z1)

where the last inequality follows by choosing δ ≡ bi(x1,z1)−bi(x1,zj)
2

.

21Specifically, the restrictive condition on the support of xj is only required for nonparametric identification, where
strong support assumptions are often necessary.
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preferences using standard arguments. To formalize this, note that Lemmas 1 and 2 imply we can

write:

s1 = P (Ui1 ≥ Uik ∀k)− P ({Ui1 ≥ Uik ∀k} ∩ {for some j 6= 1, V Uij ≥ V Ui1 and gi(x1, εi1, Uij) ≤ 0})
(3)

In other words, the probability that good 1 is chosen is the probability that good 1 is utility-

maximizing minus the probability that good 1 is not searched even though it is utility-maximizing.22

Failing to search good 1 requires that there exists some other good j with V Uij ≥ V Ui1 and utility

high enough that gi(x1, εi1, Uij) ≤ 0.

Our proof will use equation (3) and the fact that certain derivatives of the choice probability

functions are linear in the preference parameters we hope to recover with known (or recoverable)

weights. We consider identification for three specifications of utility that satisfy Assumption 1:

1. Cross-sectional data where Uij = v(xj , zj) + εij

2. Panel data where Uijt = vi(xjt, zjt) + εijt

3. Cross-sectional data where Uij = xjαi + zjβi + εij

These cases are comparable in generality to existing constructive identification results for prefer-

ences in full information discrete choice models, such as Fox, Kim, Ryan, and Bajari (2012). In each

of these cases, we assume that the unobservables are independent of the product characteristics (x, z).

We will extend the approach to deal with endogenous attributes in Section 3.1.

2.1 Case 1: Cross-sectional data with Uij = v(xj, zj) + εij

We start from the case where utility takes the form Uij = v(xj , zj) + εij for an unknown function v.

In what follows, we use x and z to denote generic arguments of v and let εi ≡ [εi1, . . . , εiJ ].

Theorem 1. Let Assumption 2 hold and utility be given by Uij = v(xj , zj) + εij with v increasing in

both arguments and infinitely differentiable. Further, assume that ∂2s1
∂z1∂xj∗

(x∗, z∗) 6= 0 for some (x∗, z∗)

and j∗ 6= 1, s1 is infinitely differentiable and εi ⊥ (x, z). Then, v is identified up to an additive

constant.

Proof. See Appendix A.1.

This theorem applies to a broad class of utility functions. The cost of this level of generality is

that it requires the share function s1 to be infinitely differentiable. However, the marginal rates of

substitution are recovered under much weaker differentiability requirements.

22This follows because Lemmas 1 and 2 imply that if good 1 chosen (and thus searched), good 1 must maximize utility.
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Corollary 1. Let Assumption 2 hold and utility be given by Uij = v(xj , zj) + εij with v increasing and

differentiable in both arguments. Further, assume that s1 is twice differentiable and εi ⊥ (x, z) and

assume that v(·) is identifiable from fully informed choices. Then, the marginal effects ∂v
∂z and ∂v

∂x can

be identified using only second derivatives. Specifically, (i) marginal rates of substitution, ∂v
∂z/

∂v
∂x , can

be recovered using:
∂2s1

∂z1∂zj
(x, z)

/ ∂2s1

∂z1∂xj
(x, z) =

∂v

∂z
(x, z)

/∂v
∂x

(x, z) (4)

for all j 6= 1 such that ∂2s1
∂z1∂xj

(x, z) 6= 0, and (ii) ∂v
∂x can be identified from choices where zj = z for all

j.

We postpone the proof of Theorem 1 to Appendix A.1. Here, we focus on the special case with

linear utility, which is very common in empirical work. In this case, the preference parameters can be

fully recovered by looking at second derivatives. Further, to simplify the proof and facilitate intuition,

we consider the setting with J = 2 goods. The result that second derivatives are sufficient to fully

identify preferences immediately extends to the case with J ≥ 2 goods (as we show in Appendix A.1,

equation (24)).

Lemma 3. Let utility be given by Uij = xjα + zjβ + εij and let Assumption 2 hold. Further, assume

that ∂2s1
∂z1∂x2

(x∗, z∗) 6= 0 for some (x∗, z∗), s1 is twice differentiable and εi ⊥ (x, z). Then,

∂2s1

∂z1∂z2
(x∗, z∗)

/ ∂2s1

∂z1∂x2
(x∗, z∗) =

β

α
(5)

In addition, α is identified by focusing on markets with zj = z for all j and thus β is also identified.

Proof. First, we prove equation (5). In order to ease notation, we often suppress the subscript i in

what follows. As above, good 1 is defined as the good with the highest value of zj . Further, we let

β > 0 without loss.23 Using Lemma 2, the probability of choosing good 1 can be written as:

s1 = P (U1 > U2)− P ({U1 > U2} ∩ {G = 2}) (6)

where, as above, G denotes the set of searched goods. This follows because (i) if good 1 is utility-

maximizing, you will always choose it unless you search only good 2; and (ii) you only choose good 1

if it is utility-maximizing, since otherwise, good 2 must have higher visible utility, meaning it must be

searched (and chosen) if good 1 is searched.

Let ũj ≡ xjα + zjβ, so that Uij = ũj + εij , and let (x, z) = (x∗, z∗). Our goal will be to show

that both z2 and x2 only impact ∂s1
∂z1

via ũ2. This, in turn, implies that ∂2s1
∂z1∂z2

= ∂2s1
∂z1∂ũ2

∂ũ2
∂z2

and

23This is without loss, since the sign of β is immediately identified from the data (footnote 19).
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∂2s1
∂z1∂x2

= ∂2s1
∂z1∂ũ2

∂ũ2
∂x2

, and the result in equation (5) follows. To establish this, note that we can write:

P ({U1 > U2} ∩ {G = 2}) =

P ({U1 > U2} ∩ {V U2 > V U1} ∩ {g(x1, ε1, U2) ≤ 0}) =

P ({U1 > U2} ∩ {g1(x1, ε1, U2) ≤ 0})− P ({V U1 > V U2} ∩ {g1(x1, ε1, U2) ≤ 0})

(7)

where the second line follows since V U1 > V U2 implies U1 > U2 and thus P ({V U1 > V U2} ∩ {g1(x1, U2) ≤ 0}) =

P ({U1 > U2} ∩ {V U1 > V U2} ∩ {g1(x1, U2) ≤ 0}). The second term on the last line of display (7) is

not a function of z1. The first term is only a function of x2 and z2 via ũ2. This, together with equation

(6), is sufficient to show that both z2 and x2 only impact ∂s1
∂z1

= ∂P (U1>U2)
∂z1

− ∂P ({U1>U2}∩{G=2})
∂z1

via ũ2,

thus proving equation (5).

Finally, we show that we can identify α using standard techniques by looking at choice sets where

zj = z for all j. To see this, note that when zj = z for all j then consumers maximize utility if and

only if they maximize visible utility. Since by assumption they always search the good with the highest

visible utility, it follows that they maximize utility. Thus, one can pin down α by looking at how the

choice probabilities vary with x conditional on zj = z for all j, just like in the full information case.24

Given (5) and α, identification of β follows immediately.

Finally, we note that in many models of interest the conventional way of identifying preferences

based on the ratio of first derivatives leads to understating consumers’ taste for z. For this result, we

further assume that the function gi(xj , εij , ū) is weakly increasing in xj .
25 For simplicity, consider the

model with linear utility Uij = xjα+ zjβ + εij ≡ ũj + εij and α > 0. Let ũ ≡ (ũ1, ũ2) and

P ∗j,2 (ũ,x) ≡ P ({Uj > U−j} ∩ {V U−j > V Uj} ∩ {gi(xj , εij , U−j) ≤ 0})

P ∗j,3 (ũ,x) ≡ P ({U−j > Uj} ∩ {V Uj > V U−j} ∩ {gi(x−j , εi−j , Uj) ≤ 0})

Then, sj = P (Uj > U−j)−P ∗j,2 (ũ,x)+P ∗j,3 (ũ,x). As we have shown above, for good 1, P ∗1,3 (ũ,x) = 0,

but this is not necessarily true for other goods.

24There is one subtle exception to this argument. Suppose there is an outside option with utility normalized to 0, and
we wish to identify a fixed effect which gives the utility of all inside goods relative to the outside good. In this case,
consumers do not necessarily maximize utility when zj = z for all goods because consumers may decide to search none of
the inside goods, and they may do so even when the outside good has lower utility than some of the inside goods if search
costs are sufficiently high (in other words, an outside option may violate our assumption that consumers must search a
good before they choose it). When consumers search none of the inside goods, it is never possible to separately identify
whether consumers do not value the inside goods or have high search costs to examine any of the inside goods. It is
possible to say something about the utility of consumers who are induced to search at least one of the inside goods when
price is low enough (for example), but parametric assumptions are needed to make claims about the utility of consumers
who never search any of the inside goods.

25This condition is satisfied in all the search model considered above (Examples 1–5) when the coefficient on x in utility
is positive and corresponds to the mild requirement that consumers are (weakly) more prone to searching a good the
higher the value of x for that good.
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Differentiating, we obtain:

∂sj
∂zj

= β

[
∂P (Uj > U−j)

∂ũj
−
∂P ∗j,2
∂ũj

(ũ,x) +
∂P ∗j,3
∂ũj

(ũ,x)

]
∂sj
∂xj

= α

[
∂P (Uj > U−j)

∂ũj
−
∂P ∗j,2
∂ũj

(ũ,x) +
∂P ∗j,3
∂ũj

(ũ,x)− 1

α

∂P ∗j,2
∂xj

(ũ,x) +
1

α

∂P ∗j,3
∂xj

(ũ,x)

]

Note that
∂P (Uj>U−j)

∂ũj
− ∂P ∗j,2

∂ũj
(ũ,x) +

∂P ∗j,3
∂ũj

(ũ,x) =
∂sj
∂ũj
≥ 0.26 Further, 1

α

∂P ∗j,2
∂xj

(ũ,x) ≤ 0 and

1
α

∂P ∗j,3
∂xj

(ũ,x) ≥ 0 due to our assumptions about the function g. Therefore,

∂sj
∂zj
∂sj
∂xj

≤ β

α
(8)

This shows that standard discrete choice models that assume full information—such as multinomial

logit or probit—will typically suffer from attenuation bias under our assumptions.

2.2 Case 2: Panel data where Uijt = vi(xjt, zjt) + εijt

This case closely parallels the proof in the previous section. Now, rather than observing only sj(x, z),

the choice probabilities for each alternative as a function of the attributes, panel data allows us to

observe sij(x, z), the choice probabilities for each individual as (x, z) vary over a long period of time.

Given these, the following result holds:

Theorem 2. Let Assumption 2 hold and utility be given by Uijt = vi(xjt, zjt)+εijt with vi increasing in

both arguments and infinitely differentiable. Further, assume that ∂2si1
∂z1∂xj∗

(x∗, z∗) 6= 0 for some (x∗, z∗)

and j∗ 6= 1, si1 is infinitely differentiable and εi ⊥ (x, z). Then, vi is identified up to an additive

constant.

Corollary 2. Let Assumption 2 hold and utility be given by Uijt = vi(xjt, zjt) + εijt with vi increasing

and differentiable in both arguments. Further, assume that si1 is twice differentiable, εi ⊥ (x, z), and

assume that v(·) is identifiable from fully informed choices. Then, the marginal effects ∂vi
∂z and ∂vi

∂x can

be identified using only second derivatives. Specifically: marginal rates of substitution, ∂vi
∂z /

∂vi
∂x , can be

recovered using:
∂2si1
∂z1∂zj

(x, z)
/ ∂2si1
∂z1∂xj

(x, z) =
∂vi
∂z

(x, z)
/∂vi
∂x

(x, z)

for all j 6= 1 such that ∂2si1
∂z1∂xj

(x, z) 6= 0, and ∂vi
∂x can be identified from choices where zj = z for all j.

26Increasing uj can only switch consumers from not choosing good j to choosing j but never the reverse. To see this,
note first that conditional on searching any given set of goods, increasing uj increases the probability good j is chosen.
Second, changing uj doesn’t change the probability that good j is searched, which depends on gi(xj , εij , U−j) for each
alternative searched good. Third, changing uj never makes other goods more likely to be searched. Specifically, an
alternative good k is searched if and only if gi(xk, εik, Uk′) ≥ 0 for all goods k′ currently searched. This quantity is
unchanged for k′ 6= j and weakly decreasing for k = j, so no good can become more likely to be searched. Therefore,
∂sj
∂ũj
≥ 0.
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The proofs of these two results exactly parallel the arguments in the previous section.

2.3 Case 3: Cross-sectional data where Uij = xjαi + zjβi + εij

The cases in the previous two sections assume either that we have panel data or that all individual

heterogeneity is additively separable. Due to the difficulty of separately identifying preferences and

search as well as more practical difficulties with estimation, most empirical structural search models

that we are aware of do not allow for non-separable unobserved heterogeneity (see, e.g., Ursu (2018),

Honka, Hortaçsu, and Vitorino (2017)).

Of course, we would like to understand both from a theoretical perspective whether the assumption

of separable heterogeneity is required for identification and from a practical perspective whether our

results are applicable in such cases. The canonical case of non-separable heterogeneity that has been

studied in the literature and for which constructive identification results exist is that of the linear

random coefficients model. We maintain linearity and impose two additional assumptions.

Assumption 3. (i) Utility is given by Uij = xjαi + zjβi + εij .

(ii) The coefficients αi and βi take values on a known finite support, i.e. αi ∈ {α1, · · · , αKα} and

βi ∈
{
β1, · · · , βKβ

}
with probabilities given by π̃kα,kβ ≡ P

(
{αi = αkα} ∩

{
βi = βkβ

})
. Further, the

elements of
{
β1, · · · , βKβ

}
all have the same sign and, without loss, we assume that they are positive.

(iii) The distribution of εi is known (or independently identified) and the three random vectors

εi, (α, β) and (x, z) are mutually independent.

