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Abstract

We propose a likelihood-based estimator for random coefficients discrete choice demand
models that is applicable in a broad range of data settings. Intuitively, it combines the likelihoods
of two mixed logit estimators—one for consumer level data, and one for product level data—with
product level exogeneity restrictions. Our estimator is both efficient and conformant: its rates of
convergence will be the fastest possible given the variation available in the data. The researcher
does not need to pre-test or adjust the estimator and the inference procedure is valid across a
wide variety of scenarios. Moreover, it can be tractably applied to large datasets. We illustrate
the features of our estimator by comparing it to alternatives in the literature.

1 Motivation

First introduced in Berry, Levinsohn and Pakes (1995) (henceforth BLP), random coefficients
discrete choice demand models provide a tractable framework within which to flexibly estimate
substitution patterns between many differentiated products in the presence of price endogeneity.
Since its introduction, this model has been estimated using a wide array of datasets featuring
consumer level data, product level data, or a mixture of both. We propose a likelihood-based
estimator for BLP-style models that is applicable to all the above data settings. Intuitively, it
combines the likelihoods of two mixed logit estimators, one for consumer level data (assuming it is
available), and one for product level data with product level exogeneity restrictions. We impose no
additional assumptions over those posited in Berry, Levinsohn and Pakes (1995) which are also used
in other estimators extended with consumer level data (e.g., Petrin, 2002; Berry, Levinsohn and
Pakes, 2004; Goolsbee and Petrin, 2004; Chintagunta and Dube, 2005).
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Researchers have applied varied approaches when confronted with different types of data (e.g.,
consumer choices, market shares, or a combination of both). We note that the best achievable
convergence rate varies with (the relative growth rates of) data dimensions and other circumstances.
We propose a single estimator that achieves the optimal rate and is efficient in a wide variety of
empirical settings. We call our estimator conformant for its ability to achieve the optimal rate under
a variety of circumstances. To our knowledge, this is a novel property in this literature.

To fix ideas, consider first the case in which a large sample of consumer purchase data is available.
The basic structure of the demand model proposed in BLP is mixed (or random coefficients)
multinomial logit. The standard multinomial logit MLE has nice computational properties. For
example, it is globally concave in the parameters plus the gradient and Hessian have simple
expressions. Therefore, with consumer level data in hand, it is natural to consider estimating a
BLP model via MLE using the individual likelihood of purchase. In order to accommodate price
endogeneity, the basic structure of BLP requires the estimation of product (by market) quality
parameters.1 It can be demanding of consumer level data alone to estimate such a specification due
to the presence of potentially many (hundreds, or even thousands, depending on the application)
product quality parameters.

To address this issue we incorporate product level data on market shares. We now view
our consumer level sample as a (perhaps small) subset of the population of individual choices
represented by the observed market shares. From this perspective, the loglikelihood of both
individual consumer data (‘micro’ data) and market shares (‘macro’ data) consists of two terms: a
micro term following the mixed logit and a macro term that simply integrates over the distribution of
consumer characteristics in the population. This mixed-data likelihood estimator (MDLE) could be
used to estimate three types of parameters (1) unobserved preference heterogeneity (often referred to
as “random coefficients” in the literature); (2) observed preference heterogeneity based on individual
demographics (referred to as “demographic interactions”); and (3) product-specific quality. However,
there are two potential drawbacks to the MDLE approach. First, identification of unobserved
preference heterogeneity is dependent on sufficient exploitable demographic variation, as we describe
in section 4.2. Second, this approach alone does not yield mean tastes for product characteristics,
although one could incorporate a second step which accommodates endogenous characteristics (such
as price).

Our estimator combines the MDLE approach with an additional term to directly incorporate
information contained in the product level exogeneity restrictions of Berry, Levinsohn and Pakes
(1995). The main benefit of this approach relative to MDLE alone arises when there are more
exogeneity restrictions than product characteristics. In the presence of such overidentification, the
extra information can be used to help identify the preference heterogeneity parameters even when
they cannot be recovered using MDLE alone. Indeed, as BLP show, with sufficient exogeneity
restrictions it is possible to identify all model parameters even if the consumer sample size falls to

1Berry, Levinsohn and Pakes (1995) and Nevo (2000) have noted that product quality parameters could be used
to separate the estimation of ‘nonlinear’ parameters that govern substitution patterns from the ‘linear’ parameters of
the model such as the mean price effects.
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zero.
Our estimator can be applied to all datasets in the applied literature, in particular it is well

defined with consumer samples of any size, from zero to a full census of the market. The objective
function is composed of three terms that can diverge at different rates: the micro loglikelihood with
the consumer sample size, the macro loglikelihood with the market size, and the GMM objective
function based on the product exogeneity restrictions with the number of products. These differing
rates in the objective function are what make our estimator conformant: its rates of convergence
will adjust accordingly and depend on the ratio of the number of sampled consumers to the number
of products, both in all markets.2

Indeed, our estimator incorporates two distinct sources of identification for the consumer
heterogeneity parameters. As we explain in section 5, observed variation in demographics identifies
both observed and unobserved taste heterogeneity as long as that variation shifts consumers’ utility
across products.3 As emphasized by Gandhi and Houde (2020), overidentifying product level
exclusion restrictions can also identify taste heterogeneity. If the number of sampled consumers is
much larger than the number of products then exploiting the identifying information in the micro
sample (if present) will produce a faster convergence rate than relying on product level exclusion
restrictions. In this case, the MDLE and our estimator are asymptotically equivalent and indeed
efficient. Adding the product level exclusions to the estimator is useful both when the consumer
sample is small (or not present) and if its identfying demographic variation is weak (or nonexistent).
Note that when this variation is nonexistent, the information used by the MDLE estimator is
insufficient for identification. Our estimator on the other hand still converges at the optimal rate
and is efficient because it also exploits the product level exclusions. However the rate of convergence
of some parameter estimates will then be slower (though still optimal) due to the slower divergence
rate of the product restrictions component compared to the micro likelihood. Our estimator also
covers the intermediate cases between the above two extremes without adjustment and the case
where different data is available in different markets.

In addition to being conformant to a variety of data scenarios, we show that our estimator is
efficient in each of these scenarios. Efficiency depends on two features of the objective function.
First, the likelihood and moments portions of the objective function are uncorrelated because the
loglikelihood sums over individuals treating product qualities as parameters whereas the moments
component involves sums over products where variation in product quality gives rise to the product
level structural error term. So all that remains is the proper weighting of the product level moments
portion of the objective function. The optimal weight matrix to use is the same as that in standard
GMM estimation albeit that now the scale matters to properly weight across likelihood and GMM
terms, as we describe in sections 3.2 and 4.1.

