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Abstract

Identification-robust test statistics are commonly obtained via the contin-

uous updating objective function or its score. When the number of mo-

ment conditions grows proportionally with the sample size, the asymptotic

distribution of neither of these two objects is known. The main obstacle

in establishing the asymptotic distribution is the appearance of a large-

dimensional and asymptotically random weighting matrix. We show that

when the moment conditions evaluated at the true parameter vector are

reflection invariant, this obstacle can be circumvented. In a linear instru-

mental variables model with many instruments and heteroskedasticity, we

show joint asymptotic normality of the objective function and the score

statistic under the null. We find a number of additional variance terms that

we can consistently estimate to restore the validity of conventional inference

procedures in the presence of many instruments.
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1 Introduction

This paper considers a situation where a researcher conducts inference based on

a linear instrumental variables (IV) model with (a) many instruments to increase

estimation efficiency, (b) no assumptions on the validity of these instruments, and

(c) heteroskedasticity. The development of inference procedures under the combi-

nation of (a), (b) and (c) has been obstructed by the large-dimensional weighting

matrix that appears in identification-robust test statistics that are based on the

continuous updating (CU) objective function. Examples include the Anderson-

Rubin statistic, Kleibergen’s (2005) K statistic, and combinations of these such as

the CLR statistic by Moreira (2003).

To circumvent the obstruction posed by the weighting matrix, we show how

invariance arguments can be used to obtain the (limiting) distribution of the CU

objective function and its score. As a motivating example, we observe that if the

moment conditions are orthogonally invariant, the finite sample distribution of the

CU objective function is known in closed form. This sidesteps the issue that the

dimension of the weighting matrix is nonneglible compared to the sample size, but

the scope of application is limited: when the moment conditions are independent,

orthogonal invariance implies that they are normally distributed.

We show that when the moment conditions evaluated at the true parameter

vector satisfy a weaker invariance property, known as orthant symmetry (Efron,

1969) or reflection invariance (Bekker and Lawford, 2008), the obstruction posed

by the weighting matrix can be circumvented as well. This type of invariance is

suitable for heteroskedastic models as it allows the distribution of the moment

conditions to change across observations. Under reflection invariance, the finite

sample distribution of the CU objective function is no longer tractable, but its

limiting distribution, and hence, that of the Anderson-Rubin statistic, follows from

known results on the limiting behavior of bilinear forms by Chao et al. (2012).

A downside of the Anderson-Rubin statistic is that it lacks power in overidenti-

fied models. This problem is particularly severe under many instrument sequences.

We therefore turn to a derivation of the distribution of the score function. By de-

riving a new central limit theorem (CLT) for cubic forms, we show joint asymptotic

normality of the score and the AR statistic under many instrument sequences. The

variance of the score function is shown to contain several terms that do not appear

when the number of instruments grows slower than proportionally with the sample

size. We also find that under many instruments and heteroskedasticity, the AR

statistic and the score are asymptotically dependent.
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Obtaining inference that is uniformly valid over the strength of the instruments

as well as the number of instruments requires careful implementation. For the

AR statistic, we adjust the critical values so that the procedure automatically

reduces to the standard procedure under a fixed number of instruments if the

number of instruments is indeed small. For the score, we propose an estimator

of the variance that reduces to that of Kleibergen (2005) when the number of

instruments is small. To enhance power against irrelevant alternatives, we follow

the suggestion by Kleibergen (2005) to reject the null hypothesis when the AR

statistic and/or the absolute value of the score statistic are large, and control size

by choosing the size of each test appropriately.

We assess the finite sample performance of the tests in a simulation that is

based on the design in Hausman et al. (2012). The simulation shows that un-

like conventional asymptotic approximations, the many instrument identification

robust tests have excellent size control regardless of the instrument strength and

regardless of the number of instruments. This contrasts with the procedures de-

veloped for a fixed number of instruments that get progressively more conservative

when the number of instruments increases relative to the sample size. Moreover,

we find that the developed procedures are robust to small deviations from the

assumed reflection invariance.

We use our robust tests to revisit the study on the return of education by An-

grist and Krueger (1991) using the 1530 instruments suggested in Mikusheva and

Sun (2021). We find that the AR test provides rather wide confidence intervals

that slightly increase in width when the number of instruments increases. Com-

bining the AR test with the score test leads to confidence intervals for the return

on education that are remarkably robust to the number of instruments (k) used:

with k = {30, 180, 1530} we find that the 95% confidence intervals for the return

on education are [0.05, 0.13], [0.07, 0.13], [0.04, 0.16] respectively.

Related literature Many instrument sequences can be traced back to Kunit-

omo (1980) and Morimune (1983). Bekker (1994) shows that in a homoskedastic

IV model with normally distributed errors and strong instruments, the two-stage

least squares estimator is inconsistent under many instruments. The limited in-

formation maximum likelihood estimator remains consistent, but the presence of

many instruments changes the asymptotic variance. Hansen et al. (2008) extend

the scope of these results by removing the normality assumption. Anatolyev (2019)

provides an extensive survey of the literature on many instruments.

The consistency of the limited information maximum likelihood estimator is
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lost under heteroskedasticty, with the exception of balanced group structures as in

Bekker and van der Ploeg (2005). Estimators that remain consistent under many

instruments and heteroskedasticity were developed by Hausman et al. (2012), Chao

et al. (2012), Chao et al. (2014) and Bekker and Crudu (2015). The key idea is to

explicitly remove the terms in the LIML objective function that cause the incon-

sistency under heteroskedasticity, leading to various jackknife estimators. In this

sense it is not surprising that continuous updating is useful under heteroskedas-

ticity given the jackknife interpretation by Donald and Newey (2000).

When instruments are weak or even irrelevant, consistent estimation of the

parameters of interest cannot be achieved, and the focus shifts to inference proce-

dures that guarantee size control uniformly over the strength of the instruments.

In homoskedastic linear IV models, such identification-robust inference is com-

monly based on (i) the Anderson-Rubin statistic (Anderson and Rubin, 1949)

that is a scaled version of the LIML objective function, (ii) statistics based on the

score of this objective function (Kleibergen, 2002), or (iii) a combination of (i) and

(ii) as in the conditional likelihood-ratio (CLR) test (Moreira, 2003). The CLR

test is particularly attractive as it provides near optimal power (Andrews et al.,

2019). Under heteroskedasticity, inference can be based on the continuous up-

dating objective function, its score (Kleibergen, 2005) or generally more powerful

conditional test statistics (Andrews and Mikusheva, 2016).

Allowing many instruments to be potentially weak can be done through what is

called many weak instrument sequences developed by Chao and Swanson (2005)

and Stock and Yogo (2005). Such sequences are crucially different from many

instrument sequences as they restrict the number of instruments to increase at a

slower rate relative to the sample size. Bekker and Kleibergen (2003) study the

homoskedastic Gaussian IV model and find that under many instrument sequences

the score-based statistic by Kleibergen (2002) statistic needs to be rescaled to

obtain the familiar χ2 limiting distribution.

Finally, the combination of robust inference in linear IV models with many in-

struments and heteroskedasticity that is considered in this paper has been studied

recently by Crudu et al. (2021), Mikusheva and Sun (2021), Matsushita and Otsu

(2020) and Lim et al. (2022). Instead of using the continuous updating objective

function, these papers change the objective function by using the weighting matrix

from the homoskedastic set-up. Critical values for the resulting AR statistic can

then be derived that yield a valid test even under heteroskedasticity. Using the

homoskedastic weighting matrix, Matsushita and Otsu (2020) propose a jackknife

LM statistic that is also identification and many instrument robust under het-
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eroskedasticity. Lim et al. (2022) consider a conditional linear combination of the

squared jackknife AR statistic and an orthogonalized LM statistic. Critical values

that yield good power are then derived using the framework of Andrews (2016).

Invariance properties can open up a route to exact finite sample inference via

randomization tests (Lehmann and Romano, 2005; Bekker and Lawford, 2008;

Canay et al., 2017). In special cases, invariance can even be used to derive the

exact finite sample distribution, e.g. the t-statistic has a Student’s t-distribution

under rotational invariance (Fisher, 1925). In other cases, the distribution must

be simulated by drawing transformations from the invariance group. For a recent

example of such randomization inference in economics, see Young (2019). In our

setting, one could indeed simulate the exact finite sample distribution of the AR

statistic, be it at substantial computational costs. However, this does not appear

to be case for the score, which depends on the first stage errors and the covariance

between the first and second stage errors, both of which are unknown.

Structure In Section 2 we discuss the heteroskedastic IV model and the CU ob-

jective function. Two invariance conditions and their implications for the distribu-

tion of the AR statistic are discussed in Section 3. Section 4 focuses on results for

the score of the CU objective function. Section 5 provides the estimators required

to implement the tests and discusses the consistency and asymptotic normality of

the continuous updating estimator. Section 6 contains the Monte Carlo results.

The empirical application is given in Section 7. Section 8 concludes.

Notation For a vector v, denote byDv the diagonal matrix with v on its diago-

nal. Moreover, for a square matrix A, let DA = A⊙ I, where ⊙ is the Hadamard

product. We use Ȧ = A − DA for a matrix with all diagonal elements equal

to zero. Projection matrices are denoted as PA = A(A′A)−1A′. ι indicates a

vector of ones and ei a vector with its ith entry equal to one and the remaining

entries equal to zero. Let a(h) = Aeh denote the hth column of a matrix A. For

random variables A and B, A
(d)
= B means that A is distributionally equivalent

to B. A
(E)
= B means that E[A] = E[B]. EA[·] is the expectation over the dis-

tribution of the random variable A. →d denotes convergence in distribution, →p

convergence in probability and →a.s. almost sure convergence. a.s.n. is short for

with probability 1 for all n sufficiently large. For a symmetric n × n matrix A,

λmin(A) = λ1(A) ≤ · · · ≤ λn(A) = λmax(A) denote its eigenvalues. C denotes a

generic finite positive constant that can differ between appearances. We tacitly

assume C > 1/C if necessary.
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2 Continuous updating and the heteroskedastic

linear IV model

While some of our results can be applied to any model with invariant moment

conditions, our main focus is on the heteroskedastic linear IV model. The model

has p endogenous regressors and no other control variables, because we assume

these have been partialled out before. Both the first and second stage are exactly

linear,

yi = x
′
iβ0 + εi,

xi = Π′zi + ηi

= z̄i + ηi,

(1)

with β0 a p × 1 vector, Π a k × p matrix, and i = 1, . . . , n. We denote ε =

(ε1, . . . , εn)
′, X = (x1, . . . ,xn)

′, Z = (z1, . . . ,zn)
′, and Z̄ = (z̄1, . . . , z̄n)

′. We

also introduce the following notation that will be convenient below: for some β,

not necessarily equal to β0, εi(β) = yi − x′
iβ and ε(β) = (ε1(β), . . . , εn(β))

′.

The model (1) is accompanied by the following assumptions.

Assumption A1. (a) (εi,η
′
i) is independent over i = 1, . . . , n, has mean zero

and second moment matrix E[(εi,η
′
i)
′(εi,η

′
i)] = Σi = (σ2

i σ′
12i; σ12i Σ22i),

(b) 0 < C−1 ≤ λmin(Σi) ≤ λmax(Σi) ≤ C < ∞, (c) For all i, E[ε4i ] ≤ C < ∞ and

E[||ηi||4] ≤ C <∞, (d) zi is independent of (εj,η
′
j) for all (i, j).

Parts (a)–(c) are relatively mild assumptions on the first and second stage er-

rors in (1). An alternative to part (d) would be to phrase some of our assumptions

conditional on the instruments as for example in Chao et al. (2012).

To estimate β0, we have k moment conditions gi(β) that are independent

across i and satisfy E[gi(β0)] = E[ziεi] = 0. We stack the moment conditions

in the n × k matrix G(β) = [g1(β), . . . , gn(β)]
′, such that rank(G(β0)) = k.

Define the orthogonal projection matrix P (β) = G(β)(G(β)′G(β))−1G(β)′. The

continuous updating (CU) objective function introduced by Hansen et al. (1996)

can be written as

Q(β) =
1

2n
ι′P (β)ι. (2)

Note that we can write this function as Q(β) = k
2n

+ 1
2n

∑
i ̸=j[P (β)]ij. The

minimizer of (2) is the continuous updating estimator (CUE), which Donald and

Newey (2000) show has a jackknife interpretation. Newey and Windmeijer (2009)
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show that the estimator is asymptotically normal when the rate at which the

number of instruments grows is limited to k3/n→ 0.

The CU objective function is closely related to the Anderson-Rubin GMM

(abbreviated as AR) statistic, defined as

AR(β) = 2nQ(β). (3)

For a fixed number of instruments k, the AR statistic is asymptotically χ2(k)

distributed when evaluated at β0. Extending this result to the case where the

number of moment conditions grows proportionally with the sample size is chal-

lenging. Specializing to the linear IV model (1), the CU objective function reduces

to

Q(β) =
1

2n
ι′Dε(β)Z(Z ′D2

ε(β)Z)−1Z ′Dε(β)ι. (4)

The weighting matrix Z ′D2
ε(β)Z is k × k dimensional and contains the second

stage regression errors ε. This combination makes the behavior of this weighting

matrix challenging to control when k is a non-negligible fraction of the sample size

because the randomness does not vanish asymptotically. To circumvent this issue,

Crudu et al. (2021) and Mikusheva and Sun (2021) replace the heteroskedastic

weight matrix by the matrix Z ′Z. In this paper, we aim to confront the AR

statistic from (3) directly.

3 Invariant moment conditions

Invariance conditions are powerful tools to obtain the distribution of test statistics.

In our case, the exact finite sample distribution of Q(β0) can be obtained when

the moment conditions are orthogonally invariant, i.e. G(β0)
(d)
= G(β0)Q for any

orthogonal matrix Q. In this case, ι′P (β0)ι/n
(d)
= z′Pz where z is uniformly

distributed over the (n−1)-dimensional unit sphere and P can be regarded as fixed,

see e.g. Vershynin (2018, Chapter 5). As a result, we have that 2Q(β0)
(d)
= Z1

Z1+Z2

where Z1 ∼ χ2(k) independently of Z2 ∼ χ2(n − k). It follows that 2Q(β0) ∼
Beta(k/2, (n − k)/2). Importantly, rotational invariance allows us to bypass the

fact that the dimensions of the weighting matrixG(β0)
′G(β0) can be nonnegligible

relative to the sample size.

Unfortunately, rotational invariance is restrictive. In particular, combined with

independence of the moment conditions, it implies that the moment conditions
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are normally distributed. The class of allowed distributions can be substantially

enlarged by the following invariance assumption, referred to as orthant symmetry

by Efron (1969) and reflection invariance by Bekker and Lawford (2008). In the

context of the linear IV model in (1), we impose the invariance on the second stage

regression errors εi.

Assumption A2. Let {ri} be a sequence of independent Rademacher random

variables gathered in the vector r = (r1, . . . , rn)
′. Then, ε

(d)
= Drε.

Note that this assumption implies reflection invariance in the moment condi-

tions, i.e. G(β0)
(d)
= DrG(β0). The results in this section in fact apply to any

model with reflection invariant moment conditions. The key observation is that

Assumption A2 allows the distribution of the moment conditions to differ across i.

This makes it particularly suitable to use in the context of heteroskedastic models.

Under Assumption A2 we can relate the distribution of the CU objective func-

tion with a similar function written in terms of Rademacher random variables.