Assumption 3(ii) follows Fox, Kim, Ryan, and Bajari (2011) and a recent strand of empirical papers

(e.g., Nevo, Turner, and Williams (2016)) in assuming that the random coefficients are supported

on a finite and known grid of points. Given the restriction that
{
β1, · · · , βKβ

}
all have the same

sign, assuming that they are positive is without loss (see footnote 19). Assumption 3(iii) maintains

knowledge of the distribution of all unobservables other than the random coefficients, consistent with

recent papers on identification and estimation of demand (e.g. Fox, Kim, Ryan, and Bajari (2012),

Fox, Kim, and Yang (2016)).

Theorem 3. Let Assumptions 2 and 3 hold. If the market share of good 1 is KαKβ−time differentiable,

then the probability weights π̃kα,kβ for kα = 1, · · · ,Kα, kβ = 1, · · · ,Kβ are identified.

Proof. See Appendix A.3.

As it is clear from the statement of Theorem 3, allowing for heterogeneity across consumers in

preferences for attributes typically requires taking derivatives of order higher than two. Thus, identi-

fying heterogeneous preferences is more demanding of the data. When the sample size does not allow

for direct application of our result, a natural approach is to impose more structure by specifying a
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structural search model. Theorem 3 may then be used to establish nonparametric identification of

preferences within the specified model of search.27

Finally, we note that Theorem 3 focuses on recovering the entire distribution of the random coeffi-

cients. If the goal is simply to test whether consumers have full information, then taking second-order

derivatives turns out to be sufficient under certain conditions, which we spell out in Appendix B.

2.4 Alternative Approaches and Support Assumptions

So far we have not focused on the support assumptions required for identification. These are nonetheless

essential to understand our contribution. Alternative approaches to identification exist which differ

principally in requiring much stronger support assumptions.

For instance, one could assume that the data exhibits “at-infinity” variation to effectively go back

to a setting that is analogous to full information. As the visible utility for a subset of goods grows to

infinity (minus infinity), the probability of searching those goods goes to one (zero) under reasonable

assumptions on the search process. Using this, one could identify preferences using conventional

arguments. However, in practice, it is often implausible that any goods are searched with probability

close to 1, so this strategy would require substantial parametric extrapolation.

In contrast, our proof requires much more plausible support assumptions. There is always a good

which maximizes zj (or our weighted index in the vector-valued case, see Appendix A.2). To recover

preferences in the homogeneous linear case, we only need sufficient variation to estimate second deriva-

tives of s1 at a single point. Of course, flexibly recovering a nonparametric function v or nonparametric

random coefficients requires substantially more variation and data in order to estimate higher order

derivatives of choice probabilities. We further discuss these challenges in Section 4.

2.5 Discussion of Search Model Assumptions

To reiterate, we consider search models satisfying the following assumptions:

1. Consumer i searches goods in decreasing order of V Uij .

2. Conditional on having utility ū in hand, consumer i searches j if and only if gi(xj , εj , ū) ≥ 0

where gi is decreasing in ū.

3. Consumers choose the good which maximizes utility among searched goods.

4. Only the value of zj is unknown to consumers prior to search, and search fully reveals zj .

As discussed above, there are several microfoundations for the first assumption. For example, in

the Weitzman (1979) search model, consumers search goods in order of reservation utility, which is

a function of the visible attributes of those goods, the distribution of the hidden attribute zj , and

27See Section 5 for more on this point.
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search costs. If zj is i.i.d. across goods and consumers have the same search cost for all goods, then it

follows that consumers will search in order of visible utility (see Example 1). There are at least three

reasons this might fail in the Weitzman (1979) model: first, there may be more uncertainty about

the hidden attribute for some goods than others, and this might lead individuals to search such goods

first. Second, unobservables might be correlated across goods, so that, e.g., learning good news about

good 1 might cause one to positively update about good 2 and choose to search it before good 3 even

if V U3 > V U2. Third, search costs might vary across goods, meaning that consumers prefer to search

first goods with lower search costs even if the payoff is potentially lower.

While the restriction that priors be i.i.d. and search costs be constant across goods is sufficient

for Assumption 2(i) (the first assumption above), this is not necessary. Priors may be heterogeneous

but consumers may be unsophisticated and fail to take into account option value, as in the directed

cognition model studied in Gabaix, Laibson, Moloche, and Weinberg (2006). Consumers searching for

a laptop online may enter some attributes into a search function and look at the items which rank

highly according to those attributes without regard for whether a lower item is worth searching first

because its value is more uncertain despite its lower average utility. Such examples also raise the

natural concern that in many settings, factors like the order in which items appear in search may

impact search costs separately from visible utility. Applications in the marketing literature often allow

search costs to vary with observable attributes, such as the position of a good in search (e.g., Ursu

(2018)). In Section 3.2, we extend our main result to allow for these violations of our visible utility

assumption by considering cases where some observable attributes impact search but not utility. We

can also relax the i.i.d. priors assumption by allowing consumers to form beliefs about the hidden

attribute as a function of observed attributes. Specifically, in Section 3.3, we extend our approach to

the case where beliefs about zj are a linear function of observables.

Our second assumption on search is that consumers search good j if and only if gi(xj , εij , ū) ≥ 0

where ū is utility in hand; we also impose the natural restriction that one is (weakly) less likely to search

as ū increases. This assumption is satisfied in most search models we are aware of in the literature,

including Weitzman search, satisficing, simultaneously searching all goods with visible utility above

a threshold, random search, and directed cognition. One exception is a model in which consumers

simultaneously search the top K goods in terms of visible utility prior to engaging in search. This

model would violate the assumption because the function gi that determines whether i searches good j

cannot be written only as a function of xj and εij since it will depend on the visible utility of all goods.

We show in section 3.5 that our methods can be extended to accommodate one version of this model

based on Honka, Hortaçsu, and Vitorino (2017). We also investigate the robustness of our approach

to a violation of this assumption in the simulations of Section 4.

Our third assumption, that consumers choose the good which maximizes utility among searched

goods, embeds two separate ideas: the first is that consumers do not choose a good they have not

searched, and the second is that they maximize utility given the information available. This is natural
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in contexts such as e-commerce, where consumers typically have to open a product’s page in order to

add it to their carts. The assumption that consumers maximize utility given the information available

can also be relaxed. One could specify a positive utility function that allows for consumer errors; as

long as consumers maximize that positive utility function, the weight that they would attach to the

hidden attribute given full information will be revealed. It is then up to the researcher whether to take

this weight as the normative benchmark or whether to use some external standard.

The fourth assumption again nests two pieces. The first is that only the value of zj is unknown

prior to search. A consumer who clicks through to the product information page of an Amazon product

might learn information about the attributes of a good (“the battery is compatible with USB-c”), but

they also might learn information not observable to the econometrician (“one reviewer said the battery

exploded into flames”). In section 3.4, we show that our results continue to hold if the ε component

of utility is revealed only conditional on search (as in Kim, Albuquerque, and Bronnenberg (2010)

and Ursu (2018)). The second piece of the fourth assumption is that search reveals all information

about the hidden attribute. This assumption is natural in settings where zj is fully observed to the

econometrician, as in our case. This is not always plausible: if the hidden attribute is “school-value

added,” a consumer who searches more may learn about test scores and graduation rates, but these are

(imperfect) signals of the underlying variable. There is a literature on consumer (Bayesian) learning

which models more explicitly the case when search is not fully informative (see Erdem and Keane

(1996), Ackerberg (2003), Crawford and Shum (2005), among others).

2.6 Testing Search Model Assumptions with and without Observable Search

Our proof so far has proceeded as if search were not observed; that is, we observe final choices as a

function of x and z but we do not observe which specific goods were searched. Datasets increasingly

contain some information on what is searched: for example, in online clickstream data, one observes

not only which product was purchased, but also which products were clicked on en route to purchase

(e.g., Ursu (2018)). In many settings, it is plausible to assume that such clicks reveal which products

were searched.

Can preferences be identified without resorting to our approach or an explicit search model in

these cases? One might naively assume that our identification results would be unnecessary in such

cases; given data on which products were searched, perhaps preferences can be estimated conditional

on search without any of the assumptions we require here. However, this is not generally the case

because the unobservable component of utility may also drive the search decision. One example would

be if search depends on ε. In such cases, goods with undesirable observables that are searched likely

have an especially high realization of ε. Thus, it will appear from conditional choice probabilities as

though the observable attributes are not so bad when in practice, individuals dislike those attributes

but this dislike is offset by a large ε. A second reason unobservable components of utility might impact
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search is if preferences are unobservably heterogeneous (random coefficients). Even if search does not

depend on ε, preferences cannot generally be recovered using only conditional choices unless IIA is

satisfied.28 Thus, with heterogeneous preferences, the existing literature requires specifying a search

model in order to estimate preferences even when search is observed. Our approach avoids the need

to do this under the assumptions we have outlined.

Once our approach is used to identify preferences, clickstream data can be used to conduct addi-

tional overidentifying tests if we assume that the distribution of εij is known. In the linear case, visible

utility is given by V Uij = xjαi + εij . As shown in Lemma 3, examining choices with equal values of

the hidden attribute is sufficient to identify the distribution of αi. Given αi, the known distribution

of εij , and the number of goods searched |Gi|, we can thus compute:

P (j ∈ Gi|x, z) =
∑
k

P (|Gi| = k|x, z)P (j ∈ Gi||Gi| = k,x, z) (9)

since the first probability on the RHS is observed and the second is pinned down by the model as-

sumptions (specifically, the fact that with k goods searched, those k goods must be the k goods with

the highest visible utility). Checking (9) against the observed search probabilities provides a test of

the model.

Even when we do not observe auxiliary information on which goods are searched, the assumptions

in our model can be jointly tested by checking whether the observed choice probabilities are consistent

with bounds implied by the estimated preferences and assumed search rule. To construct an upper-

bound on choice probabilities, note that a good j cannot be chosen if there is an alternative good with

higher visible utility and higher utility. Thus, we have:

sj(x, z) ≤ 1− P (Uik ≥ Uij and V Uik ≥ V Uij for some k) (10)

The latter probability can be directly computed from knowledge of preferences and the distribution of

ε. To construct a lower-bound, note that the probability of choosing good j is at least as large as the

probability that good j maximizes both utility and visible utility. That is:

sj(x, z) ≥ P (Uij ≥ Uik and V Uij ≥ V Uik for all k) (11)

28To see why heterogeneous preferences create a problem, imagine products have quality ratings from 1-5. There are
two types of consumers, one type that cares about quality and one type that does not. The type that cares about quality
is indifferent about quality over the 4-5 range, but values quality over the 1-4 range sufficiently that quality differences
outweigh any other differences observable to consumers. Suppose that quality is observable to consumers (x) but price is
only observed conditional on search (z). Quality conscious consumers only search goods with quality of at least 4. Other
consumers will search all goods. If we estimate preferences conditional on search, we will wrongly conclude that no one
cares about quality: quality conscious consumers don’t care about quality given the goods they have searched (quality
ranging from 4-5) and non-quality conscious consumers don’t care about quality at all. To estimate preferences correctly,
we would have to jointly model the decision of which goods to search and preferences conditional on searching.
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Once again, this probability can be computed given knowledge of preferences and the distribution of

ε. We can then check whether our estimated choice probabilities are consistent with these bounds.

Finally, our model is overidentified. For example, in the case of linear utility and homogeneous

preferences, we have shown that ∂2s1
∂z1∂zj

/ ∂2s1
∂z1∂xj

= β/α for all alternative goods j 6= 1 and values of

(x, z). This provides a number of overidentifying restrictions which could be used to further test the

model.

2.7 Testing for Full Information

Our results suggest a natural tests for full information. Consider first the case of homogeneous pref-

erences as in Section 2.1. Under the null hypothesis of full information, sj = P (Uj ≥ Uk ∀k) and

therefore:

∂2s1

∂z1∂zj

/ ∂2s1

∂z1∂xj
=
∂sk
∂zj

/∂sk
∂xj

=
∂v

∂z

/∂v
∂x

(12)

for all j 6= 1 and all k. On the contrary, when consumers are unaware of zj for some goods, then

the ratios of first derivatives need not be equal to the ratios of the second derivatives. For example,

equation (8) showed that ∂s1
∂z1

/ ∂s1∂x1
≤ ∂2s1

∂z1∂zj
/ ∂2s1
∂z1∂xj

in the class of search models we consider. Since

both the ratios of first derivatives and the ratios of second derivatives in (12) are estimable from the

data, this immediately leads to a test based on the discrepancy between the two sets of ratios. More

specifically, given estimators of the share functions, one can compute a Wald test-statistic based on

the discrepancy between the two sets of ratios and reject the null hypothesis of full information if the

statistic exceeds a critical value.

Note that this test is valid even if our assumptions on the search process fail to hold since with

full information the two sets of ratios will be equal regardless. When our assumptions on the search

process do hold, we expect the test to have power, since the first derivative ratio will be attenuated

relative to the true preferences, which are recovered by the cross-derivative ratio.

In the case of heterogeneous preferences, the ratio of first derivatives might be attenuated relative

to the ratio of second derivatives even under the null hypothesis of full information. In Appendix B,

we provide verifiable sufficient conditions that rule this out and therefore guarantee the validity of our

test for the mixed logit model with random coefficients distributed on a grid (as in Section 2.3).

3 Extensions

In this section, we consider several extensions to the baseline model. These extensions are designed to

accommodate features prominent in the empirical search literature. More specifically, we consider:

• Endogenous attributes
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• Attributes which impact search but not utility

• Expectations about z which depend on x

• Search reveals unobservables

• The “K−rank” simultaneous search model

In each of the extensions we discuss, the same cross-derivative expressions from our original proofs

suffice to identify preferences, in some cases subject to additional assumptions.

We consider each extension separately, although in principle, one could estimate models combining

several such extensions. For example, Kim, Albuquerque, and Bronnenberg (2010) estimate a search

model in which only attributes unobservable to the econometrician are revealed during search, and in

which some observables impact search but not utility.

3.1 Endogenous attributes

So far, we have assumed that the observed product attributes are independent of all unobservables.