Asymptotically valid inference is done via the standard extremum estimation framework. This
is an advantage over alternative methods popular in the literature, which we describe below, that

2The use of the plural ‘rates’ is due to the fact that different elements of our estimator vector converge at different
rates.

3Berry and Haile (2020) make a similar point in a nonparametric context.
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impose share constraints which complicate inference. In particular, share constrained methods
require that the total number of consumers S in the micro sample across all markets is negligibly
small compared to the smallest markets size minmNm and, if the product quality parameters
are of interest, even that S is negligibly small compared to minm

√
Nm.4 Absent these additional

restrictions, the computed standard errors would be too small, as is illustrated at the end of example 1
in section 6.2. More generally, the inference procedure is robust to the source of identification, i.e.
the inference procedure is valid both when the micro data provide sufficient information to recover
the taste heterogeneity parameters and when such information must come from the product level
exclusion restrictions: one does not have to specify or know. Given that convergence rates can vary
depending on the source of identification, as mentioned above, this feature is not obvious.

While the statistical properties of our estimator make it of theoretical interest, we also argue
that it is suitable for applied work. One might expect that the high dimensionality of the parameter
space due to the product quality parameters would be intractable. However, we show in section 7
that the structure of the objective function simplifies the computational problem considerably. We
have verified that this procedure can be used successfully for problems with over 100,000 products
and millions of consumers. Another concern might be the bias due to numerical integration to
compute choice probabilities. As shown by Pakes and Pollard (1989), the method of simulated
moments usually has an advantage over simulated maximum likelihood in that the bias is negligible
when using a fixed number of draws per observation (consumer, in our case). This critique applies
to our method when Monte Carlo integration is used. However, the number of random coefficients
(as opposed to coefficients on observable demographic variables) tends to be small in applied work,
typically within the range that modern quadrature methods can compute with a high degree of
accuracy. While this is appropriate to compute the micro loglikelihood, the macro loglikelihood
requires integration over demographics and random coefficients. Here we consider using Monte Carlo
integration using a large number of draws. This requires the number of draws to diverge faster than
the square of the prevailing convergence rate to leave the asymptotic behavior unaffected. This is
the same condition required by Berry, Levinsohn and Pakes (1995) (and other share constrained
estimators) due to the use of simulation to compute the share inversion.

Our estimator is most directly comparable to GMM approaches based on micro-moments (e.g.,
Petrin, 2002; Berry, Levinsohn and Pakes, 2004). Beyond the conformance and efficiency benefits
from (also) using the likelihood of consumer level data, our estimator has the second advantage
that it does not impose that observed market shares exactly equal market level unconditional choice
probabilities of products. To be precise, the share inversion constraints of BLP can be thought of
as setting the score of our macro loglikelihood to zero. Our objective function properly weights
this term with the micro loglikelihood and product level moments to achieve efficiency, rather than
giving the macro score infinite weight. The additional efficiency gain can be modest when the size
S of the consumer level data set is small relative to the size minmNm of the data set producing the
shares in the smallest market and the former data set consists of random draws without selection

4In Berry, Levinsohn and Pakes (1995, 2004) the Nm’s are assumed to be effectively infinite.
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from the latter data set. However, the gain can be significant in situations where market shares are
small and the demographic interactions are important drivers of consumer choices.

Other researchers have proposed using the likelihood of consumer data in estimating BLP-style
models (e.g., Goolsbee and Petrin, 2004; Chintagunta and Dube, 2005; Train and Winston, 2007;
Goeree, 2008; Bachmann et al., 2019). The key difference with our approach is twofold. First,
they use a two-stage procedure, and so cannot take full advantage of over-identifying product level
restrictions. Second, like Petrin (2002) and Berry, Levinsohn and Pakes (2004), these papers estimate
product quality parameters using the BLP inversion, whereas our approach achieves efficiency by
replacing the inversion with the macro likelihood.

Our approach has broad applicability and is appropriate for many demand estimation applications
where the researcher has both product level data on shares and consumer level data on purchases.
Berry and Haile (2014) showed identification of objects in a nonparametric class of these models
using product level data and sufficient instruments; Berry and Haile (2020) shows how observing
consumer level data reduce the number of instruments required. Although Berry, Levinsohn and
Pakes (2004) and Petrin (2002) are canonical examples of applications, there are many more examples
of applied research where demand is estimated with product level and consumer level data. An
incomplete list of examples includes Goeree (2008), Crawford and Yurukoglu (2012), Hendel and
Nevo (2006), Wollmann (2018), Crawford et al. (2018), Hackmann (2019), Neilson (2019), Backus,
Conlon and Sinkinson (2021), and Grieco, Murry and Yurukoglu (2021). A specific example common
in economics and marketing is when researchers combine grocery store scanner data with household
level data, for example as in the IRI data or the Kilts Center Nielsen data. Examples include
Chintagunta and Dube (2005) (IRI) and Tuchman (2019) and Backus, Conlon and Sinkinson (2021)
(Nielsen).

Finally, our problem and approach share features with several strands of the econometrics
literature. For instance, Imbens and Lancaster (1994) also considers the problem of combining
different sources of data albeit that there the micro data are assumed to provide identification and
the different data sources are either independent with sample sizes growing at the same rate or the
macro data can be considered to be of infinite size. Further, it is common in the panel data literature
to have the dataset grow in different dimensions at different rates (e.g. Hahn and Newey, 2004), but
we know of no examples in which there are as many growth dimensions to consider as here: the
number of markets and products, the population sizes in each market, and the number of sampled
consumers in the micro sample.Third, having different elements of the estimator vector converge
at different rates is a common feature of the semiparametric estimation literature (e.g. Robinson,
1988). Lastly, Abadie et al. (2020) consider the case of sample size approaching population size;
their problem is different from the ones studied here.

The following section reviews the random coefficients demand model and the data available in
our setting. Section 3 then proposes our estimator, whose conformance and efficiency properties
are described in section 4. In section 5 we explore sources of variation in the demographic data
that our method exploits to identify the taste parameters. In section 6 we explore the steps needed
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and applicable trade-offs going from our estimator to the GMM estimator that is currently most
commonly used. We argue for the computational tractability of our estimator in section 7. In
section 8 we introduce our inference procedure and section 10 concludes.

2 Random Coefficients Demand Model

In this section, we briefly review the random coefficients discrete choice demand model and describe
the data used by our estimator. The model matches that of Berry, Levinsohn and Pakes (1995) with
slightly adjusted notation for clarity. We will assume the researcher has access to both product level
shares and a sample consumer level choices. Importantly, our estimator will assume that consumer
level choices represent a subset of consumers on which the market level shares are based. This is
in slight contrast to the previous literature, which has treated micro and macro data as different
samples.