Define r = (r1, . . . , rn)
′ as a vector of independent Rademacher random variables,

we then have that

Q(β0)
(d)
= Qr(β0) =

1

2n
r′P (β0)r. (5)

While the exact finite sample distribution of Q(β0) is no longer known, the asymp-

totic distribution under many instrument sequences can be derived. Since Q(β0)

and Qr(β0) are distributionally equivalent, it suffices to analyze the asymptotic

distribution Qr(β0). Likewise, the AR statistic is defined as AR(β0) = 2nQ(β0),

and we can analyze ARr(β0) to find its asymptotic distribution.

Conditional on the moment conditions, the only randomness in ARr(β0) comes

from the Rademacher random variables, which form a quadratic form with the pro-

jection matrix P (β0). Under the following assumptions, we can directly apply the

CLT for bilinear forms by Chao et al. (2012) to obtain the asymptotic distribution

of the AR statistic under many instrument sequences.

Assumption A3. (a) rank[P (β0)] = k, (b) for i = 1, . . . , n, Pii(β0) ≤ C < 1

with probability 1 for all sufficiently large n, (c) Define

σ2
n =

2

k

∑
i ̸=j

Pij(β0)
2, (6)

and assume σ2
n > 1/C with probability 1 for all sufficiently large n.

Part (a) excludes any redundant moment conditions. Part (b) is common in the

many instruments literature, see e.g. Hausman et al. (2012), Bekker and Crudu
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(2015) and Anatolyev (2019). It is required to apply the central limit theorem

provided in Lemma A2 by Chao et al. (2012) which leads to the following result.

Corollary 1. Under Assumptions A2 and A3, when k → ∞ as n→ ∞,

1√
k
(ARr(β0)− k)

|σn|
→d N(0, 1). (7)

Since ARr(β) is distributionally equivalent to AR(β), this implies that

1√
k
(AR(β0)− k)

|σn|
→d N(0, 1). (8)

This corollary shows that the AR statistic, once shifted and rescaled, no longer

has a χ2(k) distribution. A similar result is obtained for the AR statistic in a

homoskedastic IV model by Anatolyev and Gospodinov (2011). We note that

Corollary 1 applies in a general GMM set-up where the moment conditions are

reflection invariant, as we make no use of the particulars of the linear IV model

(1), but only exploit the invariance in the moment conditions. While Corollary 1

requires k → ∞, we can achieve uniform inference across k by testing based on

the quantiles from (χ2(k) − k)/
√
2k. When k is fixed, σ2

n →p 2, and hence, we

compare AR(β0) against a χ
2(k) distribution. When k increases, the quantiles of

(χ2(k)−k)/
√
2k approach that of the standard normal distribution and Corollary 1

applies.

4 Inference based on the score

The AR statistic is not efficient in overidentified models, and may lack power when

the number of moments grows proportionally with the sample size. We therefore

consider the application of Assumption A2 in the linear IV model to analyze a

test statistic based on the score of the CU objective function given in (4).

By using the same conditioning argument as for the AR statistic, we can obtain

the limiting distribution of the first order conditions of the CU objective function.

For this, we make the following additional assumption on the IV model in (1).

Assumption A4. Consider ηi and εi as in (1). Then,

ηi = εiai + ui, (9)

where ai = σ21i/σ
2
i , and {ui, εi, zi} are mutually independent.
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This assumption parametrizes the relation between the first and second stage

regression errors to a linear one. This assumption also appears in Bekker and

Kleibergen (2003), and it is for example satisfied if (εi,η
′
i) is multivariate normal.

It allows us to write xi = x̄i + εiai, where x̄i = z̄i + ui. Here x̄i does not

depend on εi, which is useful when we apply our invariance condition later on. To

increase the flexibility of the model, one could potentially allow for higher-order

polynomials in εi in (9) at the cost of more elaborate notation.

We note that the assumption on the eigenvalues of the second moment matrix

of (εi,η
′
i) in Assumption A1 also has implications for the second moment matrix

of the errors ui defined in Assumption A4. We see that ΣU
i = E[uiu

′
i] = Σ22i −

σ−2
i σ12iσ

′
12i, i.e. the Schur complement of Σ22i. In particular, the bounds on the

eigenvalues of Σi then imply that 0 < C−1 ≤ λmin(Σ
U
i ) ≤ λmax(Σ

U
i ) ≤ C < ∞.

Moreover, we have E[∥ui∥4] ≤ E[∥ηi∥4] + E[ε4i ]∥ai∥4 ≤ C <∞.

Denote V (β) = Z(Z ′Dε(β)2Z)−1Z ′. To simplify the notation, we write V =

V (β0) and likewise P = P (β0). As in Kleibergen (2005) and Newey and Wind-

meijer (2009), the score of the objective function is given by

S(i)(β) =
∂Q(β)

∂βi
= − 1

n
x′
(i)(I −DP (β)ι)V (β)ε(β). (10)

Under Assumption A2, and using the decomposition of ηi in (9) we find that

S(i)(β0)
(d)
= S(i),r(β0), where

S(i),r(β0) = − 1

n
x̄′
(i)V Dεr +

1

n
r′PDrDx̄(i)V Dεr −

1

n
r′Da(i)Pr +

1

n
r′PDa(i)Pr.

(11)

The score consists of one linear term, two quadratic terms and one cubic term.

Our strategy is to derive the asymptotic distribution of S(i),r(β0) to obtain the

distribution of S(i)(β0). What is important to note here is that, as for the AR

statistic, we derive the limiting distribution conditional on J = {εi,Z ′
i}ni=1. For

the score, this implies that we need to take into account the randomness that

enters via ui.

The conditional expectation and variance of the score are given by the following

theorem that requires only the invariance condition Assumption A2.

Theorem 1. Define the information set J = {εi,Z ′
i}ni=1. Under Assumption A2,

E[S(i),r(β0)|J ] = 0. The (i, j)-th element of the conditional variance matrix is

Ωij(β0) = Er
[
n · S(i),r(β0)S(j),r(β0)

∣∣J ] = ΩL
ij(β0) + ΩH

ij (β0), (12)
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where

ΩL
ij(β0) =

1

n
z̄′(i)[V −DPV − V DP +DP V̇ DP +DPDV + V̇ ⊙ P ⊙ P ]z̄(j)

+
1

n
tr(DΣU (i,j)(DV −DVDP )) +

1

n
tr(Da(i)Da(j)P )

− 1

n
tr(Da(i)PDa(j)P ),

(13)

and

ΩH
ij (β0) =

1

n
z̄′(i)

[
2DPDV + 7DP V̇ DP − 4D2

P V̇ DP − 4DP V̇ D
2
P

− 2(V Dε ⊙ V Dε)(P ⊙ P )⊙ I + 3V̇ ⊙ P ⊙ P

− 4DP (V̇ ⊙ P ⊙ P )− 4(V̇ ⊙ P ⊙ P )DP

− 2DPV − 2V DP + 2D2
PV + 2V D2

P

]
z̄(j)

− 2

n
tr(DΣU (i,j)(DPDV − 2D2

PDV + (V Dε ⊙ V Dε)(P ⊙ P )))

+
2

n
tr(DPPDa(j)PDa(i)) +

2

n
tr(DPPDa(i)PDa(j))

− 2

n
tr(D2

PDa(i)Da(j))−
2

n
tr(Da(i)(P ⊙ P )2Da(j)).

(14)

Here, ΣU(i, j) is an n×n diagonal matrix with the k-th diagonal element equal to

cov(uki, ukj).

Proof. See Appendix A.2.

The variance is decomposed into a component ΩL
ij, which is the conditional

expectation of the estimator of the variance of the score when the number of

instruments does not increase with the sample size, and a component ΩH
ij . The

terms involving a(i) and a(j) cancel when Da(i) = a(i) · In for all i = 1, . . . , p. This

is in particular true under homoskedasticity.

To describe the joint limiting distribution of the AR statistic and the score,

we need the following assumptions.

Assumption A5. (a) 1
n

∑n
i=1 ∥z̄i∥2 ≤ C < ∞ a.s.n., (b) 1

n
max
i=1,...,n

∥z̄i∥2 →a.s. 0,

(c) 1
n
max
i=1,...,n

∥Z̄ ′V Dεei∥2 →a.s. 0, (d) λmax(V ) ≤ C < ∞ a.s.n., min
i=1,...,n

Vii > 0

a.s.n., (e) Pii < 1/2.

Part (a) and (b) are relatively standard assumptions under many instruments.

(a) also appears in Chao et al. (2012) and Hausman et al. (2012), who instead
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of (b) require n−2
∑n

i=1 ∥z̄i∥4 →a.s. 0. We see that this condition is implied by

Assumption A5 part (a) and (b). In particular, part (b) is a Lyapunov condition

needed for the central limit theorem we employ. Part (c) is another Lyapunov

condition needed for the CLT under heteroskedasticity. Under homoskedasticity,

the first item in part (d) does not appear as in that case V reduces to a projection

matrix and it automatically holds. Under homoskedasticity, the second item will

only hold when k/n → λ > 0 and we assume that the same is true for V as we

specify it here. Hence, this limits the results to many instrument sequences. Since

the elements Pii are typically of order k/n, part (e) restricts the proportion of the

number of instruments relative to the sample size. The condition ensures that the

variance matrix of the score has its minimum eigenvalue bounded away from zero.

We can now provide the joint limiting distribution of the Anderson-Rubin

statistic and the score evaluated at the true parameter β0.

Theorem 2. Under Assumptions A2 to A5, when n→ ∞ and k/n→ λ ∈ (0, 1),

Σn(β0)
−1/2

(
1√
k
(AR(β0)− k)
√
n · S(β0)

)
→d N(0, Ip+1). (15)

Here [Σn(β0)]1,1 = σ2
n from (6), [Σn(β0)]2:p+1,2:p+1 is given by Ω(β0) in Theorem 1,

and the covariance between the rescaled AR statistic and the score is

[Σn(β0)]1,j+1 = [Σn(β0)]j+1,1 =
2√
n · k

tr(Ψ(j) ⊙ P ), j = 1, . . . p, (16)

with Ψ(j) =MDa(j)P and M = I − P .

Proof. See Appendix B.

We observe that the covariance between the objective function and the score

is only nonzero when the number of instruments increases and when there is

heteroskedasticity. In a homoskedastic setting, we have Da(j) = a(j)In and hence

Ψ(j) = O.
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5 Implementation

5.1 An unbiased and consistent variance estimator

To use Corollary 1 and Theorem 2 for testing we require a consistent estimator

for Σn(β0), which is given by the following expression.

Σ̂n(β0) =

(
σ̂2
n(β0)

[
Σ̂n(β0)

]′
2:p,1[

Σ̂n(β0)
]
2:p,1

Ω̂(β0)

)
, (17)

with for the variance of the AR statistic σ̂2
n(β0) =

2
k
(k− ι′D2

P ι). We estimate the

variance of the score following the decomposition in Theorem 1 as

Ω̂L
ij(β0) =

1

n
x′
(i)(I −DPι)V (I −DPι)x(j),

Ω̂H
ij (β0) =

1

n
x′
(i)(2DPDV + 7DP V̇ DP + 3V̇ ⊙ P ⊙ P

− 2(V Dε ⊙ V Dε)(P ⊙ P )⊙ I − 4D2
P V̇ DP − 4DP V̇ D

2
P

− 4DP (V̇ ⊙ P ⊙ P )− 4(V̇ ⊙ P ⊙ P )DP

− 2DPV − 2V DP + 2DPDPιV + 2V DPιDP )x(j).

(18)

and for the covariance between the AR statistic and the score, we define for j =

1, . . . , p.

[Σ̂n(β0)]1,j+1 = [Σ̂n(β0)]j+1,1 =
2√
n · k

x′
(j)(DV − (V ⊙ P ))DPε. (19)

Theorem 3. Σ̂n(β0) is conditionally unbiased, i.e. E[Σ̂n(β0)|J ] = Σn(β0). Also,

under Assumptions A2 to A5, Σ̂n(β0) →p Σn(β0).

Proof. See Appendix A.4.

While the estimator is conditionally unbiased and consistent, it is not guar-

anteed to be positive definite. This is a general property of unbiased variance

estimators. In different contexts, this is observed in the leave-one-out variance

estimators by Kline et al. (2020) and the variance estimator derived by Cattaneo

et al. (2018). In the one-dimensional setting, a crude way of dealing with negative

variances is to set the variance equal to ∞ when this occurs, such that tests using

this variance are never rejected. This is the solution we employ here.

13



5.2 Robust inference

With our estimator for the variance, we can use Theorem 2 to perform identifi-

cation robust inference. Using the AR statistic, we obtain a confidence region for

β0 with asymptotic coverage rate 1 − α by including all values for β for which

(kσ̂2
n)

−1/2(AR(β)−k) ≤ (2k)−1/2(χ2(k)1−α−k), where χ2(k)1−α is the 1−α quan-

tile of a χ2(k) distribution. With these critical values we compare the AR statistic

with χ2(k) critical values when k is small, and the recentered and rescaled AR

statistic with standard normal critical values when k is large. This yields size

correct inference uniformly over the number of instruments.

Similarly, we obtain a confidence region based on the score test by including

all values of β for which nS(β)′Ω̂(β)−1S(β) is within the 1 − α quantile of the

χ2(p) distribution. Given that the score-based test lacks power in regions away

from the true value if the objective function is flat, we also combine the AR and

score test using the suggestion by Kleibergen (2005) to conduct a test based on

the AR statistic at significance level αAR = 0.01 and a test based on the score

statistc at significance level αS = 0.04. We then reject the null when either or

both these tests reject. Given the possible asymptotic dependence between the

AR statistic and the score statistic, this may lead to a slightly conservative test.

6 Simulation results

We test the finite sample performance of the proposed tests in the Monte Carlo

setup of Hausman et al. (2012) and Bekker and Crudu (2015). In particular we

generate data according to the model in (1), with n = 800 and one endogenous

regressor, that is p = 1. We vary the number of instruments over the grid k =

{2, 10, 30, 100}. When k = 2 we take as instruments zi = (1, z1i). Otherwise we

use

zi = (1, z1i, z
2
1i, z

3
1i, z

4
1i, z1iDi1, . . . , z1iDi,k−5)

′, (20)

where z1i ∼ N(0, 1) independent across i and Dij ∈ {0, 1} with P(Dij = 1) = 1
2

independent across i and j. We vary the relevance of the instruments by setting

the first-stage coefficient Π2
2 = F0

√
k
n

where F0 = {0, 2, 4, . . . , 20} and Πi = 0 for

i = 1, 3, 4, . . . , k.

We draw the regression error ηi independently from a standard normal dis-

tribution and ε is generated as ε = ρη +
√

1−ρ2
ϕ2+ψ4 (ϕw1 + ψw2) where ρ = 0.3,

ϕ = 1.38072, ψ = 0.86, w1 ∼ N(0,D2
z1
) and w2 ∼ N(0, ψ2In). We generate

10,000 data sets using this data generating process.

14



6.1 Benchmarks

6.1.1 Fixed-k Anderson-Rubin

Under the hypothesis H0 : β = β0 and assuming that k is fixed we have that

AR(β0) →d χ
2(k). We can therefore determine the size by comparing the statistics

with χ2(k) critical values.