This is restrictive, especially in settings in which product attributes — notably price — are chosen by

firms who might know more about preferences or product attributes than is captured by the observed

data. As highlighted by a large literature (e.g. Berry, Levinsohn, and Pakes (1995)), this typically

leads to correlation between the attributes chosen by firms and product-level unobservables.

Here we consider an extension of our model that allows for endogenous product attributes. We

specify the utility that consumer i gets from good j as

Uij = αxj + βizj + λipj + ξj + εij (13)

where pj denotes the endogenous characteristic and ξj is a product-specific characteristic that is known

by consumers before search, but is not observed by the researcher.29 If firms also know ξj when choosing

pj , then the two will typically be correlated, thus leading to endogeneity of pj . We consider both the

case where pj is part of visible utility and that in which consumers need to search good j to uncover pj

(as well as possibly other non-endogenous attributes zj). If pj is price, the first scenario corresponds

to settings such as e-commerce where typically price is visible on the results page and does not require

any further clicking by the user. On the other hand, the second scenario covers cases in which price

is itself the object of consumer search (there is a large literature on this, particularly in relation to

29Note that the utility specification in (13) allows for random coefficients on both zj and pj , but not on xj . This is
stronger than needed, since the identification argument below only requires that xj and ξj enter the demand functions
via a linear index. Thus, another possible specification is

Uij = α̃i (αxj + ξj) + βizj + λipj + εij

The latter is weaker, but also less common in the discrete choice literature, so we focus on model (13) in what follows.

21



the often observed price dispersion for relatively homogeneous goods; see, e.g., Stahl (1989), Hong and

Shum (2006) and Hortaçsu and Syverson (2004)). We show identification of preferences for each of

these two cases. To this end, we introduce two mutually exclusive variants of assumption 2(ii). Let

δj = αxj + ξj for all j.

Assumption 4. (i) The attribute pj is part of the visible utility of good j. Conditional on having

utility ū in hand, consumer i searches j if and only if gij(δj , pj , ū) ≥ 0 where gij is decreasing in ū.

(ii) The attribute pj is uncovered by consumers only upon searching good j. Conditional on having

utility ū in hand, consumer i searches j if and only if gij(δj , ū) ≥ 0 where gij is decreasing in ū.

Like Assumption 2(ii), Assumption 5 states that consumers decide whether to search good j based

on utility in hand and the visible utility of j. In Appendix A.4, we invoke results from Berry and Haile

(2014) to show that these assumptions suffice for nonparametric identification of the choice probability

functions provided we have valid instruments (in a sense we make precise in the Appendix). Once

the choice probability functions are identified, one may apply our results in Section 2.3 to identify the

distribution of the preference parameters α, βi and λi.

3.2 Allowing for variables affecting search but not utility

One important case in which the visible utility assumption 2(i) is likely to fail is when factors exist

which impact search costs but not utility. An example might be search position for online purchases.

Arguably, search position impacts the order in which people search but has no direct impact on utility

conditional on searching (Ursu 2018). In this case, consumers might first search items with higher

search position even if they do not have higher visible utility. For example, if we randomly assign

search order, this is likely to impact choices even though we are not changing the utility of each item

conditional on search. A second example is if we observe advertising expenditures for each good and

believe that advertising entices consumers to search advertised goods.

Our model from Section 2.1 can be extended to deal with cases where the factors which impact

search but not utility are observable and the sign of their impact on search probabilities is known (such

as position in search). Denote the variable which perturbs search but not utility by rj , suppose that rj

is observed and that higher values of rj make a good weakly more likely to be searched. Now, rather

than assuming that goods are searched based on V Uij alone, we assume that goods are searched based

on m(V Uij , rj) where m is strictly increasing in both V Uij and rj . We show in Appendix A.5 that a

version of our identification argument continues to hold provided we see sufficient variation in product

attributes conditional on search position.

3.3 Allowing for consumers’ expectations on z to depend on x

Another reason why the visible utility assumption 2(i) might fail is that consumers could form expec-

tations about z based on x. For instance, if x is price and z is quality, consumers might infer that more
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expensive products tend to be higher quality. As a consequence, if they value quality to a sufficient

degree relative to price, they may search a high-priced product and not search a low-priced product

even if the former has a lower visible utility than the latter.

In our proofs so far, we have not made any explicit assumption about whether consumers update

about zj given xj , but such updating is likely to lead to violations of the visible utility assumption if

not explicitly modeled. We now show that we can identify preferences given consumer beliefs about zj

given xj in a linear model. Further, under additional assumptions, we will show that we can identify

β/α, the relative value of the hidden attribute, even when beliefs are unknown. In other words, we

can do so without taking a stand on whether consumers have rational expectations and form beliefs

based on the empirical relationship between zj and xj or naively update. Consider the linear model

Uij = xjα+ zjβ + εij and re-write it as

Uij = xjα+ (zj − E (zj |xj))β + E (zj |xj)β + εij

= βγ0 + xj (α+ βγ1) + z̃jβ + εij

where the second equality assumes that consumers use the linear projection E (zj |xj) = γ0 + γ1xj and

we let z̃j ≡ zj −E (zj |xj). Visible utility is then given by βγ0 +xj (α+ βγ1) + εij and consumers learn

the deviation from their expectation on zj , z̃j , upon searching. Note that γ0 is not identified, but also

does not generally impact choices since it enters utility as an additive constant.30

In Appendix A.6, we show that given γ1, we can recover β and α using an analog of our usual

approach. When γ1 is not observed, we can still identify β/α if we know its sign and assume that

we observe goods with the largest value of zj and the smallest value of xj . The quantity β/α is

not sufficient to simulate choices with full information, since we cannot tell how responsive consumers

would be to xj were choices fully-informed. However, it is sufficient to identify the relative value placed

on the hidden attribute as well as to conduct tests for full information as in Section 2.7.

3.4 Unobservables revealed by search

So far, we have focused on the case where the attribute(s) z revealed by searching a good are entirely

observed by the researcher. However, it is easy to imagine settings in which the data does not capture all

of the information that consumers acquire through search. Indeed, the existing literature often models

search as the process whereby the idiosyncratic preference shocks—εij in our notation—are revealed

(e.g., Kim, Albuquerque, and Bronnenberg (2010), Ursu (2018)). To accommodate this, we consider a

modification of our model where the shock εij only becomes known to consumer i upon searching good

30There is one exception to the above claim, which is the case when there is an outside option for which the x and
z attributes are not defined, so that a systematic bias in beliefs about the distribution of zj given xj would change the
relative value of all the inside goods relative to that outside option. This might mean that the relative utility of the outside
option cannot be separately identified from γ0; the model could still be estimated, but the normative interpretation of
fixed effects might change.
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j (along with zj). In other words, consumers know xj for all j prior to search and decide whether to

acquire εik and zk for any given good k through search. This means that, in Assumption 2, V Uij is

now equal to αxj and Assumption 2(iv) is dropped.

Given this setup, we show in Appendix A.7 that the ratio of second derivatives
∂2sj
∂zj∂zk

/
∂2sj
∂zjxk

recovers β
α provided that one chooses good k to be the good with the highest value of x (note that j

need not be the good with the highest value of z here). Thus, our approach can be extended to deal

with the possibility that search reveals unobservables.

3.5 The K−rank Simultaneous Search Model

As noted above, our main model allows for consumers to choose which goods to search in one simul-

taneous step. However, one form of simultaneous search that is not accommodated is that in which a

consumer optimally chooses the number K of goods to uncover and then proceeds to simultaneously

search the top K in terms of visible utility (e.g., Honka, Hortaçsu, and Vitorino (2017)). Our frame-

work from Section 2 does not subsume this model since in this case the decision of whether or not to

search good j depends not only on the visible utility of good j, but on the visible utility of all other

goods as well, thus violating Assumption 2(ii).

In Appendix A.8, we show via an alternative argument that the usual second-derivative ratio from

equation (5) still identifies β
α in the two-good K−rank model. We also show in our simulation results

that our method succeeds in a model where consumers search the top K goods (with K varying

randomly across consumers).

4 Estimation

Our identification results show that preferences can be recovered given knowledge of the choice prob-

ability function for good 1, denoted by s1(x, z). We now discuss how s1 can be estimated from data

on choices and product attributes. Note that the model implies the following conditional moment

restrictions

E (yj − sj (x, z) |x, z) = 0 ∀j (14)

where yj is a dummy variable equal to 1 if a consumer chooses good j.31 Thus, methods designed

to estimate conditional moment restriction models can be used. Of course, the performance of an

estimator will depend on how flexibly it captures the derivatives that identify preferences in our

approach.

31Here, we focus on the case where data on individual-level choices are available, as in the experiment of Section 6.
However, our identification approach could also be applied to aggregate (i.e. market share) data as long as one can
consistently estimate the share functions sj .
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Here, we consider two approaches to estimating s1(x, z): (i) an approximation via Bernstein poly-

nomials which is viable when the number of goods and attributes is small; and (ii) a “flexible logit”

model which is more ad hoc, but scales better as the number of goods increases. Note that a good

in our model is defined by the collection of attributes observable to the econometrician (potentially

including good fixed effects); in other words, different products with the same attributes count as the

same good. Thus, estimation of choice probabilities and their derivatives does not require that all

consumers have identical products in their choice sets, or even that the same products are available

to many different consumers (unless product fixed effects are of interest). What we need is sufficient

variation in attributes to flexibly estimate the mapping from the product attributes to choices.

Throughout this section, we focus on the linear homogeneous case of Uij = xjα+zjβ+εij . Our result

in Section 2.1 shows that β/α can be recovered from ∂2s1
∂z1∂zj

/ ∂2s1
∂z1∂xj

for j 6= 1. Relative to conventional

estimation of linear homogeneous discrete choice models, our approach is more demanding of the data,

requiring estimation of second derivatives for a specific good. Especially in large datasets where more

flexible estimation is feasible, this allows us to be more agnostic about the underlying information

structure.

As discussed in Section 2.3, the model with linear, homogeneous preferences is the current standard

in the empirical literature on search (e.g. Mehta, Rajiv, and Srinivasan (2003), Honka and Chinta-

gunta (2016) and Ursu (2018); Kim, Albuquerque, and Bronnenberg (2010) is a notable exception in

that they allow for random coefficients). In more general non-linear or random coefficients models,

our identification arguments require recovery of higher-order derivatives and thus might not directly

translate into viable estimation strategies in small to medium sample sizes or with a large number of

goods. In these cases, the best way forward might be to parametrically specify a full structural search

model and estimate it via standard methods, e.g. MLE. We would then view our identification results

as providing reassurance that preferences are indeed identified, something that had not been formally

established in the literature (see Section 5 and Appendix D for more on this). Additionally, given

the estimated structural search model, one can use the derivations in Section 2.6 to test the model

restrictions (subject to the visible utility assumption).

4.1 Approximation via Bernstein polynomials

Following Compiani (2019), one can approximate the demand function via Bernstein polynomials. This

allows the researcher to impose natural restrictions via linear (and thus easy-to-enforce) constraints on

the coefficients to be estimated. Specifically, the class of models considered in this paper satisfies stan-

dard monotonicity restrictions in x and z (sj increasing in xj and zj and decreasing in x−j and z−j).

In addition, one can consider other constraints, such as exchangeability across goods, which requires

demand to only depends on the attributes of the goods, but not their identity.32 Exchangeability is

32See Compiani (2019) for a formal definition of exchangeability.
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satisfied if the unobservables entering demand (e.g., preference parameters and shocks, as well as search

costs) have the same distribution across goods. We impose both monotonicity and exchangeability in

the nonparametric results reported below. The purpose of these restrictions is twofold. First, they

discipline the estimation routine in the sense that they help obtain reasonable estimates of quantities of

interest (e.g., negative price elasticities). Second, they help partially alleviate the curse of dimension-

ality that arises as the number of goods increases. The coefficients in the Bernstein approximation of

sj can be estimated by minimizing a GMM objective function based on the restrictions in (14) subject

to the constraints. More details on the implementation of the estimator can be found in Compiani

(2019).

Simulation Results To test the performance of our approach, we consider several simulations. In

all simulations, we generate N = 20, 000 choices with utility given by:

Uij = αxij + βzij + εij (15)

with α = β = 1, xij ∼i.i.d N(0, 1), zij ∼i.i.d. N(0, 1), and εij i.i.d. Type 1 extreme value.

We simulate data from four data generating processes, three of which satisfy the assumptions of

our theorem and one of which does not. These are:

1. Weitzman search, with search costs c ∼ LogNormal(−2, 2.25)

2. Satisficing, searching in order of visible utility until utility-in-hand is at least T ∼ LogNormal(−0.35, 2.25)

3. Search all goods with visible utility above a threshold given by c ∼ N(−1, 16) (if no goods are

above the threshold, search and choose the good with the highest visible utility)

4. Randomly search K ∈ {1, . . . , J} goods, where the searched goods are the K highest in terms of

visible utility

DGPs 1-3 satisfy our assumptions. By contrast, DGP 4 violates Assumption 2(ii) because the decision

of whether to search a good does not just depend on that good’s visible utility, but on the visible

utilities of all goods.

Table 1 reports results from the Bernstein approximation of the cross-derivative ratio which iden-

tifies β/α. For comparison, we also report estimates of
∂sj/∂zj
∂sj/∂xj

, which would recover β/α with full

information. In all cases, the estimates based on first-derivatives are attenuated relative to the true

values. This occurs for the reason discussed in Section 2.1: consumer insensitivity to variation in z for

goods that are not searched biases the coefficients towards zero. In contrast, the confidence intervals

from Bernstein estimation of the cross-derivative ratio include the true values in DGPs 1-3, and are

fairly precise for the J = 3 case. For DGP 4, where the assumptions of our model do not hold (see

Section 3.5), the coefficient is attenuated for J = 3, although the point estimates remain much closer

to the true values the first-derivative estimates.
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Table 1: Bernstein Approximation

Number of Goods

2 3

DGP First-Derivatives Cross-Derivatives First-Derivatives Cross-Derivatives

1 0.610 0.977 0.403 0.997

(0.024) (0.304) (0.012) (0.076)

2 0.691 1.280 0.361 0.935

(0.024) (0.538) (0.014) (0.068)

3 0.527 0.870 0.330 0.872

(0.021) (0.190) (0.010) (0.071)

4 0.444 0.801 0.206 0.626

(0.018) (0.301) (0.010) (0.075)

Note: Across all rows, the data the sample size is N = 20, 000 and the data in
each row is generated by the corresponding DGP described in the main text. In all
cases, the true value is 1. Standard errors, obtained via 250 bootstrap repetitions,
are reported in parentheses.