2.1 Model

The econometrician observes M markets. In each market m, Jm products are available for purchase.
A product j in market m is described by the tuple (xjm, ξjm), where xjm = (x̃jm, pjm) is a dx-vector
of observed characteristics of the product and ξjm is a scalar unobserved product attribute. The
only distinction between x̃jm and pjm (typically price) is that x̃jm is uncorrelated with ξjm, so we
frequently refer only to xjm for notational convenience. There are Nm consumers in market m.
Consumers are characterized by (zim, νim, εi·m) where zim is a dz-vector of potentially observable
consumer characteristics (such as income or location), and νim is an (up to) dx-vector of unobservable
consumer taste shocks to preferences for product characteristics.5 Finally εi·m is a Jm + 1-vector of
idiosyncratic product taste shocks for each product and an outside good (e.g., no purchase), which
we assume is distributed according to the standard Type-I extreme value (Gumbel) distribution. In
the population, both zim and νim are mutually independent and distributed according to known
distributions Gm and Fm, respectively. In practice, the distribution of zim is typically taken from
external data (such as the population census) while the distribution of νim is typically assumed to
be a standard normal and independent across components of νim.

A consumer in market m maximizes (indirect) utility by choosing from the Jm available products
and the outside good, indexed by zero. Let yijm = 1 if consumer i in market m chooses product j
and zero otherwise. Utility of consumer i when purchasing product j in market m is,

uijm = δjm + µzim
jm + µνim

jm + εijm, (1)

where,6

δjm = x
ᵀ
jmβ + ξjm, (2)

5For notational simplicity we put random coefficients on all product level characteristics: this is neither necessary
nor generally advisable.

6There is no real need to assume δj to have this linear form but this is the most common specification.
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represents the mean utility for product j for consumers in market m while,

µzim
jm = µz(xjm, zim; θz) (3)

represents deviations from mean utility due to observed demographic variables zim. Typically, µz

is a linear combination of products of elements of xjm and zim parameterized by θz. As we shall
see below, some of our results depend on whether θz is such that ∂zµz = 0, i.e., when changes
in observed demographics do not affect utility. For notational ease, we assume without loss of
generality that this is true if and only if θz = 0, which corresponds to the typical case just described.

Finally,
µνim
jm = µν(xjm, νim; θν) (4)

are deviations due to taste shocks νim. Typically µν is a linear combination of product characteristics
and taste shocks parameterized by θν .7 Utility of the outside good is normalized to ui0m = εi0m.
When convenient, we collect the consumer heterogeneity parameters into the vector θ = [θzᵀ, θνᵀ]ᵀ.

The model yields choice probabilities for each consumer of selecting product j conditional on
consumer characteristics zim as a function of parameters,

πzim
jm (θ, δ) = Pr(yijm = 1 | zim, x·m; θ, δ) =

∫ exp(δjm + µzijm + µνijm)∑Jm
`=0 exp(δ`m + µzi`m + µνi`m)︸ ︷︷ ︸

sjm(zim,ν;θ,δ)

dFm(ν), (5)

where δ0m = µzim
0m = µνim

0m = 0 for all i,m.
Similarly, market shares are obtained by integrating πzjm with respect to the distribution of

consumer demographics,

πjm(θ, δ) = Pr(yijm = 1 | x·m) =
∫
πzjm(θ, δ) dGm(z).

In addition to the structure imposed on choice probabilities, the model imposes product level
exogeneity restrictions of the form,8

E(ξjmbjm) = 0, (6)

where bjm is a vector of instruments which includes x̃jm. Further, bjm may also contain additional
exogeneity restrictions. The literature has used various approaches such as cost shifters, BLP
instruments, Hausman instruments, Gandhi-Houde instruments, and Waldfogel instruments (see
Gandhi and Nevo, 2021). These moment restrictions will serve two purposes. First, they are
needed to identify mean product utility parameters, β. Second, if db > dβ, where d· indicates a
dimension, they may provide additional information that is potentially useful in estimating other
model parameters. For example Berry, Levinsohn and Pakes (1995) uses restrictions of this form to

7Allowing more generality in δ, µz and µν , such as correlation between taste shocks, is conceptually straightforward.
8One could replace (6) with a conditional expectation and derive optimal instruments, which would produce a

two-step procedure in which each step has a condition of the form (6), with the instruments bjm in the second step
generated from the first step.
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recover consumer heterogeneity parameters θ in the absence of consumer level data.

2.2 Data

The researcher has access to two types of data on consumer choices. First, she observes market
level data on the quantity of purchases, a vector of characteristics xjm of each product, and the
total market size, Nm.9 Each consumer has unit demand and purchases either one of the “inside”
products or the outside good. That is, the researcher can construct market shares,

sjm = 1
Nm

Nm∑
i=1

yijm. (7)

Note that the observed market shares s·m need not equal choice probabilities π·m due to the finite
population size and unobserved consumer heterogeneity, however s·m

p→ π·m as Nm → ∞.
Second, for a subset of Sm consumers, the researcher observes both the consumer’s choice and

their demographic characteristics. That is, the researcher observes {(yi·m, zim)} for these consumers.
We use Dim as a dummy variable to denote whether consumer i is in this micro-sample. As
we will describe below, our methodology combines the micro-sample with the product shares by
integrating out zim in the choice probabilities when individual i is outside the micro-sample. We
can accommodate several forms of selection. In appendix E we show that for random sampling
and deterministic selection on choices yi·m (e.g., administrative data when outside good purchases
are not reported) no adjustments are needed. We further show how to accommodate selection on
demographics zim.

3 Estimator

We propose an efficient estimator which in its most general form combines the likelihood, L̂(θ, δ), of
the micro and macro choice data and an efficient GMM objective function Π̂ based on (6),

(β̂, θ̂, δ̂) = arg min
β,θ,δ

(
− log L̂(θ, δ) + Π̂(β, δ)︸ ︷︷ ︸

Ω̂(β,θ,δ)

)
(8)

Notice that the likelihood is a function of (θ, δ) but not β, whereas the product level moments are
functions of (β, δ) but not θ. This separability has been noted previously in the literature, but
will play an important role in making our estimator computationally feasible. The following two
subsections describe the two terms of the objective function in detail.

9As in the previous literature, researchers will need to observe or make an assumption regarding Nm in order
to compute market shares from purchase quantity data. In practice, some consumers may purchase multiple goods
within the same period; one could rationalize this by allowing market size to be the number of potential purchasing
events. For example, Nevo (2001) determines market size as the number of potential servings of cereal consumed in a
city over a quarter.
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3.1 Likelihood

The likelihood contains two parts, relating to the micro and macro data. To understand its two
elements, first suppose that we observed {yijm} for all Nm observations. Then the loglikelihood
would be,10

log L̂(θ, δ) =
M∑
m=1

Jm∑
j=0

Nm∑
i=1

yijm
(
Dim log πzim

jm (θ, δ) + (1 −Dim) log πjm(θ, δ)
)
, (9)

The loglikelihood sums over all Nm consumers in the market. If an observation i is in the micro
data then we see zim and can condition on it, whereas otherwise we integrate over the distribution
of zim conditional on this consumer not being in the consumer sample.