6.1.2 Fixed-k score as in Kleibergen (2005)

The results by Kleibergen (2005) can be used to construct an identification-robust

test that is robust against heteroskedasticity. The K-statistic is given by

K(β0) = nS(β0)
′[D(β0)

′V −1
K (β0)D(β0)]

−1S(β0) →d χ
2(p), (21)

with

VK(β0) =
1

n

n∑
i=1

Z ′eie
′
iZε

2
i =

1

n
Z ′D2

εZ,

D(β0)ej = − 1

n
Z ′x(j) +

1

n
Z ′Dx(j)Pι.

(22)

Newey and Windmeijer (2009) show that this statistic is also robust against a

slowly increasing number of instruments.

6.1.3 Mikusheva and Sun (2021)

Mikusheva and Sun (2021) develop an AR and a Wald test, which they combine

using a pretest for weak identification. Under certain assumptions, that allow for

many and weak instruments, their AR test converges as

ARMS =
1√

kΦ(β0)

n∑
i=1

∑
j ̸=i

PZ,ijε(β0)iε(β0)j →d N(0, 1), (23)

with

Φ(β0) =
2

k

n∑
i=1

∑
j ̸=i

P 2
Z,ij

MZ,iiMZ,jj +M2
Z,ij

[εi(β0)e
′
iMZε(β0)][εj(β0)e

′
jMZε(β0)],

(24)

for MZ = In − PZ . Due to the quadratic form of ARMS, the test rejects only for

large values of the statistic.
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When identification is strong enough, in the sense that instruments are not

too many nor too weak, Mikusheva and Sun (2021) argue in favor of a jackknife

Wald statistic, which in the one-dimensional setting becomes

Wald(β0) =
(β̂JIV E − β0)

2

V̂MS

→d χ
2(1), (25)

where for P̃Z,ij =
P 2
Z,ij

MZ,iiMZ,jj+M
2
Z,ij

and ε̂ = y − xβ̂JIV E

β̂JIV E =

∑n
i=1

∑
j ̸=i PZ,ijyixj∑n

i=1

∑
j ̸=i PZ,ijxixj

,

V̂MS =

∑n
i=1(
∑

j ̸=i PZ,ijxj)
2 ε̂ie

′
iMZ ε̂

MZ,ii
+
∑n

i=1

∑
j ̸=i P̃

2
Z,ije

′
iMZxε̂ie

′
jMZxε̂j

(
∑n

i=1

∑
j ̸=i PZ,ijxixj)

2
.

(26)

The ARMS and the jackknife Wald test can be combined using a pretest for

weak identification, based on

F̃ =
1√
kΥ̂

n∑
i=1

∑
j ̸=i

PZ,ijxixj, (27)

with Υ̂ = 2
k

∑n
i=1

∑
j ̸=i

P 2
Z,ij

MZ,iiMZ,jj+M
2
Z,ij
xie

′
iMZxxje

′
jMZx. Size distortions can be

limited by using the ARMS test when F̃ is below a certain cutoff value and the

jackknife Wald when it is above. Mikusheva and Sun (2021) show that a cutoff

value of 7.15 and 2% and 1% critical values for the two tests yields a combined

test with overall asymptotic size smaller than 5%.

6.2 Results

Figure 1 shows the size of the tests for different number of instruments and instru-

ment strength when testing at a α = 0.05 confidence level. We see that our many

instrument robust AR test, the score test and the combined test show excellent

size control regardless of instrument numerosity and strength.

For the size of fixed-k AR statistic, we see that it has close to nominal size for a

small number of instruments, regardless of instrument strength. When k increases,

its rejection rate quickly falls below 0.05 and the test becomes conservative. The

same happens to the fixed-k score statistic. For the test by Mikusheva and Sun

(2021) we see in this experiment that the test underrejects for all values of k.

Deviations from the nominal size can be as large as for the fixed-k AR statistic.
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Figure 1: Size under identification robust inference.
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Note: size when testing H0 : β = 0 at α = 0.05 based on (i) the fixed-k Anderson-
Rubin test, (ii) the combined test by Mikusheva and Sun (2021), (iii) the test by
Kleibergen (2005), and (iv-vi) the tests developed here, where we set αAR = 0.01
and αS = 0.04 for the combined test. k denotes the number of instruments and F0

their strength. The Monte Carlo is the same as in Hausman et al. (2012).

Overall, Figure 1 supports the findings in Theorem 2 as the developed tests

attain close to nominal size both under few and many instruments and regardless

of whether these instruments are irrelevant or weak.

6.2.1 Moment conditions without invariance

An important issue to consider is what happens to the size of our tests when the

invariance assumption on the second stage regression errors is violated. For this

we change the distribution of ηi and zi1 in (1) to a skewed normal distribution

with skewness parameters ζη ∈ {0, 2, 4} and ζz ∈ {0, 2, 4}. Since in our simulation

set up ηi also shows up in the definition of εi, the latter will also be skewed. For

comparison reasons we rescale and recenter the distribution such that it still has
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Figure 2: Probability density functions for the skewed normal distributions.
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Note: probability density functions of a rescaled and recentered skewed normal
distribution with skewness parameter ζ. The distribution is rescaled and recentered
such that it has mean zero and unit variance.

mean zero and unit variance. That is, ηi has probability density function

f(x) =
2

ωη
ϕ

(
x− ξη
ωη

)
Φ

(
ζη
x− ξη
ωη

)
, (28)

with ϕ and Φ the probability density and cumulative distribution functions of

the standard normal distribution and ωη = 1/(1 − 2δ2η
π
) and ξη = −ωηδη

√
2/π

for δη = ζη√
1+ζ2η

and π the mathematical constant. We define the density for zi1

similarly. The probability density function of the shifted and rescaled skewed

normal distribution as used for ηi and zi1 for different values of the skewness

parameter is given in Figure 2. If ζη and ζz are different from zero, both the

errors and our instruments are asymmetrically distributed, hence in those cases

our invariance assumption will no longer hold.

In Figure 3 we plot the size of our AR, score and combined test for different

number of instruments, different instrument strengths and different values for

the skewness parameters. We see that in this set up all tests are insensitive

to departures from the invariance assumption. The tests remain approximately

size correct in all cases considered here and deviations from the 5% line are not

consistently larger when there is no invariance, compared to when the invariance

condition is satisfied.
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Figure 3: Size under identification robust inference with skewed errors.
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Note: size when testing H0 : β = 0 at α = 0.05 for the tests developed here. For
the combined tests we set αAR = 0.01 and αS = 0.04. We consider the Monte Carlo
set-up of Hausman et al. (2012), but we use a rescaled and recentred skewed normal
distribution for ηi and zi1 such that they have mean zero, unit variance and use
skewness parameter ζη and ζz.

7 Application to Angrist and Krueger (1991)

The motivating study for the weak and many instrument literature is Angrist and

Krueger (1991), who estimate the effect of an extra year of education on weekly

wages. Since time spend in school is a choice variable, it is likely correlated with a

person’s unobserved characteristics such as its ability. Angrist and Krueger (1991)

instrument for education by the quarter in which someone is born. They argue

that the quarter of birth is completely random, but correlates with education, as

students generally start in the same period of the year, but schooling laws require

someone to attend class only until they reach a specific age.

For the period that Angrist and Krueger (1991) consider, schooling laws are

not constant over time, nor across states. They therefore interact the quarter of
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birth dummies with year of birth and state of birth dummies for additional instru-

ments. Depending on the specific combination of interactions the total number of

instruments can be 30, 180 or 1530. The authors estimate the return on education

for the first two specifications and find a 95% confidence interval of [0.053; 0.102]

and [0.067; 0.096] respectively.

Bound et al. (1995) and Staiger and Stock (1997) show that educational at-

tainment and quarter of birth only correlate very weakly. Weak instruments would

render the statistical tests used by Angrist and Krueger (1991) invalid. Controlling

for weak instruments, Staiger and Stock (1997) find confidence intervals that are

up to 13 percentage points wider and can contain zero. Hansen et al. (2008) find

that rather than a weak instrument problem, the presence of many instruments

disturbs the distribution of the test statistics. Correcting for the large number of

instruments (k = 180), they find a confidence interval of [0.078; 0.134].

None of these previously mentioned studies considered the case with 1530 in-

struments and, more importantly, corrected for possible heteroskedasticity. Only

the recent study by Mikusheva and Sun (2021) considers these two cases. Us-

ing 180 and 1530 instruments they find confidence intervals of [0.066; 0.13] and

[0.024; 0.12] respectively using their pre-testing procedure and [−0.047; 0.20] and

[0.008; 0.20] using their AR statistic.

Section 6 shows that the test by Mikusheva and Sun (2021) suffers from small

size distortions, making the confidence intervals not fully reliable. We therefore

revisit the Angrist and Krueger (1991) study and construct confidence intervals

for the return on schooling by inverting our AR, score and the combined test.

Details of the implementation can be found in Appendix C.

Table 1 shows the confidence intervals for the return to education based on

inverting the AR test, the score test, and their combination where we consider

k = {30, 180, 1530} instruments. If we first focus on the confidence intervals of the

AR test at α = 0.05 and k = 30 we see an interval that is substantially wider than

the ones by Angrist and Krueger (1991) and Hansen et al. (2008). The coefficient is

also no longer significantly positive. When we use 180 instruments our confidence

interval is shifted upward relative to the one from the AR statistic by Mikusheva

and Sun (2021), resulting in a significantly positive coefficient. Moreover, the

confidence region is less wide, suggesting an improved efficiency by the use of

many instruments. However, for k = 1530 the confidence interval is wider than

for 180 instruments and is no longer significantly positive.

To discuss the results of the score based test, first consider Figure 4 where we

plot the score and the AR statistic. As discussed in Section 5.2, we see that there
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Table 1: Confidence intervals for the return on education.

AR Score Combined
Lower Upper Lower Upper Lower Upper

α = 0.1
k = 30 0.01 0.17 0.05 0.12 0.05 0.12
k = 180 0.02 0.19 0.07 0.13 0.07 0.13
k = 1530 0.01 0.21 0.04 0.15 0.04 0.15

α = 0.05
k = 30 0.00 0.18 0.05 0.13 0.05 0.13
k = 180 0.01 0.20 0.07 0.13 0.07 0.13
k = 1530 0.00 0.23 0.04 0.16 0.04 0.16

α = 0.01
k = 30 -0.01 0.20 0.04 0.14 0.03 0.14
k = 180 0.00 0.22 0.06 0.14 0.06 0.14
k = 1530 -0.03 0.26 0.04 0.17 0.04 0.17

Note: confidence intervals for the return on education based on inverting the AR,
the score and their combination. α is the confidence level. For the combination,
αAR = 0.2α and αS = 0.8α. k is the number of instruments. For the score, only
the part of the confidence interval around the minimizer of the objective function is
reported.

are multiple intervals of β for which the score test cannot reject, since the objective

function flattens out for β’s further away from the minimum. Intuitively, we only

want to consider the region around the minimum of the objective function. These

are the numbers reported in Table 1. This approach can be made formal using the

both the AR and the score statistic and setting the significance levels such that

the overall size is controlled. We report these results in the final two columns of

Table 1. We find that the combined test yields substantially narrower confidence

intervals than the AR test. The lower bounds are close to the lower bounds found

by Angrist and Krueger (1991). The upper bound from the score test on the other

hand is higher than the ones found in the original paper. The confidence intervals

are remarkably robust to the included number of instruments.

8 Conclusion

We develop a new approach for identification robust inference under many instru-

ments and heteroskedasticity using reflection invariance in the moment conditions

to derive the joint limiting distributions of the AR and score statistic. Monte

Carlo simulations show close to nominal size regardless of the strength of the in-

struments and the number of instruments. We apply our new tests to the return

to education study by Angrist and Krueger (1991) and find that our confidence

intervals are robust to the number of included instruments.
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Figure 4: AR and score statistic in the Angrist and Krueger (1991) application.
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Appendix A Proofs

A.1 Preliminary results

In the proofs of our theorems we make use of the following results.

A.1.1 Expectation over higher order forms in Rademacher random variables

Theorem A.1. Consider a random n×1 vector r with independent Rademacher entries. Let

A1, . . . ,A4 denote generic n× n matrices and v an n× 1 vector. Then,

1. E[r′A1r] = tr(A1).

2. E[r′A1rr
′A2r] = −2 tr(DA1A2) + tr(A1) tr(A2) + tr(A1A2) + tr(A′

1A2).

3. E[v′rr′A2DrA1r] = v
′A2DA1ι+ ι

′(A2 ⊙A′
1)v + ι′DA2A1v − 2ι′DA2DA1v.

4.

E[r′A1DrA2rr
′A3DrA4r] = tr(DA4A1DA2A3)

+ ι′DA3A4A1DA2ι− 2 tr (DA3A4A1DA2) + ι
′A2 ⊙A3 ⊙ (A′

1A
′
4)ι

+ ι′DA1A2A3DA4ι− 2 tr (DA1A2A3DA4) + ι
′A4 ⊙A1 ⊙ (A′

3A
′
2)ι

+ ι′(A1 ⊙A3)(A2 ⊙A4)ι+ tr(A′
1A

′
2 ⊙A′

3A
′
4)− 2 tr((A1 ⊙A3)(A2 ⊙A4))

+ ι′DA4A3A1DA2ι− 2 tr(DA4A3A1DA2)

+ ι′DA2A1A3DA4ι− 2 tr(DA2A1A3DA4)

− 2ι′DA1DA2A3DA4ι− 2ι′DA3DA4A1DA2ι+ 16 tr(DA3DA4A1DA2)

− 2ι′A1DA2 ⊙A4 ⊙A′
3ι− 2ι′A3DA4 ⊙A2 ⊙A′

1ι

+ ι′DA4A
′
3A1DA2ι− tr(DA4A

′
3A1DA2)− tr(DA2A

′
1A3DA4)

+ ι′((A3 ⊙A′
1)A4)⊙A2ι− 2ι′((A1 ⊙A′

3 ⊙ I)A2)⊙A4ι

+ ι′(A1 ⊙ (A3(A
′
2 ⊙A4)))ι− 2 tr((A1 ⊙ (A3(A

′
2 ⊙A4))))

− 2 tr((A3 ⊙ (A1(A
′
4 ⊙A2))))

+ ι′(A1 ⊙A′
2)A

′
4DA3ι− 2ι′(A1 ⊙A′

2 ⊙ I)A′
4DA3ι

+ ι′(A3 ⊙A′
4)A

′
2DA1ι− 2ι′(A3 ⊙A′

4 ⊙ I)A′
2DA1ι

+ ι′DA1A2A
′
4DA3ι.

(A.1)

5.

E[r′A1DrA2A3DrA4r] = tr(DA4A1DA2A3) + ι
′DA1A2A3DA4ι

− 2 tr(DA1A2A3DA4) + ι
′(A4 ⊙A1 ⊙ (A′

3A
′
2))ι.

(A.2)

If in addition A1 and A2 are symmetric matrices with zero diagonal, we have
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6.

E[(r′A1r)
2(r′A2r)

2] = 4 tr(A2
1) tr(A

2
2) + 8 tr2(A1A2) + 32 tr(A1A2A1A2)

+ 16 tr(A1A2A2A1)− 32ι′(I ⊙A2
1)(I ⊙A2

2)ι

− 64ι′(I ⊙A1A2)(I ⊙A1A2)ι

+ 32ι′(A1 ⊙A1 ⊙A2 ⊙A2)ι.

(A.3)

7.