4.2 “Flexible Logit”

With a large number of goods, nonparametric methods face a curse of dimensionality, and thus it

becomes necessary to place some parametric structure on the problem. In this section, we develop one

such parametric approximation which performs well in simulations for a larger number of goods.

To motivate our parametric approach to estimating s1(x, z), note that full-information logit models

typically impose strong restrictions on the structure of the derivatives of choice probabilities. Specifi-

cally, if uij = v∗j + εij and εij is i.i.d. extreme value where v∗j is a differentiable function of xj and zj ,

then for qj ∈ {xj , zj}:

∂sj
∂qj

=
∂sj
∂v∗j

∂v∗j
∂qj

=
∂v∗j
∂qj

sj(1− sj)

∂sj
∂qj′

=
∂sj
∂v∗j′

∂v∗j′

∂qj′
= −

∂v∗j′

∂q′j
sjsj′

∂2sj
∂zj∂qj′

= −
∂v∗j
∂qj′

∂v∗j
∂zj

sjsj′(1− 2sj) (16)

for j′ 6= j. Thus, in a conventional logit model, ∂2s1
∂z1∂zj′

/ ∂2s1
∂z1∂xj′

= ∂s1
∂zj′

/ ∂s1∂xj′
=

∂v∗
j′

∂zj′
/
∂v∗
j′

∂xj′
for all j′ 6= 1,

and this further equals ∂s1
∂z1

/ ∂s1∂x1
when

∂v∗j
∂qj

=
∂v∗
j′

∂qj′
for all j, j′. We would like to estimate a model of s1

which is sufficiently flexible that ratios of first-derivatives differ from ratios of second cross-derivatives,

as will generally occur if consumers engage in search. To allow for this additional flexibility, we let the
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utility for good 1 depend directly on attributes of rival goods as follows:

v1 = ṽ(x1, z1) + b1z1 +
∑
k 6=1

(γkwz1kzk + γ2kwx1kxk + wz2kδkzkz1 + wx2kδ2kxkz1) (17)

where ṽ(x, z) is a differentiable function of x and z, wz1k, wx1k, wz2k and wx2k are known weights,

and b1, γk, γ2k, δk and δ2k are coefficients to be estimated. Further, we let vk = ṽ(xk, zk) for k 6= 1.

In Appendix C, we describe one way of choosing the weights which we find works well in simulations,

and for which the ratio of second derivatives (which recovers β/α) is a particularly convenient function

of model parameters. We note that the parameters in (17) do not have the usual interpretation (i.e.

we are not positing that the actual utility of good 1 depends on the attributes of good k for k 6= 1).

Instead, (17) is simply a flexible function of (x, z) that captures the second derivatives of s1 well.

Simulation Results For each of the DGPs described in Section 4.1, we consider simulations with

J ∈ {2, 3, 5, 10}. We report estimates from the flexible logit model as well as the naive logit model.

We bootstrap the standard errors using 250 repetitions.

Results from these simulations are reported in Table 2. The table shows estimates of β/α from a

conditional logit model with no adjustment for imperfect information, as well as the cross-derivative

ratio estimates from the flexible logit model. In the naive logit model, the coefficient is attenuated,

typically biased towards zero by 30-50%. The flexible logit model performs substantially better, with

95% confidence intervals including the true estimates in DGPs 1-3. Perhaps surprisingly, the flexible

logit model also performs well for DGP 4; the confidence intervals include the true values for 2 and 5

goods, and have less bias than the naive logit model for 5 and 10 goods.
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Table 2: Estimator based on cross-derivatives ratio (flexible logit) vs naive logit

Number of Goods

2 3 5 10

DGP Naive Flexible Naive Flexible Naive Flexible Naive Flexible

1 0.6590 1.0214 0.6330 1.0671 0.6050 0.9633 0.5770 0.8986

(0.0158) (0.1208) (0.0122) (0.1259) (0.0095) (0.1254) (0.0089) (0.1053)

2 0.7403 0.9976 0.6194 1.0854 0.4587 1.0407 0.2909 1.0004

(0.0162) (0.1034) (0.0135) (0.1300) (0.0102) (0.1578) (0.0083) (0.2603)

3 0.5424 1.1177 0.5945 1.0286 0.6543 0.9017 0.7246 0.8822

(0.0149) (0.1716) (0.0117) (0.1469) (0.0099) (0.1071) (0.0106) (0.0733)

4 0.4543 1.1358 0.5568 0.9614 0.6691 0.8015 0.7887 0.8151

(0.0140) (0.1906) (0.0118) (0.1659) (0.0105) (0.1012) (0.0104) (0.0679)

Note: Across all rows, the data the sample size is N = 20, 000 and the data in each row
is generated by the corresponding DGP described in the main text. “Naive” refers to
estimates of β/α from a conventional logit model, and “Flexible” refers to estimates from
the flexible logit model. In all cases, the true value is 1. Standard errors, obtained via 250
bootstrap repetitions, are reported in parentheses

5 Counterfactuals

Our results can be used to identify preferences under the assumptions we outline without estimating

a full search model. In this section, we discuss for which counterfactuals preference estimation is

sufficient. Additionally, we discuss how our results can be used to aid in estimation of search costs

given a fully specified search model or for specification testing after such a search model is estimated.

5.1 Applications without Recovering Search Costs

Benefits of Full Information One important class of counterfactuals asks: how would consumers

choose if search costs were reduced? The most natural counterfactuals in our baseline case involve

directly informing consumers about the hidden attribute. These counterfactuals are natural in our

setting because the hidden attribute is observable to the econometrician.33 In these cases, knowing

preferences is sufficient to simulate how information would impact choices without a structural search

model. For example, in settings like Hastings and Tejeda-Ashton (2008) or Allcott and Taubinsky

(2015) where experimenters fully-inform consumers about attributes of goods which were previously

accessible at a financial or cognitive cost, our approach can be used to forecast the impact and value

of interventions before they are conducted. Of course, our method quantifies the welfare gains from

more informed choices, but not the gains directly stemming from reduced search costs. In this sense,

33This can be contrasted with cases where information is only partial and so some search costs likely remain. For
example, when unobservables are revealed by search (as in Section 3.4), some information consumers learn upon search is
not observable to the econometrician, so informing consumers about the observable component would not eliminate the
need to search.
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the estimated increase in welfare can be viewed as a lower bound the total gains from an information

intervention. Estimating the reduction in search costs requires either fully specifying a search model

and recovering the cost distribution (see the next subsection) or using some auxiliary data on, e.g.,

time spent searching and value of time.

Advertising and Product Design As a second related example, consider a firm trying to under-

stand which features to emphasize in the advertising of a product. Conditional on visible attributes,

our results could be used to identify features that consumers value but are not currently always aware

of. The firm could use this insight to optimize its advertising strategy, as well as to inform the design

of new products (see, e.g., Bagwell (2007), Becker and Murphy (1993)).

Allocation Problems A third important class of counterfactuals involves direct reallocation. For

example, employers who offer multiple health insurance plans may consider offering only a single plan to

some consumers (Bhargava, Loewenstein, and Sydnor 2017). Preferences over factors such as customer

service ratings or the scope of provider networks may be relevant (Handel and Kolstad 2015). To

evaluate whether direct reallocation improves welfare via the quality of the resulting option, knowing

preferences is sufficient. No search model is needed.

Normative Evaluation of Choices In many counterfactuals where limited information or search

costs are not the primary object of interest, one nonetheless is concerned to accurately value attributes

of goods. In the introduction, we give the example of a tax on sugar-sweetened beverages. An

alternative example is a subsidy for environmentally friendly automobiles. To evaluate such a subsidy,

one would conventionally estimate demand and cost parameters in the automobile market (Berry,

Levinsohn, and Pakes 1995). If the market were otherwise competitive and efficient, the subsidy might

distort choices (creating deadweight loss) but have offsetting externalities. If, however, some consumers

are unaware of differences in energy efficiency, the subsidy might redirect consumers to the products

they would otherwise value if they had more information, meaning that it is both privately and socially

desirable. Our methods can be used to recover whether, prior to imposing the subsidy, consumers are

informed about differences in energy efficiency.

5.2 Applications with Search Costs

We focused above on applications where search costs do not need to be recovered. Our model can

also be used to identify search costs given preferences and an underlying structural search model. In

Appendix D, we give an explicit example of how search costs can be recovered in a Weitzman model

once preferences are known. Intuitively, when preferences are known, we know how consumers would

respond to the hidden attribute with zero search costs, and thus we can trace out the distribution of
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search costs from the observed responsiveness of choice probabilities to the hidden attribute. There

are several reasons search costs might be of interest.

Welfare with Structural Search Costs A full normative evaluation of an information intervention

might directly include search costs: information may benefit consumers both by helping them make

better choices and by helping them make choices more easily, and search costs quantify the value of

making choices more easily. Note that structural search costs may be the wrong object to use for

normative evaluation even if a structural search model performs well as a positive model of choices.

For example, if consumers spend one hour choosing insurance plans and we estimate that they act

as if they have search costs of $1,000 per plan, this does not imply that they are made $1,000 better

off by eliminating the need to search. Search behavior may be well-described by a model with large

search costs even if consumers’ willingness to pay to avoid search is substantially less than the costs

implied by any given model. Back of the envelope estimates of search costs based on survey data or

other information on the time consumers spend choosing may often be more credible and less prone to

misspecification than structural estimates (e.g. Kling, Mullainathan, Shafir, Vermeulen, and Wrobel

(2008)).

Counterfactuals with Non-Zero Search Costs Search costs may also be of interest for counter-

factuals where the choice environment is altered in ways that change search behavior without eliminat-

ing search entirely. As we emphasize above, eliminating search entirely is a reasonable counterfactual

in our setting where search uncovers objective information that is available to the econometrician.

However, other counterfactuals may be of interest, such as changing the order in which items are pre-

sented to consumers in search. Modeling explicitly how these changes would impact search costs for

different goods, and thus which goods are chosen, would require an explicit search model.

Validating Parametric Models A final reason to estimate a full structural search model is to im-

pose parametric restrictions on the data necessary for estimation in finite samples. Our identification

proof shows that, in principle, these parametric restrictions are unnecessary for identification. This is

confirmed by the simulation results we presented for models with linear utility and homogeneous pref-

erences over observables. However, when the coefficients on attributes are heterogeneous—something

the empirical search literature typically rules out—estimation of the higher-order derivatives of choice

probabilities necessary for nonparametric identification (see Section 2.3) may not be possible given the

data available. In such cases, a natural approach is to specify a structural search model with random

coefficients in order to place some parametric structure on these higher-order derivatives. This requires

taking an explicit stand on the underlying search model. Nonetheless, once the model has been esti-

mated and preferences recovered, the results in Section 2.6 can be used to conduct specification tests.

If these tests reject, an alternative search model may fit the data better.
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6 Experimental Validation

Our identification proof and simulation results show that preferences can be estimated regardless of

whether consumers are fully informed, provided the underlying model is a search model satisfying the

stated assumptions. Of course, the theorem does not tell us whether those assumptions are likely to

be satisfied in practice.

In this section, we test in a lab experiment whether we can recover preferences in a setting where

consumers engage in costly search. Unlike in our simulations, the search protocol is unknown to us

and not restricted to satisfy the assumptions of our model. We nonetheless show that we are able to

correctly recover preferences using our “search-robust” estimation technique.

6.1 Set-up

We selected 1,000 books for sale on Amazon Kindle chosen from a wide variety of genres. For each

book, we observe its average rating on the site “Goodreads.com” as well as the average rating from

Amazon.com, the number of reviews on Goodreads, and the price of the book for Amazon Kindle.

In our experiment, conducted via Mechanical Turk, each participant made 40 choices from sets of

3 randomly selected books. For all books, participants could see a photo of the cover, the title, author

and genre, as well as the Goodreads rating and the number of ratings. Prices were randomized to

integers from $11-$15 (equally likely). All books were then further discounted by an integer amount

from $0-$10 (equally likely). All users were given a $25.00 bank at the start of each choice, from which

any costs incurred were deducted. There were a total of 93 participants, yielding 3,720 choices.

The discount is our key variable of interest. For 10 of the 40 choices, users could see all discounts

and thus could see the net price of all options at no cost. For 30 of the 40 choices, discounts were

hidden and users had to pay a cost to see the discount for any given book.34 The cost per click was

constant for each user across the 30 choices, and randomly chosen from {$0.10, $0.25, $0.35, $0.50}. For

the 30 choices with hidden information, users could only choose books after they clicked to reveal the

discount and had to choose at least one book. One of the 40 choices made by each user was randomly

chosen to be realized, and users received the chosen book as well as any money left over from the

original $25.00.

Figure 1 shows a sample product selection screen from a choice where discounts were hidden. In

this case, the user clicked to reveal the discount of the second book and could either choose that book

or continue by revealing the discounts for additional books. Note that the user could search books

in any order she wished. The 10 choices where all information is revealed are our benchmark for the

“truth.” The goal is then to test whether the relative weight on discounts and prices that we estimate

in the cases where discounts are costly to observe matches the relative weight we see when discounts

34The full information and costly information choice situations were randomly ordered, so that the 10 “full information”
choices were intermixed with the costly information choices.
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Figure 1: Lab Experiment: Sample Product Selection Screen

are visible to everyone. Further, because both discounts and prices are in dollar terms, and because

they are randomized (and so not signals of quality), there is a second benchmark: if consumers are

rational, the weight on discounts and prices should be equal.

In other words, we will model choices using:

Uij = pricej · α1 − discountj · β + ratingj · α2 + εij (18)

where εij is i.i.d. type-I extreme value35 and accounts for any aspects of consumers taste for books

(based on the title, image, author or genre) not summarized by the price, discount and rating variables.