Of course, we do not directly observe the choices of consumers who are not in the micro sample.
However, the loglikelihood function can be equivalently written in terms of the consumer level
observations and the market level share data,

log L̂(θ, δ) =
M∑
m=1

Jm∑
j=0

Nm∑
i=1

Dimyijm log
πzim
jm

πjm︸ ︷︷ ︸
micro

+
M∑
m=1

Nm

Jm∑
j=0

sjm log πjm︸ ︷︷ ︸
macro

, (10)

where the first term is the contribution of the consumer level data and the second term is the
contribution of the market level data. In order to express the market level term using observed
market shares, we add and subtract log πjm to control for the fact that the consumer level data
represent a subset of the consumers who make up the market.

Alternatively, the estimator can be written by adjusting the macro term to avoid double counting
the consumers in the micro-sample:

log L̂(θ, δ) =
M∑
m=1

Jm∑
j=0

Nm∑
i=1

Dimyijm log πzim
jm︸ ︷︷ ︸

micro

+
M∑
m=1

Jm∑
j=0

(
Nmsjm −

Nm∑
i=1

Dimyijm

)
log πjm︸ ︷︷ ︸

macro

, (11)

These two formulations, while equivalent, emphasize different features of the estimator so we will
refer to the one that is most convenient at the time.

The likelihood recalls two common estimators in the discrete choice literature. When Nm =
Sm—so that all consumers’ characteristics are observed—or when product market shares are not
observed, the likelihood simplifies to the well known mixed-logit likelihood. Indeed, identification of
(θ, δ) using the log-likelihood alone follows from the arguments for identification in the mixed-logit
setting (Walker, Ben-Akiva and Bolduc, 2007). However, when Sm = 0, so only aggregate data is
available, maximizing the likelihood is equivalent to imposing the share constraint from BLP and

10For expositional simplicity, we present notation for the cases of random selection or deterministic selection on
yi·m into the micro sample. As discussed in appendix E, selection on demographics requires an adjustment to account
for sampling in πjm.

9



related estimators, as we show in section 6.2. This leads to a second insight: without consumer
level data, (θ, δ) would not be identified by the likelihood alone as there are more parameters than
share constraints.

The maximum likelihood objective makes full use of the consumer choice data (micro and macro).
In contrast to the traditional GMM estimator, there is no need to choose which moments of the data
to include in the objective function, nor to determine the weighting between moments. However, it
does not incorporate the product level exogeneity restrictions.

3.2 Product Level Moments

The second term of our objective function penalizes violations of the product level moments,

Π̂(β, δ) = 1
2m̂

ᵀ(β, δ)Ŵm̂(β, δ). (12)

where for J =
∑M
m=1 Jm, JŴ is the optimal GMM weight matrix for m̂ scaled to converge to the

inverse of V(bjmξjm) and

m̂(δ, β) =
M∑
m=1

Jm∑
j=1

bjm(δjm − β
ᵀ
xjm). (13)

Note that, unlike in standalone GMM estimation, the factor 1/2 in front of the ‘J statistic’ in (12)
matters since it affects the relative weight placed on the likelihood and moment components of the
objective function: the choice 1/2 is optimal as shall become apparent in section 4.1.

If the dimension of bjm is the same as that of β, a situation we shall refer to as “exact identification
of β” then θ, δ are estimated off the likelihood portion and β off the GMM portion. Our estimator
is then equivalent to a two-step estimator which estimates θ, δ off the likelihood and subsequently
estimates β off Π̂. Additional restrictions result in overidentification of β which can be used to aid
the estimation of θ. Indeed, then Π̂ will generally be positive so that both log L̂ and Π̂ contribute
to the estimation of θ, δ. However, because the micro log likelihood sums over S =

∑M
m=1 Sm terms

whereas Π̂ involves sums over J terms these additional restrictions can be asymptotically negligible
for θ, δ as we discuss in section 4.1.

4 Properties

Our estimator combines two sources of information based on the model: consumer choice decisions
on the individual and aggregate level, and product level exogeneity restrictions. These sources have
identifying information for overlapping sets of parameters. Moreover, the empirical content of these
alternative sources will vary based on the shape of the dataset and the true values of the parameters.
In this section, we establish that our estimator is conformant in the sense that it achieves the
optimal convergence rate under multiple alternative divergence rates of {Nm}, S, J and exploitable
variation in the data;11 moreover, it is efficient in all of these settings. The conformance property

11We use the term ‘conform’ instead of ‘adapt’ to avoid confusion with the adaptive estimation literature.
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implies that a researcher can be confident in using our estimator without knowing or testing the
precise conditions she is facing.

For clarity, we first informally argue in section 4.1 that our estimator is efficient without making
reference to its convergence rates.12 Section 4.2 then establishes the convergence rates of the
estimator under a wide variety of circumstances, completing the efficiency argument. Section 8
provides a valid inference procedure.

4.1 Efficiency

Our proposed estimator is efficient under a wide range of circumstances. To see this, it is convenient
to first consider the gradient of our objective function,13


∂βm̂

ᵀ
Ŵm̂

−∂θ log L̂
−∂δ log L̂+ ∂δm̂

ᵀ
Ŵm̂

 . (14)

We first show asymptotic equivalence of a GMM estimator using this gradient to the GMM estimator
defined as:

(β̂, θ̂, δ̂) = arg min
β,θ,δ

1
2
[
m̂

ᵀ ∂ψᵀ log L̂
] [Ŵ 0

0 ŴL

] [
m̂

∂ψ log L̂

]
, (15)

where ψ = [θᵀ, δᵀ]ᵀ and ŴL =
(
−∂ψψᵀ log L̂

)−1 evaluated at the solution ψ̂ of (8).14 Note that in (15)
there may be more moments than parameters. Specifically, (14) has dβ + dθ + dδ moments, whereas
(15) is based on db + dθ + dδ moments. Under exact identification of (15), i.e. if db = dβ , both (14)
and (15) are equal to zero if m̂ = 0, ∂θ log L̂ = 0, and ∂δ log L̂ = 0. In the case of overidentification,
the gradient of the objective function in (15) is

∂βm̂
ᵀ
Ŵm̂

0dθ

∂δm̂
ᵀ
Ŵm̂

+


0dβ

∂θψᵀ log L̂ŴL∂ψ log L̂
∂δψᵀ log L̂ŴL∂ψ log L̂

 , (16)

which yields (14) at the solution since ŴL =
(
−∂ψψᵀ log L̂

)−1, establishing the equivalence of these
estimators.