E[r′A1rr
′A2rr

′A3r] = tr(A3 E[r
′A1rr

′A2rrr
′)]

= tr(A3[20(A1 ⊙A2)− 3I ⊙ (2A1A2 + 2A2A1)

+ 4A1A2 + 4A2A1 + 2 tr(A1A2)I]).

(A.4)

Proof. 1. E[r′A1r] = tr(A1 E[rr
′]) = tr(A1).

2. See Ullah (2004), Appendix A5.

3. Denote ∆ = rr′ − I. We split the expectation into two parts,

E[v′rr′A1DrA2r] = E[v′A1DrA2r]︸ ︷︷ ︸
(I)

+E[v′∆A1DrA2r]︸ ︷︷ ︸
(II)

.
(A.5)

For the first part, using independence of the Rademacher random variables,

(I) = E

[
n∑

i,j,k=1

via1,ija2,jkrjrk

]
=

n∑
i,j=1

via1,ija2,jj = v
′A1DA2ι. (A.6)

Now we consider (II), which can be written as (II) = E
[∑n

i,j,k,l=1 viδija1,jka2,klrkrl

]
.

There are two cases where the expectation is nonzero. In case (II.a) i = k, j = l, i ̸= j,

and we have

(II.a) =
∑
i ̸=j

via1,jia2,ij = ιA1 ⊙A′
2v − ι′DA1DA2v. (A.7)

In case (II.b) i = l, j = k, i ̸= j, such that

(II.b) =
∑
i ̸=j

via1,jja2,ji = ι
′DA1A2v − ι′DA1DA2v. (A.8)
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4. We decompose the expectation as

E[r′A1DrA2rr
′A3DrA4r] = E[tr(A1DrA2rr

′A3DrA4rr
′)]

= E[tr (A1DrA2(I + (rr′ − I))A3DrA4(I + (rr′ − I)))]

= E[tr(A1DrA2A3DrA4)]︸ ︷︷ ︸
(I)

+ E[tr(A1DrA2(rr
′ − I)A3DrA4)]︸ ︷︷ ︸

(II)

+ E[tr(A1DrA2A3DrA4(rr
′ − I))]︸ ︷︷ ︸

(II′)

+ E[tr(A1DrA2(rr
′ − I)A3DrA4(rr

′ − I))]︸ ︷︷ ︸
(III)

.

(A.9)

Starting with (I), we have that

(I) = E

[
n∑
i=1

e′iA1DrA2A3DrA4ei

]

= E

[
n∑
i=1

n∑
j=1

n∑
k=1

e′iA1eje
′
jDreje

′
jA2A3eke

′
kDreke

′
kA4ei

]

=
n∑
i=1

n∑
j=1

e′iA1eje
′
jA2A3eje

′
jA4ei

=
n∑
j=1

e′jA4A1eje
′
jA2A3ej

= tr(DA4A1DA2A3).

(A.10)

For (II), define δkl = [rr′ − I]kl and note that δkk = 0, and E[δkl] = E[rkrl] = 0 if k ̸= l

and E[δ2kl] = E[r2kr
2
l ] = 1.

(II) = E

[
n∑
i=1

e′iA1DrA2(rr
′ − I)A3DrA4ei

]

= E

[
n∑
i=1

n∑
j,m,k,l=1

e′iA1eje
′
jDreje

′
jA2emδmke

′
kA3ele

′
lDrele

′
lA4ei

]
.

(A.11)

There are two cases when the expectation is nonzero: (a) j = m, l = k, j ̸= l and (b)

j = k, l = m, j ̸= l. Starting with case (a),

(II.a) =
n∑
i=1

∑
j ̸=l

e′iA1eje
′
jA2eje

′
lA3ele

′
lA4ei
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=
∑
j ̸=l

e′lDA3A4A1DA2ej

= ι′DA3A4A1DA2ι− tr (DA3A4A1DA2)︸ ︷︷ ︸
(II.a.2)

.

For case (b), we have

(II.b) =
n∑
i=1

∑
j ̸=l

e′iA1eje
′
jA2ele

′
jA3ele

′
lA4ei

=
∑
j ̸=l

e′jA2ele
′
jA3ele

′
lA4A1ej

=
∑
j ̸=l

e′jA2ele
′
jA3ele

′
jA

′
1A

′
4el

=
∑
j ̸=l

e′jA2 ⊙A3 ⊙ (A′
1A

′
4)el

= ι′A2 ⊙A3 ⊙ (A′
1A

′
4)ι− tr(A2 ⊙A3 ⊙ (A′

1A
′
4))

= ι′A2 ⊙A3 ⊙ (A′
1A

′
4)ι+ (II.a.2).

By rotation invariance, the expressions for (II ′) can be obtained by changing A2 → A4,

A3 → A1, A4 → A2, A1 → A3.

The most difficult term to deal with in (A.9) is

(III) = E

[
n∑
i=1

∑
j,k,m,l,s

a1,ija2,jka3,mla4,lsrjrlδkmδsi

]
. (A.12)

There are now 10 cases to consider, which we label (III.a)−(III.j). All of them satisfy

k ̸= m, s ̸= i

a. j = l k = s m = i k ̸= i f. k = i l = s

b. k = i m = s i ̸= m g. j = s k = l m = i

c. j ̸= l j = k m = s l = i h. k = i l = m

d. m = i l = s i. j = i k = s m = l

e. j = m k = s l = i j. k = l m = s

We work out (III.a) − (III.c) explicitly. The remaining cases follow by analogous

calculations.

(III.a) =
n∑
i=1

∑
j,k ̸=i

a1,ija2,jka3,ija4,jk

=
n∑
i=1

∑
j,k ̸=i

e′i(A1 ⊙A3)eje
′
j(A2 ⊙A4)ek
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=
n∑
i=1

∑
k ̸=i

e′i(A1 ⊙A3)(A2 ⊙A4)ek

= ι′(A1 ⊙A3)(A2 ⊙A4)ι− tr((A1 ⊙A3)(A2 ⊙A4))︸ ︷︷ ︸
(III.a.2)

.

(III.b) =
n∑
i=1

∑
j,m̸=i

a1,ija2,jia3,mja4,jm

= tr(A′
1A

′
2 ⊙A′

3A
′
4) + (III.a.2).

(III.c) =
n∑
i=1

∑
j ̸=i,j ̸=m,m ̸=i

a1,ija2,jja4,ima3,mi

=
n∑
i=1

∑
j ̸=i

a1,ija2,jje
′
iA4A3ei − a1,ija2,jja4,ija3ji − a1,ija2,jja4,iia3,ii

=
n∑
i=1

∑
j ̸=i

eiDA4A3A1DA2ej − e′iDA3DA4A1DA2ej − e′i(A1DA2)⊙A4 ⊙A′
1ej

= ι′DA4A3A1DA2ι− tr(DA4A3A1DA2)− ι′DA3DA4A1DA2ι

+ tr(DA3DA4A1DA2)− ι′(A1DA2)⊙A4 ⊙A′
3ι+ tr((A1DA2)⊙A4 ⊙A′

3).

where the first and last term on the last line are equal.

There are many repeated elements in the expressions for (III.d)−(III.j). We introduce

the following notation

(c.1) = ι′DA4A3A1DA2ι, (c.2) = − tr(DA4A3A1DA2),

(c.3) = −ι′DA3DA4A1DA2ι, (c.4) = tr(DA3DA4A1DA2),

(c.5) = −ι′(A1DA2)⊙A4 ⊙A′
3ι, (d.1) = ι′DA4A

′
3A1(I ⊙A2)ι,

(d.2) = − tr(DA4A
′
3A1DA2), (e.1) = ι′((A3 ⊙A′

1)A4)⊙A2ι,

(e.3) = −ι′((A1 ⊙A′
3 ⊙ I)A2)⊙A4ι, (g.1) = ι′(A1 ⊙ (A3(A

′
2 ⊙A4)))ι,

(g.2) = − tr((A1 ⊙ (A3(A
′
2 ⊙A4)))), (h.1) = ι′(A1 ⊙A′

2)A
′
4DA3ι,

(h.5) = −ι′((A1 ⊙A′
2)⊙ I)′A4(A

′
3 ⊙ I)ι, (i.1) = ι′DA1A2A

′
4DA3ι.

(A.13)

Furthermore, let any of these with a asterisk denote the same term but with A2 → A4,

A3 → A1, A4 → A2, A1 → A3. Then

(III.c) = (c.1) + (c.2) + (c.3) + (c.4) + (c.5) + (c.4),

(III.d) = (d.1) + (d.2) + (c.3)∗ + (c.4) + (c.3) + (c.4),

(III.e) = (e.1) + (c.5)∗ + (e.3) + (c.4) + (c.5)∗ + (c.4),

(III.f) = (c.1)∗ + (c.5)∗ + (c.3)∗ + (c.4) + (c.2)∗ + (c.4),

(III.g) = (g.1) + (g.2)∗ + (g.2) + (c.4) + (d.2)∗ + (c.4),

(III.h) = (h.1) + (g.2)∗ + (c.2)∗ + (c.4) + (h.5) + (c.4),
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(III.i) = (i.1) + (e.3) + (h.5)∗ + (c.4) + (h.5) + (c.4),

(III.j) = (h.1)∗ + (g.2) + (h.5)∗ + (c.4) + (c.2) + (c.4).

Putting everything together, we obtain the desired result.

5. Can be obtained from Item 4 by only considering the terms (I) and (II)′ in the proof.

6. See Bao and Ullah (2010), Theorem 2.

7. See Ullah (2004), Appendix A5.

A.1.2 Eigenvalues of Hadamard products

Theorem A.2. Let A and B be n× n real symmetric matrices. Then

λmax(A⊙B) ≤ λmax(A⊗B) ≤ max{λmax(A)λmax(B), λmin(A)λmin(B)}, (A.14)

and

λmin(A⊙B) ≥ λmin(A⊗B)

≥ min{λmin(A)λmin(B), λmin(A)λmax(B), λmax(A)λmin(B)}.
(A.15)

Proof. Let v ∈ Rn be given and define u ∈ Rn2
with u(i−1)·n+i = vi for i = 1, . . . , n and zeroes

elsewhere. Then v′(A⊙B)v = u′(A⊗B)u.

Now since A and B are symmetric, so are A ⊙B and A ⊗B. Consequently both have

real eigenvalues of which the maximum and minimum can be written as

λmax(A⊙B) = max
v:v′v=1

v′(A⊙B)v = max
u:u′u=1

u′(A⊗B)u

≤ max
w:w′w=1

w′(A⊗B)w = λmax(A⊗B),
(A.16)

and

λmin(A⊙B) = min
v:v′v=1

v′(A⊙B)v = min
u:u′u=1

u

≥ min
w:w′w=1

w′(A⊗B)w = λmin(A⊗B),
(A.17)

where u follows the structure above and w is any vector in Rn2
.

The last set of inequalities in the theorem then follows because the n2 eigenvalues ofA⊗B
equal λi(A)λj(B) for i, j = 1, . . . , n.

Corollary 2. Let A and B be n×n real symmetric matrices. If λmin(A) ≥ 0 then λmax(A⊙
B) ≤ λmax(A)λmax(B). If in addition λmin(B) ≥ 0, then λmin(A⊙B) ≥ λmin(A)λmin(B).
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A.2 Proof of Theorem 1

Proof. The first order conditions for the CUE are given by

∂Q(β)

∂βi
= − 1

n
x′
(i)(I −DPι)V ε. (A.18)

Under Assumption A2, the first order conditions satisfy

∂Q(β)

∂βi

(d)
= − 1

n
(x̄(i) +DrDεa(i))

′(I −DrDPr)V Drε

= − 1

n
x̄′
(i)V Dεr +

1

n
r′PDrDx̄(i)V Dεr

− 1

n
r′Da(i)Pr +

1

n
r′PDa(i)Pr

(Er)
= 0.

(A.19)

This proves the first statement.

The (i, j)th element of the conditional variance is given by

E

[
n
∂Q(β)

∂βi

∂Q(β)

∂βj
|J
]
= E

[
1

n
x′
(i)V εε

′V x(j)︸ ︷︷ ︸
(I)

+
1

n
x′
(i)DPιV εε

′V DPιx(j)︸ ︷︷ ︸
(II)

− 1

n
x′
(i)V εε

′V DPιx(j)︸ ︷︷ ︸
(III)

− 1

n
x′
(i)DPιV εε

′V x(j)︸ ︷︷ ︸
(IV )

|J
]
.

(A.20)

Using that x(i) = x̄(i) +Dεa(i) we get that (I) is distributed equivalently to

(I)
(d)
=

1

n
x̄′
(i)V Dεrr

′DεV x̄(j) + r
′Da(i)Prr

′PDa(j)r

+
1

n
x̄′
(i)V Dεrr

′PDa(j)r +
1

n
r′Da(i)Prr

′DεV x̄(j)

Er[·]
=

1

n

[
x̄′
(i)V x̄(j) − 2 tr(DPDa(i)DPDa(j)) + tr(Da(i)P ) tr(Da(j)P )

+ tr(Da(i)Da(j)P ) + tr(Da(i)PDa(j)P )

]
EU [·]
=

1

n

[
z̄′(i)V z̄(j) + tr(DΣU (i,j)V ) + tr(Da(i)Da(j)P )︸ ︷︷ ︸

Kleibergen’s K

− 2 tr(DPDa(i)DPDa(j)) + tr(Da(i)P ) tr(Da(j)P ) + tr(Da(i)PDa(j)P )

]
.

(A.21)

For (II), we have

(II)
(d)
=

1

n
r′PDrDx̄(i)V Dεrr

′DεV Dx̄(j)DrPr

+
1

n
r′PDa(i)Prr

′DεV Dx̄(j)DrPr +
1

n
r′PDa(j)Prr

′DεV Dx̄(i)DrPr
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+
1

n
r′PDa(i)Prr

′PDa(j)Pr

Er[·]
=

1

n
x̄′
(i) {3DPDV + 8DPV DP − 12DPDVDP + 4(V ⊙ P ⊙ P )

− 2(V Dε ⊙ V Dε)(P ⊙ P )⊙ I − 4D2
PV DP − 4DPV D

2
P + 16D3

PDV

−4(V ⊙ P ⊙ P )DP − 4DP (V ⊙ P ⊙ P )} x̄(j)

− 2

n
tr((I ⊙ PDa(i)P )PDa(j)P ) +

1

n
tr(PDa(i)) tr(PDa(j))

+
2

n
tr(Da(i)PDa(j)P )

EU [·]
=

1

n
z̄′(i)[DPDV +DPV DP + P ⊙ P ⊙ V − 2D2

PDV ]z̄(j)︸ ︷︷ ︸
Kleibergen’s K (I)

+
1

n
tr(PDa(i)PDa(j)) +

1

n
tr(DΣU (i,j)(DPDV )︸ ︷︷ ︸

Kleibergen’s K (II)

+
1

n
z̄′(i) {2DPDV + 7DPV DP − 10DPDVDP + 3(V ⊙ P ⊙ P )

− 2(V Dε ⊙ V Dε)(P ⊙ P )⊙ I − 4D2
PV DP − 4DPV D

2
P + 16D3

PDV

−4(V ⊙ P ⊙ P )DP − 4DP (V ⊙ P ⊙ P )} z̄(j)

+
2

n
tr(DΣU (i,j)(DPDV − (V Dε ⊙ V Dε)(P ⊙ P )))

− 2

n
tr((I ⊙ PDa(i)P )PDa(j)P ) +

1

n
tr(PDa(i)) tr(PDa(j)) +

1

n
tr(Da(i)PDa(j)P ).