Fully informed and rational consumers should have α1 = β. Our goal will be to show that we can

recover these fully informed preferences using the choices of beneficiaries for whom revealing discounts

is costly.

6.2 Estimation Results

Columns 1 and 2 of Table 3 show results from estimating a conditional logit model on consumer choices

for the 10 choice situations (per consumer) where all information is revealed (Full Info) and the 30

choice situations where consumers must pay to reveal information (Costly Info), respectively. With

full information, consumers place equal weight on prices and (negative) discounts, so they pass our test

35We will compare nonparametric estimates based on our approach to estimates from a conventional logit model. Only
the latter requires distributional assumptions on εij .
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of rationality. In other words, they care only about the final price of the product. By contrast, when

discounts are costly to reveal, the coefficient on the discount variable in the conditional logit model

is attenuated (the “Costly Info” column). This is because consumers are insensitive to variation in

discounts for books they do not search. The ratio of the two coefficients is 0.986 in the full information

treatment and 0.683 in the costly information treatment.

Table 3: Conditional Logit and Cross-Derivative Estimation Results

Variable Full Info Costly Info Cross-Derivative Ratio

Price -0.386*** -0.302*** -0.387***

(0.038) (0.018) (0.032)

Discount (-) -0.376*** -0.206*** -0.399

(0.020) (0.009) -

Rating 0.591*** 0.421*** 0.584***

(0.190) (0.099) (0.161)

Discount (-) / Price 0.986*** 0.683*** 1.032***

(0.093) (0.044) (0.102)

N 930 2790 2790

Note: The table shows estimation results from a conditional logit model esti-
mated on the full information and costly information treatments in columns 1
and 2, and estimation of the cross-derivative ratio based on Bernstein polyno-
mials in column 3. The minus sign indicates that discount multiplied by -1 so
that the coefficient on discount should equal that of price with full information.
Standard errors on the ratio of the discount and price coefficients are computed
using 250 bootstrap draws.∗∗∗ denotes significance at the 1% level, ∗∗ at 5%
level, and ∗ at 10%.

Following Section 4.1, we estimate the demand function s1(x, z) via Bernstein polynomials. Specif-

ically, we use the tensor product of univariate Bernstein polynomials, one for each argument of the s1

function.36 Further, we impose the natural constraint that s1 be decreasing in the price of book 1 and

the discount of books 2 and 3, and increasing in the discount of book 1 and the price of books 2 and

3. The main result of this procedure is an estimate of β/α1, which we obtain by dividing a trimmed

mean (across choices) of ∂2s1
∂discount1∂discountj

by a trimmed mean of ∂2s1
∂discount1∂pricej

for all j 6= 1, and then

averaging across j.37 The estimate is 1.032, which is close to the corresponding number from column 1.

In addition to estimating β/α1, we need to directly recover the α coefficients. Consistent with Lemma

3, we compute these by estimating a conditional logit model using only choice sets where the variance

36We use univariate polynomials of degree three for the arguments z1, x2, z2 and of degree two for the remaining
arguments. The total degree of the approximation is 21.

37Specifically, for each second derivative, we take the mean over values in the interquartile range. As is often the case
in nonparametric estimation, trimming helps obtain less noisy estimates.
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of the discount across goods is in the bottom quintile. The results are reported in column 3 of Table

3, along with the value of β implied by our estimates of α1 and β/α1. The confidence intervals include

the full information values. In other words, using data only on choices when information is costly,

we successfully recover informed preferences. Further, the confidence interval is sufficiently tight to

exclude the logit estimates in the costly information treatment.

Having recovered all preference parameters, we can compute how information will change behavior

and choice quality. Using only data on choices when search is costly, our model predicts that, on aver-

age, full information consumers would save $0.66 per choice from choosing books with lower discounts.

The corresponding number in the data is $0.69 per choice situation, since consumers in the costly

information treatment average discounts of $6.24, while consumers in the full information treatment

average discounts of $6.93. In other words, we can accurately predict how consumers will respond to

information provision before the information is provided. We can also compute the dollar equivalent

welfare benefits of providing consumers with information. To do so, we take our estimates from column

1 as the normative preferences (i.e., as the correct metric to compute consumer welfare) and calculate

by how much welfare changes when consumers go from making partially uninformed choices to fully

informed choices. We then repeat this exercise using the estimates from column 3 as the normative

preferences. We estimate an average welfare gain of $0.18 per choice based on column 1 and of $0.15

based on column 3. Thus, our model again yields results that are quite close to those coming from the

“true” fully informed choices in the data.38

6.3 Testing the Visible Utility Assumption

As in most real-world settings, visible utility is not observable to the econometrician in our experiment:

while we can see attributes of the goods in question, we do not know how individuals will weigh

these attributes, nor do we know their preferences for specific genres or book titles and images. The

assumption that consumers search according to the visible utility assumption is substantive and could

be violated in numerous ways: users might always reveal discounts for the lowest priced book first or

they might search in the order in which books are displayed. Nonetheless, our “robust” estimation

approach succeeds in recovering the preferences consumers reveal with full information.

As discussed in Section 2.6, while the visible utility assumption cannot be verified directly, it can

be tested along with the other restrictions of our model. One such test is to compute bounds on the

choice probabilities implied by the model. Given our estimates of preferences and assumptions about

the distribution of εij , we can compute the upper and lower bounds described in Section 2.6 for each

individual via simulation. We sort the data by the lower bound, bin the data into 100 quantiles, and

graph in each quantile the mean of the upper and lower bounds, as well as the choice probabilities

38Note that the benefits are smaller than the increase in discounts because information induces consumers to be more
responsive to discounts, sacrificing some value on unobservable factors.
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estimated via Bernstein polynomials.

Figure 2 shows the results of this exercise. We can see that the bounds in the experimental data have

some bite: the range between the lower bound and the upper bound ranges from 15 to 30 percentage

points. The estimated choice probabilities in nearly all cases lie within this range. These probabilities

thus appear broadly consistent with the visible utility assumption.

Figure 2: Choice Probabilities, Upper and Lower Bounds from Visible Utility Assumption

7 Conclusion

We prove that it is possible to estimate preferences using only data on attributes and choices in

cross-sectional or panel data even when consumers must search to acquire information about product

attributes. This result holds in a broad class of search models. The functions of choice probabilities

which identify preferences in our model are “robust” in the sense that they work in both full information

and search models. Further, our results can be used to test whether consumers are fully or only partially

informed about a given attribute.

Because our conditions allow preferences to be recovered when consumers are imperfectly informed,

our results allow a wide range of inquiries that are impossible using conventional methods. Prior to

conducting an information intervention, choice data can be used to estimate counterfactually how

consumers would choose were they fully informed. If preferences are not informed, the preferences

consumers would have if they were informed can be used to conduct a more defensible welfare analyses.

Preferences can (sometimes) be identified in structural search models, but such models require

making many explicit assumptions about how consumers search. Do consumers consider option value
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or are they myopic? Do they solve an optimal stopping problem or search until they find a good

enough option? Is search sequential or simultaneous? If search costs vary across consumers, what is

their statistical distribution? Our approach attempts to avoid these complexities by instead relying on

a sufficient condition satisfied in a broad class of search models that can be falsified by the available

data via bounds on choice probabilities and overidentification tests.

In many settings, one can conceive of reasons that the visible utility assumption would fail, but it

must be assessed relative to the alternatives. The vast majority of empirical work currently makes the

often dubious assumption that consumers are fully informed about all attributes of products. Even if

one lacks contextual information to support the visible utility assumption, our approach is much weaker

than the standard assumption of full information and may be preferable in settings where preferences

are needed to conduct welfare analysis. The main downside of our approach relative to full information

is statistical power, but this concern is less relevant given rich microdata which is increasingly available.

In settings where one would otherwise make many untested structural assumptions about search, visible

utility may be more parsimonious and leads to clear, testable predictions.

Our assumptions are sufficient for identification but not necessary. This raises several questions

for future research: are there other conditions aside from the visible utility assumption which permit

analogous data-driven identification of consumers who maximize utility? Are there necessary and

sufficient conditions for preferences to be recoverable from choice data when consumers have partial

information?39

Increasingly, empirical analyses relax the assumption that consumers make informed choices. Typ-

ically, behavioral welfare analysis is done using auxiliary data, restrictions on preferences, or by testing

whether consumers choose differently when provided with information. Despite this, absent data to

the contrary, the default assumption in most economic analysis remains that consumers make informed

choices. Our result suggests this need not be the case. Even with no auxiliary data, researchers can

use observed choices both to test whether choices are informed and to recover what preferences would

be were consumers more informed. This removes the (often compelling) excuse that while consumers

may not be informed, assuming informed choices is the only constructive way to proceed given the

data available.

39This question parallels Falmagne (1978)’s derivation of necessary and sufficient conditions for choice probabilities to
be rationalizable by utility maximization given full information. Our question differs by relaxing the full information
assumption.
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Appendix A: Additional Proofs

In this appendix, we collect the proofs not included in the main text. Throughout, we let J ≡
{1, . . . , J} and use the notational convention ∂f

∂x0 (x) = f (x) ∀x for any function f .

A.1 Proof of Theorem 1

We let 2 = j∗ and (0,0) = (x∗, z∗) for notational convenience (the proof is unchanged for other values

of j∗ and (x∗, z∗)).

We show that the derivatives of the share functions identify the derivatives of v at a point and thus

the entire function up to a constant. Fix any (x, z) in the domain of v and consider a Taylor expansion

of v around the point (0,0):

v(x, z) = v0 +
∂v0

∂x
x+

∂v0

∂z
z + ...+

1

n!

∂nv0

∂zn̄∂xn−n̄
zn̄xn−n̄ + ... (19)

where v0 ≡ v (0, 0) and ∂nv0
∂zn̄∂xn−n̄ ≡

∂nv
∂zn̄∂xn−n̄ (0, 0) for all n ≥ 1, n ≤ n. To recover v(x, z), it is sufficient

to recover all derivatives ∂nv0
∂zn̄∂xn−n̄ . First, we map this into the notation of Assumption 1 as follows:

Uij = v(xj , 0) + εij︸ ︷︷ ︸
ai(xj)

+ v(xj , zj)− v(xj , 0)︸ ︷︷ ︸
b(xj ,zj)

Note that we can directly recover v(x, 0) by the following argument. When z = 0, b(x, 0) = 0 which

means that consumers who search the highest visible utility good (which is guaranteed by Assumption

2(i)) maximize utility and we can identify v(x, 0), a function of x only, using standard techniques. By

differentiating v(x, 0) and evaluating at x = 0, we can recover all of the terms that contain no z’s, i.e.

∂nv
∂xn (0, 0).

To recover derivatives of v with respect to z, we will use Lemma 1. Specifically, we will take

xj ∈ [x̄ − η, x̄ + η] for all j, where x̄ and η are defined in Lemma 1, and use the fact that ∂s1
∂z1

can

be written as a function of terms which only depend on x2 and z2 via U2. To formalize this, we let

J1 ≡ {2, . . . , J}, vj ≡ v (xj , zj) for all j, and v ≡ (v1, . . . , vJ). Similarly, we let v0
j = v (xj , 0) and

v0 =
(
v0

1, . . . , v
0
J

)
. Then, by (3) we can write for all (x, z) with z1 ≥ zj for all j:

s1 = P (U1 ≥ Uk ∀k)−
∑

S⊂J1,S6=∅

P ({U1 ≥ Uk∀k} ∩ {V Uj ≥ V U1 for at least one j ∈ S}

∩{g1 (x1, Uj) ≤ 0 for all j ∈ S} ∩ {g1 (x1, Uj) ≥ 0 for all j ∈ J1\S})

≡ P4 (v)−
∑

S⊂J1,S6=∅

PS5
(
v,v0, x1

) (20)
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Further, for every S ⊂ J1,S 6= ∅, we have

PS5 = P ({U1 ≥ Uk ∀k} ∩ {g1 (x1, Uj) ≤ 0 for all j ∈ S} ∩ {g1 (x1, Uj) ≥ 0 for all j ∈ J1\S})−

P ({U1 ≥ Uk ∀k} ∩ {V U1 ≥ V Uj for all j ∈ S}

∩{g1 (x1, Uj) ≤ 0 for all j ∈ S} ∩ {g1 (x1, Uj) ≥ 0 for all j ∈ J1\S})

= P ({U1 ≥ Uk ∀k} ∩ {g1 (x1, Uj) ≤ 0 for all j ∈ S} ∩ {g1 (x1, Uj) ≥ 0 for all j ∈ J1\S})−

P ({V U1 ≥ V Uj for all j ∈ S} ∩ {g1 (x1, Uj) ≤ 0 for all j ∈ S} ∩ {g1 (x1, Uj) ≥ 0 for all j ∈ J1\S})

≡ PS5,1 (v, x1)− PS5,2
(
v−1,v

0, x1

)
where v−1 ≡ (v2, . . . , vJ). The first equality follows from basic set algebra while the second follows

from the fact that for all j ∈ S and all k ∈ J1\S, (i) V U1 ≥ V Uj implies U1 ≥ Uj since z1 ≥ zj for

all j ∈ J1; and (ii) g1 (x1, Uk) ≥ 0 ≥ g1 (x1, Uj) implies Uk ≤ Uj , which (together with the implication

in (i)) implies U1 ≥ Uk. Thus the event U1 ≥ Uk ∀k ∈ J1 is implied by the other events inside the

probability and can be dropped.