Next, we argue that (15) is efficient. First, by the law of iterated expectations, at the truth,

E
(
∂ψ log L̂ m̂

ᵀ
)

= E
(
E
(
∂ψ log L̂

∣∣ x, ξ) m̂ᵀ
)

= 0,

where the second equality follows from the the likelihood principle applied to the choice problem
(without product level moments); see appendix G.1 for details. The intuition for this result follows
from the fact the inner expectation is over the consumer level shocks ε, whereas ε does not enter

12As we shall see, different elements may converge at different rates.
13Imbens and Lancaster (1994) combine a likelihood score with moments.
14We define ŴL in terms of (8) in case its gradient (14) is zero at multiple points.
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the product level moments. Moreover, −ŴL is the scaled inverse information matrix of the choice
problem and we assumed Ŵ is the appropriately scaled optimal weight matrix of the product level
moments. Therefore, this choice of weight matrix is optimal.

Despite their asymptotic equivalence, there are two reasons to prefer our estimator to the GMM
estimators described in (14) and (15). First, the population analog of (14) can have multiple
solutions even if the population analog of our objective function (8) has a unique optimum. For
example, in the typical case where the νim are independent standard normal draws and θν represents
scale parameters, ∂θν log L̂ = 0 for any parameter vector where θν = 0; setting θν = 0, the remaining
parameters can be chosen to satisfy the rest of the score, albeit that the likelihood is then not
optimized. The second reason is that computing (15) would be unwieldy because of the high degree
of nonlinearity and the dimension of δ. We show in section 7 that the estimator defined in (8) can
be tractably computed despite the dimensionality of δ.

4.2 Conformant convergence

We now show that our estimator is conformant. The objective function in (8) is the sum of three
terms that diverge at different rates. The micro loglikelihood is the sum over S consumers, the
macro loglikelihood in (10) is the sum over N consumers, and Π̂ is a quadratic that diverges at rate
J . Moreover, as we illustrate in section 5, the identifying power of the micro data depends on the
value of θz. As a consequence, the rates of convergence of θ̂z, θ̂ν , δ̂ differ across cases depending on
S/J and θz. In contrast, the convergence rate of β̂ is always

√
J since it is only identified off Π̂.

The remainder of this section enumerates cases defined in terms of (relative) divergence rates
to which our estimator conforms. Since the convergence rate of β̂ is always

√
J we focus on the

convergence rates of θ̂, δ̂. We first make explicit the following assumptions, which we maintain
throughout. First, the market size Nm in any given market m diverges faster than the total number
of products across all markets, J , i.e. minmNm/J → ∞. This is to ensure that market shares can
be consistently estimated. This assumption is weaker than assuming Nm = ∞ since Nm need not
diverge faster than S and we have not specified how much faster than J . In addition, we assume
that the Jm’s are fixed and that limM→∞ maxm Jm < ∞. This ensures that the choice probabilities
in each market are constant as the data grows and that observed market shares vary only due to
the addition of consumers (i.e., as Nm grows).15 We will further assume that the instruments bjm
used in m̂ are strong in the standard sense (Staiger and Stock, 1997) and there are enough moments
to ensure identification. If bjm were weak then that poses additional challenges outside the scope of
our work.

We begin with the simpler cases in which the ratio S/J is allowed to vary for given values of the
model parameters. It turns out that if θz = 0 then the micro data alone is insufficient to distinguish
(θν , δ), which affects convergence rates.In section 4.2.2 we then cover cases in which θz is allowed to
drift in the spirit of the weak identification literature. These cases are critical since ex ante the
researcher does not know the value of θz: if θz were close to zero then it is unclear which fixed case

15This is in contrast to Berry, Linton and Pakes (2004) which assumes that the number of markets is fixed.
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(if either) is appropriate.
For ease of exposition, we assume in the remainder of this subsection that S diverges no faster

than Nm. If this assumption is not satisfied then some of the
√
S rates will slow to

√
Nm. Section 4.3

will relax this assumption.

4.2.1 θz is fixed

contributing
rate term(s)

case θz θν , δ for θz for θν
S/J → ∞, θz 6= 0

√
S

√
S log L̂ log L̂

S/J → ∞, θz = 0
√
S

√
J log L̂ Π̂

S/J → c, θz 6= 0
√
J

√
J both both

S/J → c, θz = 0
√
J

√
J both Π̂

S/J → 0
√
J

√
J Π̂ Π̂

Table 1: Convergence rates of the proposed estimator and terms contributing to the limit distribution
in addition to the macro likelihood when θz is fixed and there are sufficiently many moments in Π̂
to ensure identification (where needed).

Table 1 lists several cases where the parameters are fixed. They are ordered by importance of
the log L̂micro term for the asymptotic behavior of (8).

In the first two rows, the size of the micro sample S diverges faster than the number of products
J , which we view as the typical case. Then the log L̂ term of our objective function diverges faster
than Π̂. If θz 6= 0, then the likelihood provides identification and yields an efficient estimator of
(θ̂, δ̂). So the addition of Π̂ is then asymptotically irrelevant for (θ̂, δ̂).16 Of course, using log L̂ alone,
we would be unable to recover β. However, a two step estimator in which θ, δ are estimated off
log L̂ in the first stage and β is estimated by minimizing Π̂(β, δ̂) in the second stage, is equivalent
to our estimator (and hence also efficient). This holds even in the case of overidentification in Π̂
since the additional moments do not alter the fact that Π̂ diverges at the slower rate J .

However, if θz = 0 (the second row) then log L̂ fails to identify all the parameters. In this
case utilities and hence choice probabilities do not vary with demographics z (as we illustrate in
section 5). Thus, the θν and δ scores of the micro likelihood are then collinear. To see this, note
that if θz = 0 then sjm(z, ν) is flat in z and hence the scores with respect to θν , δ then depend
on the micro data only through

∑Nm
i=1 Dimyijm.17 As a result, θν , δ are not identified off log L̂. In

this case, Π̂ provides identification as we have assumed the moments are sufficient to identify θν .
Consequently, the convergence rate of θ̂ν and δ̂ slows to

√
J . In contrast, θz is still identified by the

micro likelihood because the score with respect to θz depends on
∑Nm
i=1 Dimyijmzim when sjm is flat

16We implicitly assume sufficient variation in z to identify all random coefficients; there can be intermediate cases.
See the discussion at the end of section 5.