Note that tr((I ⊙ PDa(i)P )PDa(j)P ) = tr(Da(i)(P ⊙ P )2Da(j)).

For (III),

(III)
(d)
= − 1

n
x̄′
(i)V Dεrr

′DεV Dx̄(j)DrPr −
1

n
r′Da(i)Prr

′DεV Dx̄(j)DrPr

− 1

n
r′PDrDx̄(i)V Dεrr

′PDa(j)r −
1

n
r′Da(i)Prr

′PDa(j)Pr

Er[·]
= − 3

n
x̄′
(j)DPV x̄(i) +

2

n
x̄′
(j)D

2
PV x̄(i)

+
2

n
tr(DPPDa(i)PDa(j))−

1

n
tr(PDa(j)) tr(PDa(i))

− 2

n
tr(Da(j)PDa(i)P )

EU [·]
= − 1

n
z̄(j)V DP z̄(i) −

1

n
tr(Da(j)PDa(i)P )− 1

n
tr(DΣU (i,j)DPDV )︸ ︷︷ ︸

Kleibergen’s K

− 2

n
z̄′(j)DP (I −DP )V z̄(i) −

2

n
tr(DΣU (i,j)DP (I −DP )DV )

+
2

n
tr(DPPDa(i)PDa(j))−

1

n
tr(PDa(j)) tr(PDa(i))−

1

n
tr(Da(j)PDa(i)P ).
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Lastly by symmetry,

(IV )
Er[·]
= − 3

n
x̄′
(i)DPV x̄(j) +

2

n
x̄′
(i)D

2
PV x̄(j)

+
2

n
tr(DPPDa(j)PDa(i))−

1

n
tr(PDa(i)) tr(PDa(j))

− 2

n
tr(Da(i)PDa(j)P )

EU [·]
= − 1

n
z̄(i)V DP z̄(j) −

1

n
tr(Da(i)PDa(j)P )− 1

n
tr(DΣU (j,i)DPDV )︸ ︷︷ ︸

Kleibergen’s K

− 2

n
z̄′(i)DP (I −DP )V z̄(i) −

2

n
tr(DΣU (j,i)DP (I −DP )DV )

+
2

n
tr(DPPDa(j)PDa(i))−

1

n
tr(PDa(j)) tr(PDa(i))−

1

n
tr(Da(i)PDa(j)P ).

(A.22)

Together, we find

Ωij(β0) = Er
[
n · S(i),r(β0)S(j),r(β0)

∣∣J ] = ΩL
ij(β0) + ΩH

ij (β0), (A.23)

where

ΩL
ij(β0) =

1

n
z̄′(i)[V −DPV − V DP +DP V̇ DP +DPDV + V̇ ⊙ P ⊙ P ]z̄(j)

+
1

n
tr(DΣU (i,j)(DV −DVDP )) +

1

n
tr(Da(i)Da(j)P )− 1

n
tr(Da(i)PDa(j)P ),

ΩH
ij (β0) =

1

n
z̄′(i)

[
2DPDV + 7DP V̇ DP − 4D2

P V̇ DP − 4DP V̇ D
2
P

− 2(V Dε ⊙ V Dε)(P ⊙ P )⊙ I + 3V̇ ⊙ P ⊙ P

− 4DP (V̇ ⊙ P ⊙ P )− 4(V̇ ⊙ P ⊙ P )DP

− 2DPV − 2V DP + 2D2
PV + 2V D2

P

]
z̄(j)

− 2

n
tr(DΣU (i,j)(DPDV − 2D2

PDV + (V Dε ⊙ V Dε)(P ⊙ P )))

+
2

n
tr(DPPDa(j)PDa(i)) +

2

n
tr(DPPDa(i)PDa(j))

− 2

n
tr(D2

PDa(i)Da(j))−
2

n
tr(Da(i)(P ⊙ P )2Da(j)).

(A.24)

A.3 Proof of Theorem 2

We defer the proof of Theorem 2 to Appendix B, due to its length.
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A.4 Proof of Theorem 3

A.4.1 Unbiasedness

Proof. To show that Σ̂(β0) is (conditionally) unbiased, we start by analyzing the variance of

the score. The variance estimator was decomposed into

Ω̂L
ij(β0) =

1

n
x′
(i)(I −DPι)V (I −DPι)x(j),

Ω̂H
ij (β0) =

1

n
x′
(i)(2DPDV + 7DP V̇ DP + 3V̇ ⊙ P ⊙ P

− 2(V Dε ⊙ V Dε)(P ⊙ P )⊙ I − 4D2
P V̇ DP − 4DP V̇ D

2
P

− 4DP (V̇ ⊙ P ⊙ P )− 4(V̇ ⊙ P ⊙ P )DP

− 2DPV − 2V DP + 2DPDPιV + 2V DPιDP )x(j).

(A.25)

For Ω̂L
ij(β0), we use the following results

x′
(j)V x(i) = x̄

′
(j)V x̄(i) + a

′
(j)DεV Dεa(i) + a

′
(j)DεV x̄(i) + x̄

′
(j)V Dεa(i)

(d)
= x̄′

(j)V x̄(i) + r
′Da(j)PDa(i)r + r

′Da(j)DεV x̄(i) + x̄
′
(j)V DεDa(i)r.

(A.26)

This implies that

E[x′
(j)V x(i)|J ] = z̄′(j)V z̄(i) + tr(DΣU (j,i)V ) + tr(Da(j)PDa(i)). (A.27)

Similarly, we obtain

x′
(j)DPιV x(i)

(E)
= z̄′(j)DPV z̄(i) + tr(DΣU (j,i)DPDV ) + tr(Da(i)PDa(j)P ),

x′
(j)DPιV DPιx(i)

(E)
= z̄(j)[DPDV +DPV DP − 2D2

PDV + (P ⊙ P ⊙ V )]z̄(i)

+ tr(DΣU (i,j)DVDP ) + tr(PDa(i)PDa(j)).

Aggregating these results, we see that E[Ω̂L
ij(β0)|J ] = ΩL

ij(β0).
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For Ω̂H
ij (β0), we use the following results

x′
(j)DPDV x(i)

(E)
= z̄′(j)DPDV z̄(i) + tr(DΣU (j,i)DPDV )

+ tr(D2
PDa(i)Da(j)),

x′
(j)DP V̇ DPx(i)

(E)
= z̄′(j)DP V̇ DP z̄(i),

x′
(j)(V̇ ⊙ P ⊙ P )x(i)

(E)
= z̄′(j)(V̇ ⊙ P ⊙ P )z̄(i),

x′
(j)((V Dε ⊙ V Dε)(P ⊙ P )⊙ I)x(i) = z

′
(j)((V Dε ⊙ V Dε)(P ⊙ P )⊙ I)z(i)

+ tr(DΣU (i,j)(V Dε ⊙ V Dε)(P ⊙ P ))

+ tr(Da(i)(P ⊙ P )2Da(j)),

x′
(j)D

2
P V̇ DPx(i)

(E)
= z̄′(j)D

2
P V̇ DP z̄(i),

x′
(j)(V̇ ⊙ P ⊙ P )DPx(i)

(E)
= z̄′(j)(V̇ ⊙ P ⊙ P )DP z̄(i),

x′
(j)DPV x(i)

(E)
= z̄′(j)DPV z̄(i) + tr(DΣU (j,i)DPV )

+ tr(Da(i)Da(j)D
2
P ),

x′
(j)D

2
PV x(i)

(E)
= z̄′(j)D

2
PV z̄(i) + tr(DΣU (j,i)D

2
PV )

+ tr(Da(i)Da(j)D
3
P ).

(A.28)

Finally, note that

x′
(j)DPDPιV x(i) = z̄(j)D

2
PV z(i) + tr(DΣU (i,j)D

2
PDV ) + tr(PDPDa(j)PDa(i)). (A.29)

Aggregating these results and using symmetry shows that Ω̂(β0) is a conditionally unbiased

estimator for Ω(β0).

Similarly under the null we have E[σ̂2
n(β0)] = E[ 2

k
(k− ι′D2

P ι)] =
2
k
(
∑n

i=1 Pii−
∑n

i=1 P
2
ii) =
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2
k
(
∑n

i,j=1 P
2
ij −

∑n
i=1 P

2
ii) =

2
k
(
∑

i ̸=j P
2
ij) = σ2

n and

Σ̂1,j+1(β0) =
2√
n · k

x′
j(DV − (V ⊙ P ))DPε

=
2√
n · k

E[x̄′
j(DV − (V ⊙ P ))DPε+ ε

′Da(j)(DV − (V ⊙ P ))DPε]

(d)
=

2√
n · k

E[x̄′
j(DV − (V ⊙DrPDr))D

2
rDPDεr

+ r′DεDa(j)(DV − (V ⊙DrPDr))D
2
rDPDεr]

(E)
=

2√
n · k

[tr(DεDa(j)DVDPDε)− ι′DεDa(j)(V ⊙ P ))DPDει]

=
2√
n · k

[tr(Da(j)PDP )− tr(PDa(j)PDP )]

=
2√
n · k

tr(MDa(j)PDP )

=
2√
n · k

tr(Ψ(h) ⊙ P ),

(A.30)

where the part with x̂(j) has expectation zero, due to the odd number of Rademacher random

variables. For the expectation of the first term of the part that remains we used Theorem A.1.

We conclude that Σ̂(β0) is a conditionally unbiased estimator for Σ(β0).

A.4.2 Consistency

We first show consistency of the variance estimator of the AR statistic. Under H0 : β = β0,

σ2
n and σ̂2

n are identical, hence under H0 the estimator is consistent.

Next, we consider the variance estimator of the score statistic. Define x(i),r = z̄(i)+u(i)+

DrDεa(i). To show consistency, we need to show for some matrix Ar that possibly depends

on the vector of Rademacher random variables r, that

n−2 E[(x′
(i),rArx(j),r − E[x′

(i),rArx(j),r|J ])2|J ] →p 0. (A.31)

For Ar we have to consider the general cases (a) Ar = DrADr and (b) Ar = A, and the

specific cases (c) Ar = DrDPrV , (d) Ar = DrDPrV DPrDr and (e) Ar = DrDPDPrV .

Cases (a) and (b) will cover the consistency of the terms listed in (A.27) and (A.28) that are

all of the form x′
(i)Arx(j). For all these terms λmax(A⊙A) ≤ C a.s.n. and λmax(AA

′) ≤ C

a.s.n., which we will use repeatedly below. We will also often invoke the bound that for a

random vector w with independent elements that have bounded fourth moment, we have

E[(w′Aw − E[w′Aw])2|A] ≤ C tr(AA′), see for instance Whittle (1960).

For each of the cases (a)-(e), we decompose (A.31) into three parts that will be treated
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separately,

n−2 E[(x′
(i),rArx(j),r − E[x′

(i),rArx(j),r|J ])2|J ]

≤ 4n−2 E[(z̄′(i)Arz̄(j) − E[z̄′(i)Arz̄(j)|J ])2|J ]︸ ︷︷ ︸
(I)

+ 4n−2 E[(u′
(i)Aru(j),r − E[u′

(i)Aru(j)|J ])2|J ]︸ ︷︷ ︸
(II)

+ 4n−2 E[(a′
(i)DεDrArDrDεa(j) − E[a′

(i)DεDrArDrDεa(j)|J ])2|J ]︸ ︷︷ ︸
(III)

.

(A.32)

We start with (a.I)− (a.III).

(a.I) = n−2 E[(z̄′(i)Arz̄(j) − E[z̄′(i)Arz̄(j)|J ])2|J ]

= n−2 E[(r′Dz̄(i)ȦDz̄(j)r)
2|J ]

= n−2 tr(Dz̄(i)ȦDz̄(j)Dz̄(i)ȦDz̄(j)) + n−2 tr(Dz̄(i)ȦDz̄(j)Dz̄(j)ȦDz̄(i))

≤ 2λmax(Ȧ⊙ Ȧ)

(
1

n2

n∑
k=1

z̄4(i),k
1

n2

n∑
k=1

z̄4(j),k

)1/2

→a.s. 0,

(A.33)

by Assumption A5. Similarly, for (a.II)

(a.II) = n−2 E[(u′
(i)Aru(j) − E[u′

(i)Aru(j)|J ])2|J ]

≤ 2n−1λmax(Ȧ⊙ Ȧ)
1

n

n∑
k=1

E[u4(i),k]
1/2 E[u4(j),k]

1/2 →a.s. 0,
(A.34)

since Assumption A1 and Assumption A4 imply bounded fourth moment of u(i),k. Finally,

(a.III) = E[(a′
(i)DεDrArDrDεa(j) − E[a′

(i)DεDrArDrDεa(j)|J ])2|J ] = 0.

We now continue with (b.I)− (b.III). For (b.I), conditional on J there is no randomness,

so we get E[(z̄′(i)Arz̄(j) − E[z̄′(i)Arz̄(j)|J ])2|J ] = 0. For (b.II) we have

(b.II) = n−2 E[(u′
(i)Au(j) − E[u′

(i)Au(j)|J ])2|J ]

= n−2 E[(u′
(i)Au(j))

2|J ]− n−2 tr(DΣU (i,j)DA)
2

= n−2 E[
∑
k,k′,l,l′

u(i),ku(i),k′u(j),lu(j),l′AklAk′l′ ]− n−2 tr(DΣU (i,j)DA)
2

≤ n−2u′
(i)Du(i)(A⊙A)Du(j)u(j) + n−2u′

(j)Du(i)AA
′Du(i)u(j)

≤ n−1(λmax(Ȧ⊙ Ȧ) + λmax(AA
′))

1

n

n∑
k=1

E[u4(i),k]
1/2 E[u4(j),k]

1/2 →a.s. 0.

(A.35)
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Finally, (b.III) satisfies

(b.III) = n−2 E[(a′
(i)DεDrADrDεa(j) − E[a′

(i)DεDrADrDεa(j)|J ])2|J ]

= n−2 E[(r′Da(i)DεADεDa(j)r)
2|J ]− tr(Da(i)DεADεDa(j))

2

≤ Cn−2 tr(Da(i)DεADεDa(j)Da(j)DεA
′DεDa(i))

≤ Cn−2 tr(DεAD
2
εA

′Dε).

(A.36)

Using the specific expressions for A as in (A.27) and (A.28), we see that (b.III) →a.s. 0.

We continue with (c.I)− (c.III).

(c.I) = n−2 E[(z̄′(i)DrDPrV z̄(j) − E[z̄′(i)DrDPrV z̄(j)|J ])2|J ]

= n−2 E[(r′PDrDz̄(i)V z̄(j) − E[z̄′(i)DPV z̄(j)|J ])2|J ]

= n−2 tr(DPDz̄(i)D
2
V z̄(j)

Dz̄(i))− 2n−2 tr(Dz̄(i)V z̄(j)z̄
′
(j)V Dz̄(i)DP )

+ n−2ι′(P ⊙ P ⊙ (Dz̄(i)V z̄(j)z̄
′
(j)V Dz̄(i)))ι

= n−2z̄′(j)V Dz̄(i)DPDz̄(i)V z̄(j) − 2n−2z̄′(j)V Dz̄(i)DPDz̄(i)V z̄(j)

+ n−2z̄′(j)V Dz̄(i)(P ⊙ P )Dz̄(i)V z̄(j)

≤

(
1

n2

n∑
k=1

z̄4(i),k
1

n2

n∑
k=1

(z̄′(j)V ek)
4

)1/2

→a.s. 0,

(A.37)

with the convergence implied by Assumption A5.