Note that PS5,2 does not depend on z1. Thus, omitting the function arguments, we have

∂s1

∂z1
=

∂P4

∂v1

∂v1

∂z1
−

∑
S⊂J1,S6=∅

∂PS5,1
∂v1

∂v1

∂z1
(21)

Differentiating again with respect to z2 gives:

∂2s1

∂z1∂z2
=

∂2P4

∂v1∂v2

∂v1

∂z1

∂v2

∂z2
−

∑
S⊂J1,S6=∅

∂2PS5,1
∂v1∂v2

∂v1

∂z1

∂v2

∂z2
(22)

Differentiating equation (21) with respect to x2 gives:

∂2s1

∂z1∂x2
=

∂2P4

∂v1∂v2

∂v1

∂z1

∂v2

∂x2
−

∑
S⊂J1,S6=∅

∂2PS5,1
∂v1∂v2

∂v1

∂z1

∂v2

∂x2
(23)

Combining (22) and (23), we obtain

∂2s1

∂z1∂z2
/
∂2s1

∂z1∂x2
=

∂v2
∂z2
∂v2
∂x2

(24)

Since this equation holds for all (x, z) such that ∂2s1
∂z1∂x2

6= 0 and we already showed that we can recover

∂v
∂x(0, 0), we can also recover ∂v

∂z (0, 0).

Next, note that, fixing zk = 0 for all k = 1, . . . , J and xj = 0 for all j 6= 2 in (21), we can write

∂s1

∂z1
= k(l(x2)) (25)
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where

k(v2) : v2 7→
∂v

∂z1
(0)

∂P4

∂v1
(v(0), v2, v (0) , . . . , v (0))−

∑
S⊂J1,S6=∅

∂PS5,1
∂v1

(v (0) , v2, v (0) , . . . , v (0) , 0)


and l (x2) : x2 7→ v(x2, 0). So by the chain rule we have that, for n > 1, ∂ns1

∂z1∂x
n−1
2

is a linear function of

the (n−1)−th derivative of k with slope depending on the first derivative of l and intercept depending

on derivatives of l and derivatives of k of order strictly less than n − 1. Further, by the above, all

derivatives of l are known. Thus, we have a system of equations that can be uniquely solved for the

derivatives of k by recursion.40

Next, we differentiate ∂s1
∂z1

once with respect to z2 and n − 2 times with respect to x2. Similar to

the above, we can write

∂s1

∂z1
= k(v(x2, z2)) (26)

where now note that z2 is no longer fixed at 0. Again by the chain rule we have that, for n ≥ 3,

∂ns1
∂z1∂z2∂x

n−2
2

evaluated at (0,0) is a linear function of ∂n−1v
∂z2∂x

n−2
2

(0, 0) with slope coefficient depending

on k′ (v (0, 0)) and intercept depending on lower-order derivatives of v as well as derivatives of k.41

Because all derivatives of k are known by the argument above, we can iteratively solve for ∂n−1v
∂z2∂x

n−2
2

(0, 0)

for all n ≥ 3.

The remaining terms in the Taylor expansion can be recovered by an analogous argument. Specif-

ically, for any n ≥ 3,m ≥ 2, by differentiating (26) m times wrt z2 and again n−m− 1 times wrt x2,

one can write ∂ns1
∂z1∂zm2 ∂x

n−m−1
2

as a linear function of ∂n−1v
∂zm2 ∂x

n−m−1
2

(0, 0) with known, nonzero slope and

known intercept. This system can then be solved iteratively for ∂n−1v
∂zm2 ∂x

n−m−1
2

(0, 0) for all n > m ≥ 2.

Therefore, we know all the coefficients in the Taylor-expansion of v(x, z) except the constant v(0, 0),

i.e. we can recover v(x, z) up to a constant.

A.2 Identifying good 1 when zj is vector-valued in the linear homogeneous case

For simplicity, the results in the main text are for the case where zj is scalar-valued for all goods j. This

implies that one can label good 1 as the good with the highest value of z without loss of generality. As

we have noted, if there are multiple z attributes per good, then our results apply if the data contains

one choice set where one good is preferable to all other goods on each of the z attributes. This is not

without loss.

We now show how to relax this restriction in the linear homogeneous case of Lemma 3. Let

zkj be the k−th hidden attribute of good j and let βk be the associated preference parameter. By

40Here, we use the fact that, by assumption, the first derivative of l is nonzero.

41Note that ∂2s1
∂z1∂x2

(0,0) = k′ (v (0, 0)) l′ (0), so we have k′ (v (0, 0)) 6= 0 by assumption.
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Assumption 2, we can write sj = fsj (ũ1, . . . , ũJ , x1, . . . , xJ) for all j and thus
∂sj
∂zkj

=
∂fsj
∂ũj

βk, implying
∂sj
∂zkj

/
∂sj
∂zk′j

= βk/βk′ for all k, k′. This means that we can compare the hidden component of utility

across goods. Specifically, letting β1 > 0 without loss, we have that, for any pair of goods j and j′,∑
k βkzkj ≥

∑
k βkzkj′ if and only if z1j − z1j′ +

∑
k>1

βk
β1

(
zkj − zkj′

)
≥ 0. Since the l.h.s. of the last

inequality is identified, we can rank goods based on their non-visible utility. Lemma 3 then applies by

defining good 1 as the good with the highest value of
∑

k βkzkj . Note that such a good always exists

in any choice set (excluding ties) since
∑

k βkzkj is scalar-valued.

A.3 Proof of Theorem 3

Note that the analog of equation (20) in the random coefficients model holds for any given value of α

and β > 0, so that we can write:

s1 =

Kα∑
kα=1

Kβ∑
kβ=1

P6 (v (kα, kβ))−
∑

S⊂J1,S6=∅

PS7
(
v (kα, kβ) ,v0 (kα) , x1

) π̃kα,kβ (27)

where vj (kα, kβ) ≡ xjαkα + zjβkβ , v (kα, kβ) ≡ (v1 (kα, kβ) , . . . , vJ (kα, kβ)), and similarly v0
j (kα) ≡

xjαkα , v0 (kα) ≡
(
v0

1 (kα) , . . . , v0
J (kα)

)
. Differentiating (27), we have, for all integers n ≥ ñ ≥ 0:

∂1+ns1

∂z1∂zñ2 ∂x
n−ñ
2

=

Kα∑
kα=1

Kβ∑
kβ=1

∂1+n
[
P6 (v (kα, kβ))−

∑
S⊂J1,S6=∅ P

S
7

(
v (kα, kβ) ,v0 (kα) , x1;αkα , βkβ

)]
∂z1∂zñ2 ∂x

n−ñ
2

π̃kα,kβ (28)

Next, we evaluate (28) at a value of (x, z) such that xj = x̄ and zj = z̄j for all j. Note that at such

(x, z), P6 no longer depends on kα, kβ. Using this and letting x̄ = z̄ = 0 for notational convenience

(the proof is unchanged for any other values), we may re-write (28) as

∂1+ns1

∂z1∂zñ2 ∂x
n−ñ
2

=
∂1+nP6

∂v1∂vn2
(0)

Kα∑
kα=1

Kβ∑
kβ=1

αn−ñ
kα

βñ+1
kβ

π̃kα,kβ −
Kα∑

kα=1

Kβ∑
kβ=1

αn−ñ
kα

βñ+1
kβ

π̃kα,kβ
∑

S⊂J1,S6=∅

∂1+nPS7
(
0,0, 0;αkα , βkβ

)
∂v1∂vn2

≡
K∑

k=1

[ak,n,ñ + bk,n,ñfk,n]πk

(29)

where we letK ≡ KαKβ and let k represent the double index (kα, kβ), ak,n,ñ ≡ ∂1+nP6
∂v1∂vn2

(0)αn−ñkα
βñ+1
kβ

, bk,n,ñ ≡

αn−ñkα
βñ+1
kβ

are known scalars, and fk,n ≡
∂1+nPS7

(
0,0,0;αkα ,βkβ

)
∂v1∂vn2

and πk ≡ π̃kα,kβ are unknown scalars.

Setting n = K − 1 and stacking the equations corresponding to ñ = 0, . . . ,K − 1, we get

q = Aπ +B(f ∗ π)

where q is a known column K−vector, A,B are known K−by−K matrices, and f∗π denotes the column

vector given by the element-by-element product of f = (f1,K−1, . . . , fK,K−1)′ and π ≡ (π1, . . . , πK)′.
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We re-write this system of equations in a way that highlights which objects depend on z ≡ (z1, . . . , zJ)

as follows

q(z = 0) = Aπ +B(f(z = 0) ∗ π)

Note that A depends on z only through z1−zj (i.e. it exhibits a lack of nominal illusion property) and

we leave that dependence implicit. Now consider increasing zj by ∆z for all j relative to the baseline

z = 0. Then we can write

q(z = ∆z) = Aπ +B(f(z = ∆z) ∗ π)

Combining the last two systems, we get

q(z = ∆z)− q(z = 0) = B [(f(z = ∆z)− f(z = 0)) ∗ π]

If B is full rank,42 we obtain identification of (f(z = ∆z)− f(z = 0)) ∗ π. Also, note that, for all k,

lim∆z→0
fk,K−1(z=∆z)−fk,K−1(z=0)

∆z is the directional derivative of fk,K−1 in the direction 1 = (1, . . . , 1)

and thus is equal to
∑J

j=1
∂fk,K−1

∂zj
(z = 0) if fk,K−1 is differentiable. Therefore, we can write

lim
∆z→0

q(z = ∆z)− q(z = 0)

∆z
= B

 J∑
j=1

∂f

∂zj
(z = 0)

 ∗ π


Because the lhs is identified, this shows that we can identify
(∑J

j=1
∂f
∂zj

(z = 0)
)
∗ π.

Next, for j ∈ J , we can take another derivative wrt zj in (29) and write

q(j)(z = 0) = A(j)π +B(j)

(
∂f

∂zj
(z = 0) ∗ π

)
(30)

for known K−by−K matrices A(j), B(j) and a known column K−vector q(j)(z = 0). Note that

B(j) = B for all j ∈ J and so we can write

J∑
j=1

q(j)(z = 0) =

 J∑
j=1

A(j)

π +B

 J∑
j=1

∂f

∂zj
(z = 0)

 ∗ π
 (31)

From above,
(∑J

j=1
∂f
∂zj

(z = 0)
)
∗ π is identified. This implies that π is identified if the matrix∑J

j=1A(j) is invertible.43

42Note that this condition is immediately verifiable since the points in the support of α and β are chosen by the
researcher.

43Again, this condition is immediately verifiable given the support points for α and β chosen by the researcher.
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A.4 Endogenous attributes

Here, we show how to extend our results to the case where some product attributes are endogenous

(Section 3.1). Letting δ = (δ1, · · · , δJ), we may write the share of good j as

sj = σj (δ, z,p) (32)

for some function σj . Repeating this for all j and stacking the equations, we obtain a demand system

of the form

s = σ (δ, z,p) (33)

where s = (s1, · · · , sJ). We also define the share of the outside option as s0 ≡ 1 −
∑J

j=1 sj , with

associated function σ0 (δ, z,p). We establish nonparametric identification of this demand system by

invoking results from Berry and Haile (2014) (henceforth, BH).44 Specifically, the results in BH yield

identification of (ξj)
J
j=1 for every unit (individual or market) in the population. This means that all the

arguments of σ are known, which immediately implies (nonparametric) identification of σ itself. Once

σ is identified, one may apply our results in Section 2.3 to identify the distribution of the preference

parameters α, βi and λi. Note that, while knowledge of σ is sufficient for several counterfactuals of

interest (e.g., computing equilibrium prices after a potential merger or tax), the preference parameters

are required to predict how choices and welfare would change if consumers were given full information,

among other things. In this sense, our approach complements the identification results in BH within

the class of search models we consider.

To prove identification of σ, we first note that model (32) satisfies the index restriction in BH’s

Assumption 1. Second, we assume that we have excluded instruments w which, together with the

exogenous attributes, satisfy the following mean-independence restriction

E (ξj |x, z,w) = 0 for all j (34)

almost surely (Assumption 3 in BH) and assume that the instruments shift the endogenous variables

(market shares and endogenous attributes p) to a sufficient degree (as in BH’s Assumption 4). Finally,

we verify that the demand system satisfies the “connected substitutes” restriction defined in BH’s

Assumption 2. To this end, we prove the following result.

Lemma 4. Let utility be given by (13) with εi supported on RJ and let Assumptions 2(i), 2(iii), 2(iv),

and either 4(i) or 4(ii) hold. Then, for all j, k = 1, · · · , J with j 6= k, σj is (i) strictly increasing in δj

and (ii) strictly decreasing in δk.

44See also Berry, Gandhi, and Haile (2013).
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Proof. First, assume that pj is part of the visible utility of good j and Fix (δj , pj , zj) for all j. To

prove claim (i), we show that an increase in δj can only induce a consumer to switch from not choosing

j to choosing j but never vice versa, and that a positive mass of consumers will switch to choosing

j. To see this, consider the case where consumer i initially searches j, which happens if and only if

gij (δj , pj , Uik) ≥ 0 for all k such that V Uik ≥ V Uij . Let ∆ ≥ 0 be the change in δj . Since gij is

increasing in its first argument, we have gij (δj + ∆, pj , Uik) ≥ 0 for all k such that V Uik ≥ V Uij + ∆

and thus i will still search j. Moreover, since gij is decreasing in its last argument, if gik (δk, pk, Uij) ≤ 0

for some k such that V Uik ≤ V Uij (i.e. if k is initially not searched), then gik (δk, pk, Uij + ∆) ≤ 0

(i.e. k is also not searched after the change in δj), which means that the set of goods searched by

i never becomes larger. Next, note that if Uij ≥ Uik for all k in the set of searched goods Gi, then

Uij + ∆ ≥ Uik for all k ∈ Gi. Further, since εi is supported on all of RJ , there is a positive mass

of consumers for which Uik ≥ Uij for some k ∈ Gi, but Uij + ∆ ≥ Uik for all k ∈ Gi. An analogous

argument proves claim (ii).

Since the argument above does not rely on the fact that pj is part of the visible utility of good j,

the conclusion also holds for the case in which pj is only uncovered upon searching good j.

Lemma 4 implies that the goods are connected substitutes in δ (see Definition 1 in BH), which

in turn allows us to prove identification of σ by invoking Theorem 1 in BH.45 Since Lemma 4 holds

under either Assumption 4(i) or 4(ii), we obtain identification of preferences both in the case where

pj is part of the visible utility of good j and in the case where pj is only uncovered upon searching j.