17The scores of log L̂micro with respect to θz and θν are in (23) and (25). The score with respect to δjm is∑Nm

i=1

∑Jm

`=0(Dimyi`m / πzim
`m )

∫
s`m(zim, ν)

(
1(` = j) − sjm(zim, ν)

)
dF (ν).
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contributing
rate term(s)

case θz θν , δ for θz for θν
θz
√
S/J → ∞, S/J → ∞

√
S

√
S log L̂ log L̂

θz
√
S/J → c, S/J → ∞

√
S

√
J log L̂ both

θz
√
S/J → 0, S/J → ∞

√
S

√
J log L̂ Π̂

θz
√
S/J → c, S/J → c

√
J

√
J both both

θz
√
S/J → 0, S/J → c

√
J

√
J both Π̂

θz
√
S/J → 0, S/J → 0

√
J

√
J Π̂ Π̂

Table 2: Convergence rates of the proposed estimator and terms contributing to the limit distribution
in addition to the macro likelihood when θz can drift and there are sufficiently many moments in Π̂
to ensure identification (where needed).

in z, so the rate of θ̂z continues to be
√
S.

We now move to the cases where S/J converges to a nonzero constant. Here, the micro term
log L̂micro of the loglikelihood and Π̂ diverge at the same rate, and all parameter estimates converge
at the same rate

√
J ∼

√
S. However, our estimator is still more efficient than alternatives since

it combines both terms optimally. There remains a distinction when θz = 0 since again log L̂ has
no identifying demographic variation to pin down θν and so only Π̂ contributes to the limiting
distribution for this parameter.

Finally, we consider the case where S/J → 0. Now Π̂ diverges faster than the micro loglikelihood
log L̂micro. Consequently, if db ≥ dβ + dθ then Π̂ will deliver the asymptotics. However, if dβ + dθν ≤
db < dβ + dθν + dθz and S diverges then the micro likelihood will contribute to the limit distribution
and the convergence rate will be

√
S instead of the

√
J rate displayed in the table. An extreme

example of this case arises when S = 0, so log L̂micro = 0. This is the environment of Berry,
Levinsohn and Pakes (1995) and both estimators are equally efficient under the assumptions of this
section, albeit that ours would be more efficient if minmNm/J 6→ ∞ because ours does not impose
the share constraint; see section 6.2.

4.2.2 θz can drift

Note that in section 4.2.1 there is a discontinuity in the asymptotic behavior of our estimator
between the θz = 0 and θz 6= 0 cases. In order to address this discontinuity, we now extend our
discussion by allowing θz to drift, i.e. to depend on S, J .18 Table 2 summarizes these cases, which
are again ordered in decreasing importance of the micro likelihood for asymptotic behavior of (8).

In the first row in table 2, θz
√
S/J → ∞ which is equivalent to the first row of table 1 in terms

of asymptotic behavior.
In the next two cases, log L̂micro diverges faster than Π̂, but the two cases differ in the strength

of identification they provide due to θz → 0 at different rates. The knife edge case where the rate of
18We can also let σξ, the standard deviation of ξjm drift, which alters the explanatory power of Π̂ instead of that

of log L̂. We believe that the θz close to zero case is of greater concern in applied work than σξ close to zero.
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θz is such that θz
√
S/J goes to a constant has no analog in table 1. Here both log L̂micro and Π̂

contribute to the limit distribution of θ̂ν because the faster divergence of log L̂micro is just offset by
the convergence of θz. The case where θz

√
S/J → 0 is effectively equivalent to the second case of

table 1 where θz = 0.
The final three cases all have direct analogs in the final three rows of table 1.

4.3 Summary

What the above discussion has illustrated is that it is optimal to rely on the variation in the
micro data alone to identify θz, θν , δ if the micro sample is large and demographic variation affects
choice probabilities substantially. Otherwise, Π̂ becomes useful. Both our estimation and inference
procedures automatically conform so that one does not have to test which situation one is in.

Table 3 summarizes these ideas. We compare our method to two alternatives under the maintained
assumptions that S/J → ∞ and that the overidentifying moments in Π̂ are sufficient to identify θν

(which requires db ≥ dβ + dθν ).
First consider the leading case where θz 6= 0 is fixed. We have already described the behavior

of our estimator in table 1. The first alternative in table 3 is the two-step estimator described in
section 4.2.1, which in this case is asymptotically equivalent to our method. The second alternative,
relying on m̂ rather than the micro sample to provide identification for θν would occur if one dropped
the θν gradients from (15), which had db+dθz +dθν +dδ moments for dβ +dθz +dθν +dδ parameters.
Doing so slows down the convergence rate to

√
J for θ̂, δ̂.

We now generalize to the case in which θz is drifting toward zero at rate λ, a case that was first
discussed in section 4.2.2. For our estimator, the rate λ determines which of the first three rows in
table 2 applies. The first alternative, on the other hand, could do poorly if λ converges to zero fast.
In the extreme, i.e. if θz = 0, this estimator is inconsistent. The second alternative estimator is not
affected by the fact that the likelihood provides less information than in the leading case, because it
was not using that information anyway. Our proposed method uses both sources of information
and hence converges at the faster rate of the two alternative estimators, which can nevertheless be
slower than in the leading case.

5 Identifying unobserved heterogeneity from micro data

Above, we have highlighted that the micro likelihood can efficiently use the information in the micro
sample to estimate consumer heterogeneity parameters θ. We now turn to a specific example to
illustrate the underlying variation in the micro sample that provides identification.

We begin this exercise with a simple case of a single market with two products and an outside
good.19 There is a single demographic variable, so zi is a scalar. Utility for product j is,

uij = δj + θzx
(1)
j zi + θνx

(2)
j νi + εij ,

19Since there is a single market in this section, we drop m from the notation.
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Figure 1: Conditional shares π̃z are identified by the micro sample.

where the product characteristics are,

x(1) =
[
1
0

]
, x(2) =

[
1
1

]

So the demographic characteristic shifts utility of only good 1, and the single random coefficient
induces correlation in the utilities of the two inside goods.20 As is typical, in this example νi has a
standard normal distribution.

Suppose we observe a random sample of microdata {yi·, zi}. The micro data nonparametrically
identifies the function π̃z = Pr(yi· = 1 | z, x). We plot this function over z ∈ [−1, 1] in figure 1
for three different parametrization of the model, namely θν = {0, 1, 2} with δ = (−.25, 25)ᵀ and
θz = 2 fixed. Intuitively, the share of good 1 rises with z in all three panels. However, the slope
differs based on the value of θν . The other notable difference is that as θν increases, z has a larger
impact on the share of good 2, π̃z2 , relative to the outside good, π̃z0 . Since the utilities of goods 1
and 2 are increasingly correlated as θν grows, it becomes more likely that consumers are on the
margin between the two inside goods than between good 1 and the outside good. Therefore, a slight
increase in z will induce relatively more substitution away from good 2 than from the outside good.