(c.II) follows by analogous arguments. For (c.III), we have

(c.III) = n−2 E[(a′
(i)DεDPrV DrDεa(j) − E[a′

(i)DεDPrV DrDεa(j)|J ])2|J ]

= n−2 E[(r′PDa(i)PDa(j)r − tr(PDa(i)PDa(j)))
2|J ]

≤ n−2 tr(PDa(i)PD
2
a(j)
PDa(i)P ) →a.s. 0.

(A.38)

Proceeding with (d.I)− (d.III), we have

(d.I) = n−2 E[(z̄′(i)DrDPrV DPrDrz̄(j) − E[z̄′(i)DrDPrV DPrDrz̄(j)|J ])2|J ]. (A.39)

Notice that

n−1z̄′(i)DrDPrV DPrDrz̄(j) = n−1ιDrPDrDz̄(i)V Dz̄(j)DrPDrι

= n−1ι′(DP +DrṖ )Dz̄(i)V Dz̄(j)(DP +DrṖ )ι

= n−1z̄′(i)DPV DP z̄(j) + n−1ι′DPDz̄(i)V Dz̄(j)DrṖDrι

+ n−1ι′DrṖDrDz̄(i)V Dz̄(j)DP ι

+ n−1ι′DrṖDz̄(i)DVDz̄(j)ṖDrι

+ n−1ι′DrṖDrDz̄(i)V̇ Dz̄(j)DrṖDrι.

(A.40)
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The second and third term have expectation equal to zero. The fourth term has expectation

n−1z̄′(i)(DVDP (I −DP )z̄(j). The difference of these terms from their expectation converges

almost surely to zero by the same arguments as used in showing convergence of parts (a)−(c).

The final term has expectation z̄′(i)(V̇ ⊙Ṗ⊙Ṗ )z̄(j). Subtracting this expectation, and defining

r−ij as the vector r with the ith and jth element set to zero, the final term can be written as

tr(ṖDrDz̄(i)V̇ Dz̄(j)DrṖ ) + n−1

n∑
k=1

∑
l ̸=k

rkrlr
′
−klDPekDz̄(i)V̇ Dz̄(j)DPelr−kl. (A.41)

Squaring and taking the expectation, we get the bound

2

n2
E[tr(ṖDrDz̄(i)V̇ Dz̄(j)DrṖ )2|J ] +

4

n2

n∑
k=1

n∑
l=1

E[(r′−klDPekDz̄(i)V̇ Dz̄(j)DPelr−kl)
2|J ]

≤ 2

n2
E[(r′Dz̄(i)(V̇ ⊙ Ṗ 2)Dz̄(j)r)

2] +
4

n2

n∑
k=1

n∑
l=1

tr(DPekDz̄(i)V̇ Dz̄(j)DPelDPelDz̄(j)V̇ Dz̄(i)DPek)

≤ C

(
1

n2

n∑
k=1

z̄4(i),k
1

n2

n∑
k=1

z̄4(j),k

)1/2

→a.s. 0.

(A.42)

(d.II) follows from analogous arguments. Finally,

(d.III) = n−2 E[(a′
(i)DεDPrV DPrDεa(j) − tr(PDa(i)PDa(j)))

2|J ]

= n−2 E[(r′PDa(i)PDa(j)Pr)
2|J ]− tr(PDa(i)PDa(j)))

2|J ]2

≤ n−2 tr(PDa(i)PD
2
a(j)
PDa(i)P ) →a.s. 0.

(A.43)

Parts (e.I)− (e.III) follow using the same techniques used to establish (a)− (d).

Lastly, we consider the estimator of the covariance between the AR and the score statistic.

From (16) and (19) we can bound the variance of [Σ̂n,r(β0)]1,j as

E[(Σ̂n,r(β0)]1,j)
2|J ]

≤ 4

nk
E[(tr(Ψ(j) ⊙ P )− (z̄(j) +DrDεa(j) + u(j))

′(DV −Dr(V ⊙ P ))DPε)
2|J ]

≤ C

nk
(E[(tr(Ψ(j) ⊙ P )− a′

(j)DrDε(DV −Dr(V ⊙ P ))DPε)
2|J ]

+ E[(z̄′(j)(DV −Dr(V ⊙ P ))DPε)
2|J ] + E[(u′

(j)(DV −Dr(V ⊙ P ))DPε)
2|J ])

=
C

nk
(E[(z̄′(j)(DV −Dr(V ⊙ P ))DPε)

2|J ] + E[(u′
(j)(DV −Dr(V ⊙ P ))DPε)

2|J ]).

(A.44)

The first term becomes, by using the law of iterated expectations, Assumption A2 and The-
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orem A.1,

C

nk
E[(z̄′(j)(DV − |J (V ⊙ P ))DPε)

2|J ]

≤ C

nk
(E[(z̄′(j)DVDrDPε)

2|J ] + E[(z̄′(j)Dr(V ⊙ P )DPε)
2|J ])

=
C

nk
(E[z̄′(j)DVDPDεrr

′DVDPDεz̄(j)|J ]

+ E[r′Dz̄(j)(V ⊙ P )DPεε
′DP (V ⊙ P )Dz̄(j)r|J ])

=
C

nk
([tr(z̄′(j)DVD

3
P z̄(j))] + [ε′DP (V ⊙ P )D2

z̄(j)
(V ⊙ P )DPε])

=
C

nk
([tr(z̄′(j)DVD

3
P z̄(j))] + [ι′DεDP (V ⊙ P )D2

z̄(j)
(V ⊙ P )DPDει])

≤ C

nk
([tr(z̄′(j)DVD

3
P z̄(j))] + z̄

′
(j)DVDP z̄(j)) →a.s. 0,

(A.45)

by Assumption A5. The last inequality uses that e′j(V ⊙ V )DPD
2
ει =

∑n
i=1 V

2
jiPiiε

2
i ≤∑n

i=1 V
2
jiε

2
i = Vjj, and hence,

ι′DεDP (V ⊙ P )D2
z̄(j)

(V ⊙ P )DPDει ≤ z̄′(j)DεD
2
VDεz̄(j) = z̄

′
(j)DVDP z̄(j). (A.46)

We conclude that, under H0 : β = β0, Σ̂n is consistent for Σn.

Appendix B Central limit theorem

The proof of Theorem 2 is very long. We therefore only give an outline of it and explain the

most important steps. We defer the details to a separate document that is available upon

request.

The proof of the CLT is similar to the proof of Lemma A2 in Chao et al. (2012) and

consists of the following steps. First, in Appendix B.1 we rewrite the statistic(
1√
k
(AR(β)− k)
√
n · S

)
= Yn, (B.1)

such that it is a martingale difference array.

Second, in Appendix B.2 we show that, conditional on J , any linear combination of the

elements in Σ
−1/2
n Yn converges to the same linear combination of a multivariate normally

distributed random vector. That is, conditional on J t′Σ
−1/2
n Yn →d t

′Z for any t ∈ Rp+1

and Z multivariate normally distributed.

Third, in Appendix B.3 we use a version of Lebesgue’s dominated convergence theorem

to show that t′Σ
−1/2
n Yn →d t

′Z unconditionally.

Fourth, in Appendix B.4 we invoke the Cramér-Wold theorem to conclude that Σ
−1/2
n Yn

41



→d Z and thus that Yn is multivariate normally distributed.

B.1 Rewriting the statistic

First we rewrite the AR statistic. In Section 2 we showed that AR(β) has the same distribu-

tion as ARr(β). Therefore
1√
k
(AR(β)− k)

(d)
= 1√

k
(ARr(β)− k). Then defining

w1n,AR =
2√
k
P12, yin,AR =

2√
k

[∑
j<i

Pijrj

]
· ri, (B.2)

we have 1√
k
(ARr(β)− k) = w1n,AR +

∑n
i=3 yin,AR.

Next, we consider the score. We rewrite the first order conditions as

∂Q(β)

∂βh
= − 1

n
x′
(h)(I −DPι)V ε

= − 1

n

[
x̄′
(h)(I −DPι)V ε+ ε

′Da(h)(I −DPι)V ε

]
(d)
= − 1

n

[
x̄′
(h)V Dεr − r′PDrDx̄(h)V Dεr + r

′Da(h)Pr − r
′PDa(h)Pr

]
= − 1

n

[
x̄′
(h)V Dεr + r

′Ψ(h)r − r′PDrDx̄(h)V Dεr

]
,

(B.3)

where Ψ(h) ≡MDa(h)P . Define Φ(h) ≡Dx̄(h)V Dε. We can rewrite the final term as

r′PDrΦ
(h)r = tr(PDrΦ

(h)) + tr(PDrΦ
(h)∆) ∆ ≡ rr′ − In

= tr(Φ(h)Dr) + tr(PDrΦ
(h)∆)

= x̄′
(h)DVDεr +

∑
i,j,k
i ̸=k

PijΦ
(h)
jk rirjrk

= x̄′
(h)DVDεr +

∑
i ̸=j,k ̸=i

PijΦ
(h)
jk rirjrk +

∑
i ̸=k

PiiΦ
(h)
ik rk

= x̄′
(h)DVDεr +

∑
i ̸=j ̸=k ̸=i

PijΦ
(h)
jk rirjrk +

∑
i ̸=k

PiiΦ
(h)
ik rk +

∑
i ̸=j

PijΦjj
(h)ri

= x̄′
(h)DVDεr +

∑
i ̸=j ̸=k ̸=i

PijΦ
(h)
jk rirjrk +

∑
i ̸=k

PiiΦ
(h)
ik rk +

∑
i ̸=j

εiVijεjx̄h,jVjjεjri

= x̄′
(h)DVDεr +

∑
i ̸=j ̸=k ̸=i

PijΦ
(h)
jk rirjrk +

∑
i ̸=k

PiiΦ
(h)
ik rk +

∑
i ̸=j

PiiΦ
(h)
ij ri

= x̄′
(h)DVDεr + 2

∑
j ̸=i

Φ
(h)
ji Pjjri +

∑
i ̸=j ̸=k ̸=i

PijΦ
(h)
jk rirjrk.

(B.4)

Notice that Φ(h)P = Φ(h) and therefore Φ(h)(Ψ(h))′ = Φ(h)Da(h)M . Furthermore, tr(Ψ(h)) =

0.
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We conclude that

√
n
∂Q(β)

∂βh

(d)
= − 1√

n

∑
j ̸=i

Φ
(h)
ji (1− 2Pjj)ri −

1√
n

∑
j ̸=i

Ψ
(h)
ji rjri +

1√
n

∑
i ̸=j ̸=k ̸=i

PijΦ
(h)
jk rirjrk

= w
(h)
1n,S +

n∑
i=3

y
(h)
in,S,

(B.5)

where

w
(h)
1n,S = − 1√

n

∑
j ̸=1

Φ
(h)
j1 (1− 2Pjj)r1 −

1√
n

∑
j ̸=2

Φ
(h)
j2 (1− 2Pjj)r2 −

1√
n
Ψ

(h)
[21]r2r1,

y
(h)
in,S =

[
− 1√

n

∑
j ̸=i

Φ
(h)
ji (1− 2Pjj)−

1√
n

∑
j<i

Ψ
(h)
[ij]rj +

1√
n

∑
l<j<i

A
(h)
[ijl]rjrl

]
· ri,

(B.6)

and Ψ
(h)
[ij] = Ψ

(h)
ij +Ψ

(h)
ji , A

(h)
[ijk] = A

(h)
ijk + A

(h)
ikj + A

(h)
jik + A

(h)
jki + A

(h)
kij + A

(h)
kji, A

(h)
ijk = PijΦ

(h)
jk .

Then the full statistic becomes

Yn =

(
1√
k
(AR(β)− k)
√
n · S

)
=

(
w1n,AR

w1n,S

)
+

n∑
i=3

(
yin,AR

yin,S

)
. (B.7)

B.2 Conditional distribution of t′Σ
−1/2
n Yn

To use the Cramér-Wold theorem later on in Section B.4 we need to show that for any

t ∈ Rp+1 t′Σ
−1/2
n Yn →d t

′Z. When t = 0 the condition is trivially satisfied. Therefore, we

focus on the case t ∈ Rp+1 \ 0 and write t = Cα(α′α)−1/2 for α ∈ Rp+1 \ 0. Now consider

(α′α)−1/2Σ
−1/2
n α′Yn and define Ξn = var(α′Σ

−1/2
n Yn|J ), then

(α′α)−1/2α′Σ−1/2
n Yn = w1n +

n∑
i=3

yin, (B.8)

where we define

w1n = Ξ−1/2
n [c1nw1n,AR + c′2nw1n,S] ,

yin = Ξ−1/2
n

[
− 1√

n

∑
j ̸=i

c′2nϕji(1− 2Pii) −
1√
n

∑
j<i

(c′2nψ[ij] − 2c1nγnPij)rj

+
1√
n

∑
l<j<i

c′2na[ijl]rlrj

]
· ri,

(B.9)

where cn = (c1n, c
′
2n)

′ = Σ
−1/2
n α, 0 < α′α ≤ C, ϕji = (Φ

(1)
ji , . . . ,Φ

(p)
ji )

′, ψ[ji] = (Ψ
(1)
[ji], . . . ,Ψ

(p)
[ji])

′,

a[ijk] = (A
(1)
[ijk], . . . , A

(p)
[ijk]) and γn =

√
n√
k
. Notice that then also c′ncn ≤ C, which implies c21n ≤ C

and c′2nc2n ≤ C.

For later purposes, it will be useful to write the bracketed term in yin in matrix notation.
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Define Si−1 as the n× n matrix with in the left-upper i− 1× i− 1 block the identity matrix

and zeroes elsewhere. Let Ψ =MD∑p
h=1 c2n,ha(h)

P and Φ = D∑p
h=1 c2n,hx̄(h)

V Dε then we can

write

yin = Ξ−1/2
n

{
− 1√

n
c′2nX̄

′(In − 2DP )V̇ Dεei

− 1√
n
r′Si−1

[
(Ψ+Ψ′ − 2DΨ)− 2c1nγnṖ

]
ei +

1√
n
r′A−ir

}
· ri,

A−i = Si−1AiSi−1 = Si−1[ṖDΦei +DΦeiṖ + Peie
′
iΦ−DPeiDe′iΦ

]Si−1.