Moreover, Theorem 1 of BH implies that one can invert the demand system σ for the indices δ and

write

αxj + ξj = σ−1
j (s, z,p) (35)

for all j. Equations (35) and (34) naturally lead to a nonparametric instrumental variable approach

to estimate σ−1
j (and thus σj).
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A.5 Identification when Observables Impact Search but not Utility

Here, we state and prove the results described in Section 3.2. We make the following assumptions:

Assumption 5. (i) If consumer i searches j, then i also searches all j′ s.t. m
(
V Uij′ , rj′

)
≥ m (V Uij , rj),

where m is strictly increasing in both arguments;

(ii) There is at least one good j 6= 1 such that rj > r1;

(iii) The support of (x, z)
∣∣∣ (r1, . . . , rJ) has positive Lebesgue measure for all (r1, . . . , rJ).

45Note that the proof of Theorem 1 in BH only uses the fact that goods are connected substitutes in δ, not in −p.

46Compiani (2019) proposes to approximate σ−1
j using Bernstein polynomials. We use a similar approach in Section 4

to estimate the demand function for the case without endogeneity.

48



Assumption 5(iii) is substantive: for identification purposes, we consider variation in product

characteristics holding fixed product search position. In practice, search position is likely to vary as a

function of observables (e.g. products are sorted in order of price). However, because of the discrete

nature of search position, we are likely to see variation conditional on search position and this is the

variation we will use to identify our model.

Violations of the visible utility assumption due to search position will cause Lemma 1 to no longer

hold as stated: the good with the highest value of zj can be searched, another good j′ may have higher

utility (and thus higher visible utility), but good j′ may not be searched because it has lower search

position. However, an extension of Lemma 1 will still hold in this case, which then allows us to prove

identification of preferences.

Lemma 5. Let Assumptions 1, 2(ii)-2(iv), and 5 hold and let xj ∈ [x̄ − η, x̄ + η] for all j, for some

η > 0 sufficiently small. Then, if consumer i searches good 1 (i.e. the good with the highest value of

z), then i chooses the good which maximizes utility among all goods with rj ≥ r1.

Proof. Suppose there was a good j with rj ≥ r1 and Uij > Ui1 that consumer i does not search. We

can follow the proof of Lemma 1 to show that V Uij > V Ui1. By Assumption 5(i), this implies that

good j is searched, which is a contradiction.

In other words, if higher search position only makes a good more likely to be searched, then goods

with higher visible utility and higher search position will always be searched if good 1 is searched.

Given this Lemma, we can apply a modification of the identification argument in Theorem 1 after

conditioning on the subset of goods with higher search position than good 1 (defined as usual as the

good with the largest value of zj):

Theorem 4. Let the assumptions of Lemma 5 hold and let utility be given by Uij = v(xj , zj) + εij with

v increasing in both arguments and infinitely differentiable. Further, assume that ∂2s1
∂z1∂xj∗

(x∗, z∗) 6= 0

for some (x∗, z∗) and j∗ 6= 1, s1 is infinitely differentiable and εi ⊥ (x, z). Then, v is identified up to

an additive constant.

Proof. Note that if good 1 doesn’t maximize utility in R, good 1 will never be chosen. If some other

good in R has higher utility, it has higher visible utility and will be searched before good 1. Then, by

Lemma 5, we can write for all (x, z) with z1 ≥ zj and all j:

s1 = P (U1 ≥ Uk ∀k ∈ R)−
∑

S⊂J1,S6=∅

P ({U1 ≥ Uk∀k ∈ R} ∩ {m(V Uj , rj) ≥ m(V U1, r1) for at least one j ∈ S}

∩{g1 (x1, Uj) ≤ 0 for all j ∈ S} ∩ {g1 (x1, Uj) ≥ 0 for all j ∈ J1\S})

≡ P4new (v)−
∑

S⊂J1,S6=∅

PS5new
(
v,v0, x1, r

) (36)
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where v and v0 are defined as in the proof of Theorem 1 (Appendix A.1) and r ≡ (r1, . . . , rJ). Further,

for every S ⊂ J1,S 6= ∅, we have

PS5new = P ({U1 ≥ Uk ∀k ∈ R} ∩ {g1 (x1, Uj) ≤ 0 for all j ∈ S} ∩ {g1 (x1, Uj) ≥ 0 for all j ∈ J1\S})−

P ({U1 ≥ Uk ∀k ∈ R} ∩ {m(V U1, r1) ≥ m(V Uj , rj) for all j ∈ S}

∩{g1 (x1, Uj) ≤ 0 for all j ∈ S} ∩ {g1 (x1, Uj) ≥ 0 for all j ∈ J1\S})

= P ({U1 ≥ Uk ∀k ∈ R} ∩ {g1 (x1, Uj) ≤ 0 for all j ∈ S} ∩ {g1 (x1, Uj) ≥ 0 for all j ∈ J1\S})−

P ({m(V U1, r1) ≥ m(V Uj , rj) for all j ∈ S} ∩ {g1 (x1, Uj) ≤ 0 for all j ∈ S} ∩ {g1 (x1, Uj) ≥ 0 for all j ∈ J1\S})

≡ PS5new,1 (v, x1, r)− PS5new,2

(
v−1,v

0, x1, r
)

where v−1 ≡ (v2, . . . , vJ). This argument exactly parallels the argument in Appendix A.1, except now

we have additionally used the fact that U1 ≥ Uj for all j ∈ R, since (i) if j ∈ S, then m(V U1, r1) ≥
m(V Uj , rj) implies V U1 ≥ V Uj , which in turn implies U1 ≥ Uj ; (ii) if j /∈ S, then g1 (x1, Uj) ≥ 0 ≥
g1 (x1, Uk) for all k ∈ S implies Uj ≤ Uk. Note that PS5new,2 does not depend on z1 and PS5new,1 (v, x1, r)

only depends on xj and zj via vj for j 6= 1, so the remainder of the argument in Appendix A.1 applies.

A.6 Identification of a model where consumers form expectations on zj based on

xj

Here, we state and prove the results described in Section 3.3. Given γ1, we can identify the ranking of

goods in terms of z̃ and we label good 1 as the good with the largest value of z̃. Then, an argument

analogous to that in Lemma 3 yields identification of β
α+βγ1

.47 We can also recover α+βγ1 in a manner

that parallels our usual identification of α (Lemma 3). When z̃j = z̃ for all j, consumers who search

based on our visible utility assumption always maximize utility, and thus we can directly estimate

α + βγ1 as the coefficient on xj for those consumers (we provide a formal proof of this in the next

subsection). Therefore, this gives separate identification of β and α given γ1.

When γ1 is unknown, we can identify β/α if we know its sign and make a further support assump-

tion. Suppose that the sign of γ1 is known (e.g. higher priced goods have weakly higher quality).

Without loss, we assume γ1 > 0. In addition, suppose that there exist choice sets in which a good has

both the highest value of z and the lowest value of x. Even when γ1 is unknown, this good is known

to maximize z̃; thus, we can label it by 1. Note that we cannot differentiate with respect to z̃ as in

the case above since γ1 and thus z̃ is unknown. However, with good 1 defined appropriately, Corollary

1 shows that cross-derivatives with respect to z1, zj , xj for j 6= 1 identify β/α (specifically, consumers

who search the good with the highest value of z̃ will always maximize utility, and so their sensitivity

to xj and zj identifies their true preferences).

47In Lemma 3, we showed identification of β
α

by taking derivatives of s1 w.r.t. z1, z2, x2. Similarly, here we obtain

identification of β
α+βγ1

by taking derivatives of s1 wrt z̃1, z̃2, x2.
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A.6.1 Identification of α+ βγ1

Note that if z̃j = 0 for all j, then consumers always maximize utility. Thus, seeing how choice

probabilities change with x conditional on z̃j = 0 for all j should help identify α + βγ1. Because

the event z̃j = 0 involves xj , we need to differentiate choice probabilities with respect to xj on the

envelope satisfying the condition z̃j = 0 for all xj . Formally, fix any j ∈ J and choose (xk, zk) so that

zk = γ0 + γ1xk (which implies z̃k = 0) for all k 6= j. For every δ > 0, let ε(δ) ≡ γ0 + (xj + δ) γ1 − zj ,
so that zj + ε (δ) − E (zj |xj + δ) = 0. Note that ε (δ) is known to the econometrician. Denoting by

x−j = (xk)k 6=j and similarly for z−j , we have

sj (xj + δ,x−j , zj + ε(δ), z−j)− s (x, z)

δ
(37)

=
P ((xj + δ) (α+ βγ1) + εij ≥ xk (α+ βγ1) + εik∀k)− P (xj (α+ βγ1) + εij ≥ xk (α+ βγ1) + εik∀k)

δ
δ→0−−−→ ∂

∂xj
P (xj (α+ βγ1) + εij ≥ xk (α+ βγ1) + εik ∀k) (38)

where the first equality follows from the fact that all consumers always maximize utility at the chosen

values of (x, z). Now note that (i) the expression in (37) is known for all δ > 0; and (ii) at x = 0,

the term in (38) factors into (α+ βγ1) and a term that only depends the distribution of εi. Thus,

evaluating the last display at x = 0 yields identification of (α+ βγ1) under a parametric assumption

on εi.

A.7 Unobservables revealed by search

Here, we show that the ratio of second derivatives in (5) robustly identifies β
α in the model where εij

is revealed to consumer i only upon searching good j (Section 3.4).

Order goods in increasing order of x. Then, for j = 1, . . . , J ,

sj =

j∑
k=1

P ({Uj ≥ Uj′ ∀ j′ ∈ {k, . . . , J}} ∩ {search exactly k, . . . , J})

=

j∑
k=1

P ({Uj ≥ Uj′ ∀ j′ ∈ {k, . . . , J}} ∩ {g(xh, εh, Uh′) ≥ 0 ∀ h = k, . . . , J − 1;h′ ∈ {h+ 1, . . . , J}} ∩

{g(xh, εh, Uj) ≤ 0 ∀h = 1, . . . , k − 1})

≡
j∑

k=1

P
(k)
j (ũ,x−J)
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Thus,

∂2sj
∂zj∂zJ

=

j∑
k=1

∂2P
(k)
j

∂ũj∂ũJ
β2

∂2sj
∂zj∂xJ

=

j∑
k=1

∂2P
(k)
j

∂ũj∂ũJ
αβ

So the ratio of the latter two derivatives identifies β
α . (Note that the ratio of

∂sj
∂zJ

to
∂sj
∂xJ

for any j

would also work). On the other hand,

∂sj
∂zj

=

j∑
k=1

∂P
(k)
j

∂ũj
β

∂sj
∂xj

=

j∑
k=1

(
∂P

(k)
j

∂ũj
+

1

α

∂P
(k)
j

∂xj

)
α

(39)

Since 1
α

∂P
(k)
j

∂xj
≥ 0, (39) implies that the ratio of first derivatives suffers from attenuation bias, i.e.

∂sj
∂zj
∂sj
∂xj

≤ β
α .

A.8 K−rank model

Consider the simultaneous search model in Honka, Hortaçsu, and Vitorino (2017) with J = 2 goods.

In this model, a consumer looks at the visible utilities and decides whether to search the good with the

highest visible utility or search both goods. Searching a second good entails a cost c, constant across

consumers. As usual, we denote by 1 the good with the highest value of z.

Note that consumer i searches 2 but not 1 if and only if V Ui2 > V Ui1 and

Ez1,z2 [max {V Ui1 + βz1, V Ui2 + βz2}]− c < Ez2 [V Ui2 + βz2] (40)

i.e.

Ez1,z2 [max {V Ui1 − V Ui2 + β (z1 − z2) , 0}]− c < 0 (41)

or gsim (V Ui1 − V Ui2) < 0 for an increasing function gsim. Equation (6) then can be written as

s1 = P (U1 > U2)− P ({U1 > U2} ∩ {V U2 > V U1} ∩ {gsim(V U1 − V U2) < 0})

= P1,sim − P2,sim (42)
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We also have:

∂2s1

∂z1∂z2
= β2

(
∂2P1,sim

∂ũ1∂ũ2
− ∂2P2,sim

∂ũ1∂ũ2

)
(43)

and

∂2s1

∂z1∂x2
= αβ

(
∂2P1,sim

∂ũ1∂ũ2
− ∂2P2,sim

∂ũ1∂ũ2
− ∂2P2,sim

∂ũ1∂ṽu2

)
(44)

So, if
∂2P2,sim

∂ũ1∂ṽu2
= 0, then the ratio of (43) to (44) identifies β

α . Note that the event in P2,sim is

equivalent to the following set of inequalities: (i) εi1 > ũ2 − ũ1 + εi2, (ii) εi1 < ṽu2 − ṽu1 + εi2, (iii)

εi1 < g−1
sim(0) + ṽu2 − ṽu1 + εi2, where V Uij = ṽuj + εij and Uij = ũj + εij , as above. Then, letting

ε̃ = ε1 − ε2, we have:

P2,sim =

∫ min(ṽu2−ṽu1,g
−1
sim(0)+ṽu2−ṽu1)

ũ2−ũ1

fε̃(ε̃)dε̃ =

∫ min(0,g−1
sim(0))

β(z2−z1)
fε̃(ε̃)dε̃

Thus,
∂2P2,sim

∂ũ1∂ṽu2
= 0.

Finally, we show that the ratio of first derivatives leads to attenuation bias. This follows directly

from

∂s1

∂z1
= β

(
∂P1,sim

∂ũ1
− ∂P2,sim

∂ũ1

)
∂s1

∂x1
= α

(
∂P1,sim

∂ũ1
− ∂P2,sim

∂ũ1
− ∂P2,sim

∂ṽu1

)

and the fact that
∂P2,sim

∂ṽu1
< 0.
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Appendix B: Testing for full information with heterogeneous prefer-

ences

In Section 2.7, we considered the problem of testing the null hypothesis of full information and showed

that, in the case where the coefficients α and β are homogeneous across consumers, a valid test rejects

the null when the ratios of first derivatives are attenuated relative to the ratio of second derivatives in

(12). Here, we provide conditions under which the same test is valid in the case where one of the two

coefficients is allowed to be heterogeneous.48 We focus on the case where β is heterogeneous and zj is

a scalar; the argument for the case where α is heterogeneous (and xj is a scalar) is analogous. We also

assume that the εij shocks are type-I extreme-value distributed and let sj(β̃) be the market share of

good j for consumers with β = β̃ under full information, i.e. sj(x, z; β̃) ≡ exp(αxj+β̃zj)∑J
k=1 exp(αxk+β̃zk)

.