We can also nonparametrically identify the derivatives of conditional choice probabilities with
respect to z. Given our special case we have,

dzπ̃zj = θz∂u1π
z
j ,

where we employ the fact that z only affects the utility of good 1. Taking a ratio of these gives us
diversions with respect to utility from good 1 to good 2 and from good 1 to the outside good for

20This is analogous to nesting out the outside good in a nested logit model.
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Figure 2: Diversion and Demographics

every value of z, i.e., for j = {0, 2},

dzπ̃zj
dzπ̃z1

=
∂u1π

z
j

∂u1π
z
1

= Dz
1j . (17)

Equation (17) provides intuitive variation with which to identify θν . To see this, recall that when
θν = 0 then we have multinomial logit demand. This implies that diversion is a function of conditional
choice probabilities: if θν = 0 then Dzi

1j = πzj /(1 − πz1). Moreover, due to the independence of
irrelevant alternatives property, diversion will be constant over z. Figure 2 illustrates the implications
of this.

The first panel depicts diversion with respect to utility from good 1 to good 2 as a function of z,
i.e. Dz

12. As predicted, diversion is constant in z for θν = 0, yet it is decreasing for θν > 0. The
reason for the decline can be seen in figure 1: as z increases, the conditional share of good 2 falls
more rapidly for θν > 0, so a larger proportion of switchers must come from the outside good in
response to an increase in z.

The second panel of figure 2 plots the logit-implied diversion ratios computed from conditional
shares generated by the three parametrizations of θν . If θν = 0, we exactly reproduce the constant
diversion rate from the first panel. For θν > 0, we see decreasing functions that are below the line
for θν = 0. The reason these functions are decreasing is the same as for the first panel. The reason
the level of the logit-predicted diversion decreases in θν is that in fact diversion between goods 1 and
2 is more than proportional to shares when θν > 0. An illustration of diversion between good 1 and
the outside good would produce a mirror image since as θν rises, this weakens diversion between
these goods.

The third panel of figure 2 takes the difference of the first two panels and so provides the
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difference between observed diversion and diversion implied by assuming θν = 0. As θν rises,
the logit model under-predicts diversion between the two inside goods. Moreover, the degree of
under-prediction varies in z. This suggests moments with which to identify θν by comparing the
estimated diversion rate to the model-predicted diversion rate. In this exercise we have fixed the
values of the other parameters θz and δ. In practice, the described moments for θν would need
to be paired with commonly used moments to identify θz, δ; e.g., matching market shares for δ
and matching correlations between demographics and product characteristics for θz. As always, an
advantage of the likelihood approach to using moments is that it fully exploits all of the information
in the micro sample.

So far, we have focused on a special case in which it is clear that the micro sample has so much
valuable information to identify θν that the Π̂ term of our estimator would be redundant. To see
a case where Π̂ is necessary for identification, simply set θz = 0 in our example. Now ∂zπ̃

z
j = 0

and we cannot use variation in demographics to recover diversion between goods. Consequently,
the moments we have suggested are no longer informative. This provides a role for overidentifying
restrictions in m̂ to aid in the estimation of θν , albeit that θ̂, δ̂ then converge at a slower rate, as
discussed above.

Another complication is the richness of the demographic variation provided by z and the flexibility
of the random coefficient specification. In the simple example, we specified z to shift the utility of
exactly one good and restricted θν to have dimension one. While diversion identified in this simple
example, this may not be possible in general. For example, µz is typically specified as a linear
combination of interactions between product characteristics and consumer demographics, e.g.,

µz(xj , zi; θz) = x
ᵀ
jΘzzi =

∑
k

∑
d

θz(k,d)xkj z
d
i ,

where Θz is a matrix with elements θz(k,d). With this form we have,

dzd π̃zj =
K∑
k=1

J∑
`=1

θz(k,d)xk`∂u`
πzj . (18)

In matrix notation, (18) can be written as

dzᵀ π̃z = ∂uᵀπ
z∂zᵀu = ∂uᵀπ

z∂zᵀµ
z = ∂uᵀπ

zX
ᵀΘz. (19)

Thus, only if XᵀΘz has maximum column rank, does there exist a unique ∂uᵀπz that solves (19). In
other words, if this rank condition holds, then we can recover the substitution matrix for all z from
θz and the data. Flexibility of the substitution matrix is the primary motivation for the introduction
of random coefficients. Since the introduction of θν imposes parametric structure, nonparametric
identification of the full substitution matrix is not necessary for the identification of θν .

The most general specification of µν would let x be product dummies. Then, if ν were distributed
mean zero normal such that θν would be J(J + 1)/2-dimensional (J variances and J(J − 1)/2
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Figure 3: Asymptotic variance of δ̂1 for the mixed logit estimator (dashed blue) versus our estimator
(solid green) as the size of the micro sample S grows relative to the market size Nm for the
specification described in example 1 with δ1 = θz = 1.

correlations), one would have the same number of unknowns as there are restrictions in (19). Applied
work typically imposes restrictions to reduce the dimension of θν by introducing random coefficients
on product characteristics instead of on products and restricting νi to be independent across its
elements. If the rank condition on XᵀΘz fails, we still have restrictions like (19) that may or may
not pin down some or all elements of θν depending on the specification of µν .

6 Comparison with Alternative Estimators

To clarify the contribution of our estimator, we now show how our estimator relates to two estimators
used in the discrete choice literature.

First, as noted above, with S = N our log L̂ simplifies to the mixed logit loglikelihood. If S < N ,
the only difference is that log L̂ exploits the market share data via the macro term. This term is
particularly useful when J is large relative to S, since then there would otherwise be an incidental
parameters problem in estimating δ. More generally, market share data can dramatically improve
the precision of the estimator as illustrated in figure 3, which uses example 1 described below.

The other major class of estimators used in applied work consists of share constrained GMM
estimators (e.g., Berry, Levinsohn and Pakes, 2004; Petrin, 2002; Grieco, Murry and Yurukoglu,
2021).21 The remainder of this section shows how our estimator can be converted into members of
this class of estimators. As we have shown above, our estimator is efficient, so we will point out

21An alternative class of share constrained micro likelihood estimators (e.g., Goolsbee and Petrin, 2004; Chintagunta
and Dube, 2005; Train and Winston, 2007; Goeree, 2008; Bachmann et al., 2019) also derives from our estimator by
only imposing share constraints on our estimator without recasting it as a GMM problem as described by the dotted
line in Figure 4.
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losses of efficiency along the way. There may be a tradeoff between efficiency and computational
tractability that justifies using an inefficient estimator. So we also discuss these tradeoffs in this
section. With that said, it is important to keep in mind that the marginal cost of computational
resources tends to be less than that of data, and also decreases more quickly over time. We argue
for the computational tractability of our estimator in section 7.