(B.10)

To see that the last term in (B.10) equals the last term of yin in (B.9) note that A−i

consists of the sum of three matrices with zero diagonal. Furthermore, the quadratic form

with r′Si−1 selects only the upper left block of the matrix. By splitting the sums into the

part stemming from the upper and lower triangular parts we get for the first term

r′Si−1ṖDΦeiSi−1r =

p∑
h=1

c2n,h[
∑
l<j<i

Pjlx̄(h),lVliεirjrl +
∑
l<j<i

Pljx̄(h),lVjiεirjrl]

=

p∑
h=1

c2n,h[
∑
l<j<i

A
(h)
jli rjrl +

∑
l<j<i

A
(h)
lji rjrl],

(B.11)

the second term

r′Si−1DΦeiṖ Si−1r =

p∑
h=1

c2n,hr
′Si−1Dx̄(h)DV eiεi(DεV Dε −DεDVDε)Si−1r

=

p∑
h=1

c2n,hr
′Si−1DεDV eiεi(Dx̄(h)V Dε −Dx̄(h)DVDε)Si−1r

=

p∑
h=1

c2n,hr
′Si−1(De′iP

Φ(h) −De′iP
DΦ(h))Si−1r

=

p∑
h=1

c2n,h[
∑
l<j<i

Pijx̄(h),jVjlεlrjrl +
∑
l<j<i

Pilx̄(h),lVljεjrjrl]

=

p∑
h=1

c2n,h[
∑
l<j<i

A
(h)
ijl rjrl +

∑
l<j<i

A
(h)
ilj rjrl],

and third term

r′Si−1(Peie
′
iΦ

(h) −DPeiDe′iΦ
(h))Si−1r

=

p∑
h=1

c2n,h[
∑
l<j<i

Pjix̄(h),iVilεlrjrl +
∑
l<j<i

Plix̄(h),iVijεjrjrl]

=

p∑
h=1

c2n,h[
∑
l<j<i

A
(h)
jil rjrl +

∑
l<j<i

A
(h)
lij rjrl].

(B.12)
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Furthermore note that A−i is a symmetric matrix with all diagonal elements equal to zero.

We will now show that (α′α)−1/2α′Σ−1/2Yn converges to a standard normally distributed

random variable. As in Chao et al. (2012) we first show that w1n = op(1) such that we can

focus on
∑n

i=3 yin. Next, we check conditions of the martingale difference array CLT.

B.2.1 w1n = op(1) unconditionally

We start by noting the following result.

Result 1. For A m×n and B n×m with n ≥ m, the eigenvalues of AB equal those of BA

plus n −m zeroes (Magnus and Neudecker, 1998, Ch. 1 T9). Hence if A and B are square

matrices λmax(AB) = λmax(BA).

Next, using Assumption A5, we have that

1

n2

n∑
j=1

∥Z̄ ′Z(Z ′Dε2Z)−1zjεj∥4

≤ 1

n2
max
l=1,...,n

∥Z̄ ′Z(Z ′Dε2Z)−1zlεl∥2
n∑
j=1

∥Z̄ ′Z(Z ′Dε2Z)−1zjεj∥2

≤ oa.s.(1)

n

p∑
h=1

n∑
j=1

(e′hZ̄
′Z(Z ′Dε2Z)−1zjεj)

2

=
oa.s.(1)

n

p∑
h=1

n∑
j=1

e′hZ̄
′Z(Z ′Dε2Z)−1Z ′Dεeje

′
jDεZ(Z ′Dε2Z)−1Z ′Z̄eh

=
oa.s.(1)

n

p∑
h=1

e′hZ̄
′Z(Z ′Dε2Z)−1Z ′Dε2Z(Z ′Dε2Z)−1Z ′Z̄eh

=
bn
n

p∑
h=1

e′hZ̄
′Z(Z ′Dε2Z)−1Z ′Z̄eh

≤ oa.s.(1)C

n
λmax(Z(Z ′Dε2Z)−1Z ′)

p∑
h=1

e′hZ̄
′Z̄eh →a.s. 0,

(B.13)

by Assumption A5 and where oa.s.(1) is a term converging to zero a.s.
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Also under Assumption A5 and by the finite kurtosis of U

E[
1

n2

n∑
i,j=1

∥ϕij∥4|J ]

= E[
1

n2

n∑
i,j=1

∥X̄ ′eiVijεj∥4|J ]

= E[
1

n2

n∑
i,j=1

∥X̄ ′ei∥4(Vijεj)4|J ]

≤ E[
1

n2

n∑
i,j,k=1

∥X̄ ′ei∥4(e′iV Dεeje
′
jDεV ei)

2(e′iV Dεeke
′
kDεV ei)

2|J ]

= E[
1

n2

n∑
i=1

∥X̄ ′ei∥4V 2
ii |J ]

≤ E[
C

n2

n∑
i=1

∥X̄ ′ei∥4|J ]

≤ C

n2

n∑
i=1

∥Z̄ ′ei∥4 + E[∥U ′ei∥4|J ] →a.s. 0.

(B.14)

Furthermore we have

1

n2

n∑
i=1

E[∥U ′V Dεei∥4|J ]

≤ C

n2

p∑
h=1

n∑
i=1

E[(u′
(h)V Dεei)

4|J ]

=
C

n2

p∑
h=1

n∑
i=1

E[u′
(h)V Dεeie

′
iDεV u(h)u

′
(h)V Dεeie

′
iDεV u(h)|J ]

=
C

n2

p∑
h=1

( n∑
i,j=1

E[u4(h),j|J |](e′jV Dεeie
′
iDεV ej)

2

+ 2
n∑

i,j,k=1

E[u2(h),ju
2
(h),k|J |](e′jV Dεeie

′
iDεV ek)

2

+
n∑

i,j,k=1

E[u2(h),ju
2
(h),k|J |]e′jV Dεeie

′
iDεV eje

′
kV Dεeie

′
iDεV ek

)

≤ C

n2

p∑
h=1

(
C

n∑
i,j=1

E[u4(h),j|J |]e′jV Dεeie
′
iDεV ej + 3

n∑
i=1

E[u2(h),ju
2
(h),k|J |](e′iDεV V Dεei)

2

)

≤ C

n2

p∑
h=1

(
C

n∑
j=1

E[u4(h),j|J |]e′jV ej + 3C
n∑
i=1

E[u2(h),ju
2
(h),k|J |]e′iDεV V Dεei

)
→a.s. 0,

(B.15)
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because by independence of the u(h),i there exists a similar result as Item 2 of Theorem A.1

for u(h), and by Assumption A5 and Result 1 and the finite kurtosis of U .

Next, note that

E[∥c1nw1n,AR∥4|J ] =
16 · c41n
k2

P 4
12 ≤

C

k2
(
n∑
i=1

P 2
1i)

2 ≤ C

k2
P 2
11 →a.s. 0. (B.16)

Also, since c′2nc2n ≤ C and using the definition of w1n,S, we have

E

[
∥c′2nw1n,S∥4

∣∣∣∣J ] ≤ C · E
[
∥w1n,S∥4

∣∣∣∣J ]
= C E

[
∥−1√

n

∑
j ̸=1

ϕj1(1− 2Pjj)r1 −
1√
n

∑
j ̸=2

ϕj2(1− 2Pjj)r2 −
1√
n
ψ[21]r2r1∥4

∣∣∣∣∣J
]

≤ C

n2
E

[
∥
∑
j ̸=1

ϕj1(1− 2Pjj)∥4 + ∥
∑
j ̸=2

ϕj2(1− 2Pjj)∥4 + ∥ψ[21]∥4
∣∣∣∣J
]

≤ C

n2
E

[
∥Z̄ ′Z(Z ′Dε2Z)−1z1ε1∥4 + ∥U ′Z(Z ′Dε2Z)−1z1ε1∥4 + ∥ϕ11(1− 2P11)∥4

+ ∥Z̄ ′Z(Z ′Dε2Z)−1z2ε2∥4 + ∥U ′Z(Z ′Dε2Z)−1z2ε2∥4 + ∥ϕ22(1− 2P22)∥4

+ p max
h=1,...,p

(Ψ
(h)
[21])

4

∣∣∣∣J ]
≤ C

n2
E

[
n∑
j=1

∥Z̄ ′Z(Z ′Dε2Z)−1zjεj∥4 + ∥U ′Z(Z ′Dε2Z)−1zjεj∥4 + ∥ϕ11∥4 + ∥ϕ22∥4 + C

∣∣∣∣J
]

→a.s. 0,

(B.17)

where for the final line we use (B.13), (B.14), (B.15), Assumption A5 and that

Ψ
(h)
jk = e′jMDa(h)Pek ≤ ejMeje

′
kPDa2

(h)
Pek ≤ max

i=1,...,n
a2(h),i ≤ C a.s.n. (B.18)

with the second inequality by Pii < 1 a.s.n.

As in the proof of Lemma A2 in Chao et al. (2012), this implies that w1n = c1nw1n,AR +

c′2nw1n,S →p 0 unconditionally, and hence,

(α′α)−1/2α′Σ−1/2
n Yn =

n∑
i=3

yin + op(1). (B.19)

B.2.2 Martingale difference sequence

Define the σ-fields Fi,n = σ(r1, . . . , ri) such that Fi−1,n ⊂ Fi,n. It is clear that, E[yin|J ,Fi−1,n] =

0, due to the ri that multiplies all the terms. Hence, conditional on J , {yin,Fi,n, 1 ≤ i ≤
n, n ≥ 3} is a martingale difference array.
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B.2.3 Variance bounded away from zero

For our statistic to be well defined we require the existence of Σ−1
n almost surely. We start

by considering a quadratic form of Ω. Let v be any p dimensional vector. Then

v′Ωv =
1

n
v[Z̄ ′Ω̃Z̄ + E[U ′Ω̃U |J ] + T ]v, (B.20)

where from (12) we have Ω̃ = V − 3DPDV + 2D2
PV + 2V D2

P − 2(V Dε ⊙V Dε)(P ⊙P )⊙
I + 8DP V̇ DP + 4V̇ ⊙ P ⊙ P − 4D2

P V̇ DP − 4DP V̇ D
2
P − 4(V̇ ⊙ P ⊙ P )DP − 4DP (V̇ ⊙

P ⊙ P ) − 3DP V̇ − 3V̇ DP and Tij = tr(Da(i)Da(j)P ) − 2 tr(D2
PDa(i)Da(j)) − 2 tr((In ⊙

PDa(i)P )PDa(j)P ) + 2 tr(DPPDa(j)PDa(i)) + 2 tr(DPPDa(i)PDa(j))− tr(Da(i)PDa(j)P ).

Each of the three terms is bigger or equal to zero and for the second we have

E[v′U ′Ω̃Uv|J ] = E[
n∑

i,j,k,l=1

viUjiΩ̃jkUklvl|J ] = E[
n∑

i,j,l=1

viUjiΩ̃jjUjlvl|J ]

= E[v′U ′DΩ̃Uv|J ] ≥ λmin(DΩ̃) E[v
′U ′Uv|J ],

(B.21)

with the diagonal elements of DΩ̃ bounded away from zero because

Ω̃ii = e
′
i(V − 3DPDV − 2(V Dε ⊙ V Dε)(P ⊙ P ) + 4D2

PDV )ei

= Vii(1− 3Pii + 4P 2
ii)− 2

n∑
j=1

V 2
ijε

2
jP

2
ji

≥ Vii(1− 3Pii + 4P 2
ii)− 2

n∑
j=1

V 2
ijε

2
jPiiPjj

≥ Vii(1− 3Pii + 4P 2
ii)− 2 max

k=1,...,n
Pkk

n∑
j=1

V 2
ijε

2
jPii

≥ Vii(1− 3Pii + 4P 2
ii)− ViiPii

= Vii(1− 4Pii + 4P 2
ii) > 0,

(B.22)

for Pii <
1
2
and by Assumption A5. Then because E[U ′U |J ] is positive definite, we conclude

that (B.21) is bounded away from zero and hence so is (B.20).

Now let b = [Σ]2:p+1,1 the covariance between the AR statistic and the score. Then note

that det(Σn) = det(Ω) det(Ω−bb′σ−2
n ) by Schur complements. The (i, j)th element in bb′σ−2

n

is the covariance of the AR statistic with ith and jth element of the score divided by the

variance of the AR statistic. Hence this is equal to the correlation of the AR statistic with

the ith and jth element of the score statistic times the standard deviations of the ith and jth

element of the score statistic. Denote ρ the vector of correlations between the AR statistic
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and the score. That is, ρi = corr(1/
√
k(AR(β)− k), 1/

√
nS(i)|J ). Then

det(Σn) = det(Ω) det(Ω− bb′σ−2
n )

= det(Ω) det(Ω−DρΩDρ)

= det(Ω) det((I +Dρ)Ω(I −Dρ))

= det(Ω) det(I +Dρ) det(Ω) det(I −Dρ) > 0,

(B.23)

if ρi ̸= ±1 for all i.

Therefore Σ−1
n exists.

B.2.4 Lyapunov condition

We will now show that

n∑
i=3

E[y4in|J ] =
n∑
i=3

E[(Ξ−1/2
n

[
− 1√

n

∑
j ̸=i

c′2nϕji(1− 2Pii)

− 1√
n

∑
j<i

(c′2nψ[ij] − 2c1nγnPij)rj +
1√
n

∑
l<j<i

c′2na[ijk]rlrj

]
ri)

4|J ]

≤ CΞ−2
n

n∑
i=3

E[

(
− 1√

n

∑
j ̸=i

c′2nϕji(1− 2Pii)ri

)4

|J ]︸ ︷︷ ︸
linear

+ E[

(
1√
n

∑
j<i

(c′2nψ[ij] − 2c1nγnPij)rjri

)4

|J ]︸ ︷︷ ︸
quadratic

+ E[

(
1√
n

∑
l<j<i

c′2na[ijk]rlrjri

)4

|J ]︸ ︷︷ ︸
cubic

→a.s. 0.

(B.24)

First of all we require Ξn to be bounded away from zero to assert that Ξ−2
n is finite.

Ξn = var(α′Σ
− 1

2
n Yn|J ) = (α′α) var(w1n +

n∑
i=3

yin|J ) = (α′α)(1 + oa.s.(1)) > 0, (B.25)

since α′α > 0. Next we will consider the linear, quadratic and cubic terms one by one.

Linear term For the term linear in r, it suffices to show that

E[
1

n2

n∑
i=3

(∑
j ̸=i

c′2nϕji(1− 2Pii)

)4

|J ] →a.s. 0. (B.26)
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We have that

E[
1

n2

n∑
i=3

(∑
j ̸=i

c′2nϕji(1− 2Pii)

)4

|J ]

≤ E[
C

n2

n∑
i=3

(1− 2Pii)
4∥

n∑
j=1

ϕji − ϕii∥4|J ]

≤ E[
C

n2

n∑
i=3

(
∥Z̄ ′V Dεei∥4 + ∥U ′V Dεei∥4 +∥ϕii∥4

)
|J ]

≤ E[
C

n2

n∑
i=1

(
∥Z̄ ′V Dεei∥4 + ∥U ′V Dεei∥4 +∥ϕii∥4

)
|J ] →a.s. 0,

(B.27)

since (1− 2Pii)
2 < 1 and by Assumption A5, (B.13), (B.14) and (B.15).

Quadratic term For the term quadratic in r in (B.24), we first notice that

1

n2

n∑
i=3

E[∥
∑
j<i

γnPijrirj∥4|J ] ≤ γ2n
n2

n∑
i=3

(∑
j<i

P 4
ij + 3

∑
(j,m)<i
j ̸=m

P 2
ijP

2
im

)
≤ C

k

nk
→ 0. (B.28)

Similarly,

1

n2

n∑
i=3

E

[
∥
∑
k<i

c′2nψ[ik]rirk∥4
∣∣∣∣∣J
]

≤ C

n2

n∑
i=3

∑
k<i

∑
l<i

∑
m<i

∑
s<i

|c′2nψ[ik]||c′2nψ[il]||c′2nψ[im]||c′2nψ[is]|E[rkrlrmrs|J ]

≤ C

n2

n∑
i=3

(∑
k<i

(
c′2nψ[ik]

)4
+ 3

∑
(k,m)<i
k ̸=m

(
c′2nψ[ik]

)2(
c′2nψ[im]

)2)

≤ C

n2

n∑
i=3

(∑
k<i

∥ψ[ik]∥4 + 3
∑

(k,m)<i
k ̸=m

∥ψ[ik]∥2∥ψ[im]∥2
)

≤ C

n2

n∑
i=3

(∑
k<i

p∑
h=1

(
Ψ

(h)
[ik]

)4
+ 3

∑
(k,m)<i
k ̸=m

p∑
h=1

(
Ψ

(h)
[ik]

)2 p∑
h=1

(
Ψ

(h)
[im]

)2)
.