We let j = 2, k = k′ = 1 in equation (12), i.e. we consider the case where the test compares the

ratio of second derivatives taken with respect to good 1 and 2 to the ratio of first derivatives taken with

respect to good 1. Analogous sufficient conditions could be obtained for different choices of j, k, k′.

Then, we want to show that∫
s1(x, z;β)(1− s1(x, z;β))βdFβ

α
∫
s1(x, z;β)(1− s1(x, z;β))dFβ

≥
−
∫
s1(x, z;β)s2(x, z;β)(1− 2s1(x, z;β))β2dFβ

−α
∫
s1(x, z;β)s2(x, z;β)(1− 2s1(x, z;β))βdFβ

(45)

where Fβ denotes the distribution of β. We take a pair (x, z) such that ∂s1(x,z)
∂x1

> 0 and ∂2s1(x,z)
∂z1∂x2

> 0

(both of which can be verified from the data), so that (45) holds if and only if

− α

∫
s1(x, z;β)s2(x, z;β)(1− 2s1(x, z;β))βdFβ

∫
s1(x, z;β)(1− s1(x, z;β))βdFβ ≥

−
∫
s1(x, z;β)s2(x, z;β)(1− 2s1(x, z;β))β2dFβα

∫
s1(x, z;β)(1− s1(x, z;β))dFβ

Then, by Theorem 2 of Wijsman (1985), the desired inequality holds if (i) β > 0, and (ii) α
β and

−s1(x,z;β)s2(x,z;β)(1−2s1(x,z;β))β
s1(x,z;β)(1−s1(x,z;β)) = − s2(x,z;β)(1−2s1(x,z;β))β

1−s1(x,z;β) are monotonic functions of β in the same direc-

tion. Since we assumed throughout that α > 0, we want to show that − s2(x,z;β)(1−2s1(x,z;β))β
1−s1(x,z;β) decreases

in β monotonically. After some algebra, we have that

∂
[
− s2(x,z;β)(1−2s1(x,z;β))β

1−s1(x,z;β)

]
∂β

< 0 ∀β

48The reason why we let only one of the coefficients be heterogeneous is that we leverage a result from the statistics
literature that applies to ratios of one-dimensional integrals.
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if and only if, for all β,

(1− 2s1 (x, z;β))(1− s1 (x, z;β)) >

β

[
s1(x, z;β)

(
z1 −

J∑
k=1

sk(x, z;β)zk

)
− (1− s1(x, z;β))(1− 2s1(x, z;β))

(
z2 −

J∑
k=1

sk(x, z;β)zk

)]
(46)

Under these conditions, at the chosen values of x, z, a valid test of the null of full information rejects

when the ratio of first derivatives is sufficiently attenuated relative to the ratio of first derivatives. Note

that the condition in (46) can be verified given the support of the distribution of β. For example, if β

takes values on a finite grid of points (as in Section 2.3), then one needs to check whether (46) holds

for all values in the grid. Finally, we emphasize that (46) is a sufficient, but in general not necessary

condition, implying that the proposed test could be valid even if the restriction is not satisfied.

Appendix C: Derivation of Flexible Logit Weights and Choice Prob-

abilities

In this section, we derive the relevant derivatives of choice probabilities for the flexible logit model

described in the text. In this model:

v1 = ṽ(x1, z1) + b1z1 +
∑
k 6=1

(γkwz1kzk + γ2kwx1kxk + wz2kδkzkz1 + wx2kδ2kxkz1) (47)

and vk = ṽ(xk, zk) for k 6= 1 where b1, γk, γ2k, δk and δ2k are coefficients to be estimated which allow

greater flexibility in how derivatives with respect to z1 vary with attributes of rival goods. The weights

wx1k, wz1k, wx2k and wz2k are chosen so that, given the logit functional form, ∂2s1
∂z1∂zj

/ ∂2s1
∂z1∂xj

can be

constant across goods as our structural model implies when these weights are regarded as constant in

derivatives. With these weights, we have the following derivatives (where we use the notation ṽj to

S2



refer to the function ṽ evaluated at (xj , zj):

∂v1

∂z1
=

∂ṽ1

∂z
+ b1 +

∑
k 6=1

(wz2kδkzk + wx2kδ2kxk)

∂s1

∂x1
=

∂s1

∂v1

∂v1

∂x1
=
∂ṽ1

∂x
s1(1− s1)

∂s1

∂z1
=

∂s1

∂v1

∂v1

∂z1
=
∂v1

∂z1
s1(1− s1)

∂s1

∂xj′
=

∂s1

∂vij′

∂vij′

∂xj′
+
∂s1

∂vi1

∂vi1
∂xj′

= −
∂ṽj′

∂x
s1sj′ + [wx1j′γ2j′ + wx2j′δ2j′z1]s1(1− s1)

∂s1

∂zj′
=

∂s1

∂vij′

∂vij′

∂zj′
+
∂s1

∂vi1

∂vi1
∂zj′

= −
∂ṽj′

∂z
s1sj′ + [wz1j′γj′ + wz2j′δj′z1]s1(1− s1)

∂2s1

∂z1∂xj′
=

∂2s1

∂v1∂xj′

∂v1

∂z1
+
∂s1

∂v1

∂2v1

∂z1∂xj′

=
∂v1

∂z1
(1− 2s1)

∂s1

∂xj′
+ s1(1− s1)wx2j′δ2j′

∂2s1

∂z1∂zj′
=

∂2s1

∂v1∂zj′

∂v1

∂z1
+
∂s1

∂v1

∂2v1

∂z1∂zj′

=
∂v1

∂z1
(1− 2s1)

∂s1

∂zj′
+ s1(1− s1)wz2j′δj′

(48)

And also:

∂2s1

∂z1∂zj′
/
∂2s1

∂z1∂xj′
=

∂v1
∂z1

(1− 2s1) ∂s1∂zj′
+ s1(1− s1)wz2j′δj′

∂v1
∂z1

(1− 2s1) ∂s1∂xj′
+ s1(1− s1)wx2j′δ2j′

=

∂v1
∂z1

(1− 2s1)
(
−∂ṽj′

∂z s1sj′ + [wz1j′γj′ + wz2j′δj′z1]s1(1− s1)
)

+ s1(1− s1)wz2j′δj′

∂v1
∂z1

(1− 2s1)
(
−∂ṽj′

∂x s1sj′ + [wx1j′γ2j′ + wx2j′δ2j′z1]s1(1− s1)
)

+ s1(1− s1)wx2j′δ2j′

(49)

If we define the weights: wx1j′ = wz1j′ =
sj′

1−s1 and wx2j′ = wz2j′ = [ z1(1−s1)
sj′

+ (1−s1)
(∂v1/∂z1)(1−2s1)sj′

]−1 =

(1−2s1)sj′
1−s1

(
1

∂v1/∂z1
+ (1− 2s1)z1

)−1
=

(∂v1/∂z1)(1−2s1)sj′
1−s1 (1 + (1− 2s1)z1(∂v1/∂z1))−1, then:

∂2s1

∂z1∂zj′
/
∂2s1

∂z1∂xj′
=

∂v1
∂z1

(1− 2s1)s1sj′
(
−∂ṽj′

∂z + γj′wz1j′
(1−s1)
sj′

+ δj′wz2j′ [
z1(1−s1)

sj′
+ (1−s1)

(∂v1/∂z1)(1−2s1)sj′
]
)

∂v1
∂z1

(1− 2s1)s1sj′
(
−∂ṽj′

∂x + γj′wx1j′
(1−s1)
sj′

+ δj′wx2j′ [
z1(1−s1)

sj′
+ (1−s1)

(∂v1/∂z1)(1−2s1)sj′
]
)

=

∂v1
∂z1

(1− 2s1)s1sj′
(
−∂ṽj′

∂z + γj′ + δj′
)

∂v1
∂z1

(1− 2s1)s1sj′
(
−∂ṽj′

∂x + γ2j′ + δ2j′

)
=

−∂ṽj′
∂z + γj′ + δj′

−∂ṽj′
∂x + γ2j′ + δ2j′

(50)
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Thus, we have:

∂2s1

∂z1∂zj′
/
∂2s1

∂z1∂xj′
=

−∂ṽj′
∂z + γj′ + δj′

−∂ṽj′
∂x + γ2j′ + δ2j′

(51)

where wz1j′ = wx1j′ =
sj′

1−s1 and wx2j′ = wz2j′ = (∂v1/∂z1)
(1−2s1)sj′

1−s1 (1 + (∂v1/∂z1)(1− 2s1)z1)−1.

Given a linear specification of ṽ, ṽ(xj , zj) = xja1 + zja2, this implies that the above ratio is a constant

for each j′.

Estimation of the model with these weights is infeasible since the levels of the choice probabilities

s1 and sk, as well as the derivatives ∂v1/∂z1 are unknown ex ante and thus we do not know the weights.

We estimate the model via a two-step process where s1 and sk are estimated using a naive logit model

(where utility for each good is a linear function of xj and zj), these estimates are used to construct

weights, and then the model in equation (17) is estimated treating these weights as constants.49

To recover estimates of β/α from the flexible logit model, we use the ratio in equation (51). With

the linear specification of ṽ, this ratio is given by β
α =

−a2+γj′+δj′
−a1+γ2j′+δ2j′

. In cases where the identity of

goods is not meaningful (e.g. “good 2” does not refer to the same good across different choice sets

and there are no alternative-specific fixed effects), we can further impose γk = γ, γ2k = γ2, δk = δ and

δ2k = δ2, which gives a single estimate of β
α .

Appendix D: Recovery of Search Costs Given Preferences in the Weitz-

man Model

Suppose that utility is given by Uij = xjα+zjβ + εij and that consumers search sequentially according

to the model of Weitzman (1979).

As shown in Armstrong (2017),50 the optimal search strategy is for consumers to behave as if they

were choosing among options in a static model with utilities given by Ũij = xjα + min {zj , rvi}β +

εij , where rvi denotes i’s reservation value in units of z (see Example 1). Thus, dropping i subscripts,

ordering goods so that z1 ≥ z2 ≥ . . . ≥ zJ , and letting

Et ≡ {ε : εk − ε1 ≤ (x1 − xk)α, k = 2, ..., J − t− 1}∩{ε : εh − ε1 ≤ (x1 − xh)α+ (rv − zh)β, h = J − t, ..., J}

49Since ∂v1/∂z1 is estimated imprecisely from the naive logit, when 1 + (∂v1/∂z1)(1− 2s1)z1 is close to 0 (leading to
very large weights), we set ∂v1/∂z1 = 0 when the former term falls below 1 in absolute value.

50See also Choi, Dai, and Kim (2018).
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we can write

s1 = P (x1α+ min {z1, rv}β + ε1 ≥ xkα+ min {zk, rv}β + εk ∀k)

= P (εk − ε1 ≤ (x1 − xk)α ∀k)P (rv ≤ zJ)

+
J−2∑
t=0

∫
P ({ε ∈ Et} ∩ {zJ−t ≤ rv ≤ zJ−t−1}) dFrv (rv)

+ P (εk − ε1 ≤ (x1 − xk)α+ (z1 − zk)β ∀k)P (rv ≥ z1)

where Frv denotes the cdf of rv and the second equality assumes that search costs (and thus rv) are

independent of ε. Therefore, we have

∂s1

∂z1
=

[
∂

∂z1
P (εk − ε1 ≤ (x1 − xk)α+ (z1 − zk)β ∀k)

]
P (rv ≥ z1) (52)

Given identification of (α, β) by the argument in Section 2.1, the first term on the rhs of (52) is identified

given parametric assumptions on the distribution of ε. Thus, P {rv ≥ z1} is identified. Repeating the

argument for all z1, one can trace out the entire distribution of rv. Since c, the search cost for consumer

i, is a known transformation of rv,51 the distribution of c is also identified.

Equation (52) also lends itself to a different argument that does not require making a parametric

assumption on the distribution of ε, but instead relies on “at-infinity” variation. Note that the first

term on the rhs of (52) is invariant to increasing all zj ’s by the same amount. Thus, we can write

∂s1
∂z1

(z + ∆)
∂s1
∂z1

(z)
=
P (rv ≥ z1 + ∆)

P (rv ≥ z1)
(53)

where ∆ is a J−vector with all elements equal to some ∆. Letting ∆ → −∞, the numerator on the

rhs of (53) goes to 1, which yields identification of P (rv ≥ z1). Repeating the argument for all z1, one

can trace out the entire distribution of rv and recover the distribution of c as above.

Appendix E: Welfare Benefits of Information

Appendix D of Abaluck and Gruber (2009) shows that dollar-equivalent consumer surplus in logit

models where positive preferences (i.e., preferences describing potentially uninformed behavior) are

given by βpos and normative preferences (i.e., those relevant for welfare evaluations) are given by

51This assumes that the prior Fz used by consumers in forming expectations are known to the researcher, as in the case
where consumers have rational expectations and Fz coincides with the observed distribution of z across goods and/or
markets.
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βnorm can be computed as:

E(CS0) = − 1

αp

[∑
k

(xkβnorm − xkβpos)sk(βpos) + ln
∑
k

exp(xikβpos)

]

where αp is the (normative) marginal utility of income, estimated as the coefficient on price. Once

consumers are informed and their preferences are βnorm, consumer surplus is given by the conventional

log-sum formula:

E(CS1) = − 1

αp
ln
∑
k

exp(xkβnorm)

The change in consumer surplus from providing consumers with information is thus:

∆CS = − 1

αp

[
ln
∑
k

exp(xkβnorm)− ln
∑
k

exp(xkβpos) +
∑
k

(xkβpos − xkβnorm)sk(βpos)

]
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