(B.29)

To bound this expression, note that by (B.18) e′iΨ
(h)ei ≤ C a.s.n. Also, for any vector v

v′Ψ(h)′Ψ(h)v = v′PDa(h)MDa(h)Pv ≤ max
i=1,...,n

a2(h),i · v′Pv. (B.30)
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This implies that
n∑
i=1

(Ψ
(h)
ij )2 ≤ max

i=1,...,n
a2(h),i · Pjj ≤ C a.s.n. (B.31)

Then,

1

n2

n∑
i,k=1

(Ψ
(h)
ik )4 ≤ 1

n2

n∑
i,k=1

(
n∑
j=1

(Ψ
(h)
jk )

2

)
(Ψ

(h)
ik )2

≤ 1

n2

∑
i,k=1

max
j=1,...,n

a(h),jPkk(Ψ
(h)
ik )2

≤ 1

n2
max
j=1,...,n

a(h),j

n∑
k=1

Pkk

n∑
i=1

(Ψ
(h)
ik )2

≤ 1

n2
max
j=1,...,n

a2(h),j

n∑
k=1

P 2
kk

≤ Ck

n2
→a.s. 0.

(B.32)

Using this result, we have that

1

n2

n∑
i=3

∑
k<i

(
Ψ

(h)
[ik]

)4
≤ 1

n2

n∑
k,i=1

(
Ψ

(h)
ik +Ψ

(h)
ki

)4
≤ C

n2

n∑
k,i=1

(Ψ
(h)
ik )4 + (Ψ

(h)
ki )

4 ≤ Ck

n2
→a.s. 0.

(B.33)

And also we find that

1

n2

n∑
i=3

∑
(k,m)<i
k ̸=m

(
Ψ

(h)
[ik]

)2 (
Ψ

(h)
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(
(Ψ

(h)
ik )2 + (Ψ

(h)
ki )

2
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(Ψ
(h)
im )2 + (Ψ

(h)
mi )

2
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n2
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(Ψ
(h)
ik )2(Ψ

(h)
im )2 + (Ψ

(h)
ik )2(Ψ

(h)
mi )

2

+ (Ψ
(h)
ki )

2(Ψ
(h)
im )2 + (Ψ

(h)
ki )

2(Ψ
(h)
mi )

2.

(B.34)

51



For which we use

1

n2

n∑
i,k,m=1

(Ψ
(h)
ik )2(Ψ

(h)
im )2 ≤ 1

n2

n∑
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(
n∑
k=1

(Ψ
(h)
ik )2
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≤ 1

n2

n∑
i=1

(
e′iΨ

(h)Ψ(h)′ei
)2

≤ 1

n2

n∑
i=1

n∑
j=1

e′iΨ
(h)Ψ(h)′eje

′
jΨ

(h)Ψ(h)′ei

≤ 1

n2
tr(Ψ(h)Ψ(h)′Ψ(h)Ψ(h)′)

≤ 1

n2
tr(MDa(h)PDa(h)MDa(h)PDa(h)M )

≤ Ck

n2
→a.s. 0,

(B.35)

and

1

n2

n∑
i,k,m=1

(Ψ
(h)
ik )2(Ψ

(h)
mi )

2 ≤ 1

n2

n∑
i=1

e′iΨ
(h)′Ψ(h)eie

′
iΨ

(h)Ψ(h)′ei

≤ 1

n2

n∑
i=1

|e′iΨ(h)′Ψ(h)ei||e′iΨ(h)Ψ(h)′ei|

≤ 1

n2

n∑
i=1

|e′iMDa(h)PDa(h)Mei||e′iPDa(h)MDa(h)Pei|

≤ 1

n2

n∑
i=1

| max
j=1,...,n

a2(h),j|2Pii

≤ Ck

n2
→a.s. 0.

(B.36)

Similarly we find

1

n2

n∑
i,k,m=1

(Ψ
(h)
ki )

2(Ψ
(h)
im )2 ≤ Ck

n2
→a.s. 0. (B.37)

Lastly,

1

n2

n∑
i,k,m=1

(Ψ
(h)
ki )

2(Ψ
(h)
mi )

2 ≤ 1

n2

n∑
i,k=1

(Ψ
(h)
ki )

2

n∑
m=1

(Ψ
(h)
mi )

2 ≤ 1

n2

n∑
i=1

max
j=1,...,n

a4(h),jP
2
ii ≤

Ck

n2
→a.s. 0.

(B.38)

Consequently, the quadratic term converges to zero almost surely.
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Cubic term From (B.10), the cubic term can be written as,

n∑
i=3

E[((
1√
n
r′A−ir)ri)

4|J ] =
n∑
i=3

C

n2
E[E[(r′A−ir)

4|J ,U ]|J ]. (B.39)

Since A−i is symmetric and has diagonal elements equal to zero, we have by Item 4 of

Theorem A.1

n∑
i=3

C

n2
E[E[(r′A−ir)

4|J ,U ]|J ] =
n∑
i=3

C

n2
E[]12 tr(A2

−i)
2 + 48 tr(A4

−i)− 96ι′(I ⊙A2
−i)

2ι

+ 32ι′(A−i ⊙A−i ⊙A−i ⊙A−i)ι|J ]
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C

n2
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−i)
2 − 96ι′(I ⊙A2

−i)
2ι|J ]

≤
n∑
i=3

C

n2
E[92 tr(A2

−i)
2|J ],

(B.40)

where the second inequality follows since A2
−i is positive semidefinite, hence tr(A4

−i) ≤
tr(A2

−i)
2, and

ι′(A−i ⊙A−i ⊙A−i ⊙A−i)ι =
n∑
i=1

n∑
j=1

(e′iA−iej)
4 ≤

n∑
i=1

n∑
j=1

e′iA
2
−iei(e

′
iA−iej)

2

=
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(e′iA
2
−iei)

2 ≤

(
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i=1

(e′iA
2
−iei)

)2

= tr(A2
−i)

2.

(B.41)

Now,

n∑
i=3

C

n2
E[tr(A2

−i)|J ] =
n∑
i=3

C

n2
E[tr(Si−1AiSi−1AiSi−1)|J ]

≤
n∑
i=3

C

n2
E[tr(A2

i )|J ]
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n∑
i=3

C

n2
E[tr([ṖDΦei ]

2 + [DΦeiṖ ]2 + [Peie
′
iΦ]2 − [DPeiDe′iΦ

]2)|J ].

(B.42)

To bound these four terms we use the following result
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Result 2.

C
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(B.43)

by Assumption A5 and the finite kurtosis of U .

We can then bound the four terms as follows. For the first and second term we have by

Result 2

1
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n2
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(B.44)

Third, by Result 2

1
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(B.45)
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Fourth, by Result 2
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(B.46)

Hence the cubic term converges to zero almost surely. Therefore, the Lyapunov condition

is satisfied.

B.2.5 Converging conditional variance

First note that

s2n = E[

(
n∑
i=3

yin

)2

|J ] = E[((α′α)−1/2α′Σ−1/2
n Yn + oa.s.(1))

2|J ] = 1 + oa.s.(1), (B.47)

where the vanishing part is due to w1n. We can conclude that s2n is bounded and bounded

away from zero in probability. Now define r−i = r1, . . . , ri−1 and write yin in (B.10) as

yin = Ξ
−1/2
n (y

(1)
in + y
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(B.48)

Then we need to show that for any ϵ > 0,

P
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
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n∑
i=3

E[(y
(1)
in + y

(2)
in + y

(3)
in )2|r−i,J ]

−
n∑
i=3

E[(y
(1)
in + y

(2)
in + y

(3)
in )2|J ]

)2
∣∣∣∣∣∣J


=
C

ϵ2
E

[(
n∑
i=3

E[(y
(1)
in )2 + (y

(2)
in )2 + (y

(3)
in )2 + 2(y

(1)
in )(y

(2)
in ) + 2(y

(1)
in )(y

(3)
in )

+ 2(y
(2)
in )(y

(3)
in )|r−i,J ]−

n∑
i=3

E[(y
(1)
in )2 + (y

(2)
in )2 + (y

(3)
in )2

+2(y
(1)
in )(y

(2)
in ) + 2(y

(1)
in )(y

(3)
in ) + 2(y

(2)
in )(y

(3)
in )|J ]

)2∣∣∣∣J ]

≤ C

ϵ2

E

( n∑
i=3

E[(y
(1)
in )2|r−i,J ]−

n∑
i=3

E[(y
(1)
in )2|J ]

)2
∣∣∣∣∣∣J
 (B.49)

+ E
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Here the second equality follows since each of the cross products has expectation zero, the

first inequality is a conditional Markov inequality and the second inequality uses that Ξ
−1/2
n

is bounded. Each of these terms can be shown to converge to zero almost surely. The general

procedure is

1. Take the expectation over U and r in the second term within the square.

2. Complete the square.

3. If needed split the term in a part that depends on U and a part that does not.

4. Take the expectation over r.

5. Bound each of the remaining terms.
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This procedure yields a large number of terms that need to be bounded, because when we

complete the square we often get a double sum over products of four terms, since each term in

(B.49) contains two squares and a sum within one of these squares. By taking the expectation

over r we obtain a number of different forms of these products. If furthermore a product

contains A−i, which itself is a sum of four terms, this yields 16 different cross products that

need to be bounded. We do this in a separate document.

B.3 Unconditional distribution of t′Σ
−1/2
n Yn by Lebesgue’s domi-

nated convergence theorem

To obtain the unconditional distribution, note that for some ϵ > 0, say ϵ = 1, we have

sup
n

E([|P((α′α)−1/2α′Σ−1/2
n Yn < y|J )|1+ϵ] = sup

n
E[(P((α′α)−1/2α′Σ−1/2

n Yn < y|J ))2]

≤ sup
n

E[12] ≤ ∞.

(B.50)

Therefore, P((α′α)−1/2α′Σ
−1/2
n Yn < y|J ) is uniformly integrable (Billingsley, 1995, p. 338)

and we can apply a version of Lebesgue’s dominated convergence theorem (Billingsley, 1995,

Theorem 25.12)

P((α′α)−1/2α′Σ−1/2
n Yn < y) = E[P((α′α)−1/2α′Σ−1/2

n Yn < y|J )]

→ E[Φ(y)] = Φ(y).
(B.51)

B.4 Distribution of Yn by the Cramér-Wold theorem

We have shown that for any α we have (α′α)−1/2α′Σ
−1/2
n Yn →d (α′α)−1/2α′Z, with Z ∼

N(0, 1). Then also C(α′α)−1/2α′Σ
−1/2
n Yn →d C(α′α)−1/2α′Z and by the Cramér-Wold

theorem (Billingsley, 1995, T29.4) Σ
−1/2
n Yn →d Z. Since a linear combination of the elements

of Z is normally distributed, each of the elements is as well. In particular, Z ∼ N(0, Ip+1)

and hence Σ
−1/2
n Yn ∼ N(0, Ip+1), which concludes the proof.

Appendix C Details of the application to Angrist and

Krueger (1991)

We consider the following model from Angrist and Krueger (1991)

ỹ = X̃β +Wγ + ε̃

X̃ = Z̃Π+WΓ+ Ṽ ,
(C.1)
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Table 2: Description of the data used in estimation.

Name Description Included in W Name dataset

Constant Constant Yes
RACE 1 if black Yes v19
MARRIED 1 if married Yes v10
SMSA 1 if resides in city center Yes v20
NEWENG 1 if New England state Yes v13
MIDATL 1 if Middle Atlantic state Yes v11
ENOCENT 1 if East North Central state Yes v4
WNOCENT 1 if West North Central state Yes v24
SOATL 1 if South Atlantic state Yes v21
ESOCENT 1 if East South Central state Yes v6
WSOCENT 1 if West South Central state Yes v25
MT 1 if Mountain state Yes v12
Ydummies 9 year dummies Yes
Sdummies 49 state dummies If k = 180 or 1530
SOB State of birth No v17
QOB Quarter of birth No v18
YOB Year of birth No v27
LWKLYWGE Log-weakly wage No v9
EDUC Years of education No v4

where the dependent variable y is n × 1, the endogenous regressor X is n × p, the included

instruments W are n× q and the excluded instruments Z are n× k.

Following Mikusheva and Sun (2021) we focus on the specification for column 6 in Tables

V and VII of Angrist and Krueger (1991). That is, y is the 1980 log-weekly wage of men

born between 1930 and 1939; X is the years of education; W are control variables detailed

in Table 2; and Z are 30, 180 or 1530 instruments. For the 30 instrument setting we use 3

quarter of birth dummies and 27 year of birth and quarter of birth interactions. For the 180

we use in addition 150 quarter of birth and state of birth interactions. For the 1530 we use

in addition 1350 quarter of birth, year of birth and state of birth interactions.

To cast above model in the framework of (1) we partial out the included instruments.

That is, we premultiply the equation in (C.1) with M = I −W (W ′W )−1W ′ to obtain (1)

with y =Mỹ and similarly for the other variables.

We obtain confidence intervals by calculating the AR, the score and the joint statistic for

a grid of βs and add the point to the confidence interval whenever the statistic is below the

corresponding critical value. The grid consists of 100 evenly spaced points between -0.5 and

0.49.

The data comes from the NEW7080.rar file from the Angrist Data Archive. Table 2 details

which variables from the data set we use. We consider the cohort of men born between 1930

and 1939 and thus have 329,509 observations.
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Due to the large sample size we cannot use some the formulas in Section 5 directly as they

involve n × n matrices that cannot be handled easily by today’s computers. We therefore

rewrite some of the terms. Define P̃ =DεZ(Z ′D2
εZ)−1/2 such that P̃ P̃ ′ = P and similarly

for Ṽ = Z(Z ′D2
εZ)−1/2, then the most troublesome terms in (A.25) can be written as

x′(V ⊙ P ⊙ P )x = tr(DxV Dx(P ⊙ P ))

= tr(Ṽ ′Dx(P ⊙ P )DxṼ )

=
k∑
i=1

e′iṼ
′Dx(P ⊙ P )DxṼ ei

=
k∑
i=1

ι′DṼ ei
Dx(P ⊙ P )DxDṼ ei

ι

=
k∑
i=1

tr(DṼ ei
DxPDxDṼ ei

P )

=
k∑
i=1

tr(P̃ ′DṼ ei
DxPDxDṼ ei

P̃ ),

(C.2)

and similarly for x′DP (V ⊙ P ⊙ P )x and x′(V ⊙ P ⊙ P )DPx.

x′(V Dε ⊙ V Dε)(P ⊙ P )⊙ I)x =
n∑

i,j=1

x2i ε
2
iVijε

4
j

=
n∑
i=1

x2i ε
2
i (e

′
iV Dε)

⊙4ι,

(C.3)

where ⊙ is the element wise power. This expression can efficiently be calculated for smaller

subsamples of the total data set.
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