Figure 4 provides a summary of the steps described below. The highest node in the tree represents
our estimator. Each node below represents an alteration to arrive at an alternative estimator. The
large pink box representing section 6.3 proposes three alternative alterations for linearizing the score
with respect to θν as described in section 6.3.2. One can stop the process at any node in the tree,
so in total the figure describes nine alternative estimators (including share constrained likelihood,
see footnote 21). At each node, we briefly list the primary costs (red) and benefits (green) of the
step relating to econometric efficiency (Fighter-Jet), inference (Band-aid), computational tractability (Laptop-Code), data
requirements (Dollar-SignDollar-Sign) and experience in applied work (??). Each step downward in the tree leads to
an estimator that is weakly less efficient than its parent. To our knowledge, all estimators that have
been applied in empirical work on discrete choice demand are covered here.

6.1 Step 1: A GMM version of our estimator

In section 4.1, we presented a GMM estimator (15) which is asymptotically equivalent to our
estimator, assuming that (15) does not lose identification; as we pointed out in section 4.1, going
from minimizing the objective function (8) to setting its derivatives (14) (or indeed (15)) to zero
can lose identification due to the existence of multiple (local) optima.

Note that for equivalence to obtain, it is essential that the ŴL and Ŵ matrices used in (15) have
the norming indicated in section 4.1: unlike in standard GMM the convergence rate of the GMM
estimator can be affected by a poor choice of weight matrix. The reason for this is that one entails
a sum over consumers whereas the other is a sum over products.

While GMM estimators are used to avoid parametric distributional assumptions, this rationale
does not apply in this case. Indeed, GMM estimators discussed in this paper also use the distributional
assumptions on ν, ε for the moments, and Π̂ in (8) similarly avoids distributional assumptions on ξ.

Our estimator has an important computational advantage over (15): it is convex in δ. Since δ
is high dimensional this convexity is important. In fact, the next step is driven by addressing the
computational complexity introduced here.

6.2 Step 2: Imposing share constraints

To resolve the dimensionality issue in (15) one can impose share constraints π = s.22 Following the
intuition of Berry (1994) this is equivalent to treating δ as a deterministic function of θ that is easy
to compute and yields a consistent estimator as Nm, S, J → ∞.

However, imposing the share constraints introduces a potential loss of efficiency. Suppose that
22Share constraints can also be imposed on log L̂ directly, but doing this serves no purpose.
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our estimator
Fighter-Jet fully conformant and efficient
Band-aid correct inference with large consumer samples
Band-aid correct inference with weak micro identification
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Figure 4: Schematic comparison of our estimator to alternatives. See text for details.
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θz 6= 0 such that the MDLE and our estimator are asymptotically equivalent. Then this efficiency
loss occurs unless the population in the smallest market diverges faster than the total number of
consumers in the micro sample across all markets S and the total number of products J . Theorem 1
establishes this result for the single market case.

Theorem 1. Suppose that there is a single market with a finite number of products J and that
the micro sample consists of random draws from the population of size N , each member of the
population being drawn with probability 0 < χN → χ as N → ∞ with 0 ≤ χ ≤ 1. Then imposing the
share restriction cannot be more efficient and is generally less efficient than using our estimator of
δ, θ.

The proof of this theorem follows immediately from the proofs of theorems 3 and 4 in appendix C,
which formally derive the asymptotic variance of the MDLE estimator and the share constrained
likelihood estimator respectively. There are two cases in which there is no loss of efficiency. The
first is if χ = 0, which should in practical terms be interpreted as the size of the micro sample
being negligible compared to the size of the population. The second case is if the coefficients on the
observable micro regressors, θz, are all equal to zero. This case is not helpful since then there is no
identification, so a comparison of efficiency is moot. eIn practice, imposing the share constraint can
lead to a substantial efficiency loss as examples 1 and 2 demonstrate.23

We can intuitively understand this result by considering the share constrained estimator as
a GMM estimator with infinite weight on a subset of moments. Specifically, suppose that one
separates out the micro and macro terms of log L̂ as specified in (10) and considers the derivative of
the macro term with respect to δ, i.e. for all m = 1, . . . ,M and all j = 1, . . . , Jm,

Jm∑
`=0

s`m
π`m

∫
s`m(z, ν)

(
1(` = j) − sjm(z, ν)

)
dF (ν) dG(z) = 0, (20)

where s was defined in (5). If s = π, then the left hand side in (20) becomes

∫
sjm(z, ν) dF (ν) dG(z) −

∫
sjm(z, ν)

Jm∑
`=0

s`m(z, ν)︸ ︷︷ ︸
=1

dF (ν) dG(z). (21)

So setting s = π solves (20). Since the macro loglikelihood is concave in δ this solution is unique.
Therefore, imposing share constraints effectively places infinite weight on this moment. It is well
known from standard GMM theory that placing infinite weight on a subset of moments is generally
inefficient. As noted, in our setting, there would be an efficiency loss unless S and J were negligibly
small compared to Nm because then the macro score runs over more terms than the other moments.

In addition to the efficiency cost, imposing the share constraints also creates challenges for
inference. If one treats δ as a deterministic function of θ, one ignores the uncertainty arising from
estimating choice probabilities using observed market shares. This will result in a downward bias in

23Example 2 is in appendix C.
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the standard errors for δ̂. Indeed, for some linear combinations of δ asymptotics are governed by
the estimation error in market shares unless S is negligibly small compared to minm

√
Nm, as we

now explain.
To illustrate, consider inference on δ·m. With the share constraints, it would be tempting to use

the delta method to conclude that for any vector v 6= 0
√
Svᵀ(δ̂·m − δ·m)√

vᵀ∂θᵀ δ̂·m(θ̂)V̂θ∂θ δ̂ᵀ·m(θ̂)v
d→ N(0, I), (22)

where δ̂·m(θ) is the share inversion for market m and Vθ is the asymptotic variance of θ̂. This
ignores sampling error in the aggregate data, which becomes a problem for all vectors v for which
vᵀ∂θᵀδ·m = 0.24 In this case the left hand side of (22) diverges. The space of such vectors v is
of dimension no less than Jm − dθ > 0 since δ·m : Rdθ → RJm . Using the bootstrap the way it is
typically used does not solve this problem.25 The inference problem can be avoided by using the
asymptotic variance formulas in appendix B.

We now illustrate the impact of the share constraint on efficiency and inference. For simplicity,
µν = 0 in example 1, so consumer heterogeneity is due only to observed demographics z. While
we focus on estimation of δ, with random coefficients the inefficiency issue extends to the θz, θν

coefficients as well. For additional intuition, we have included another example in appendix C.

Example 1. Consider a single market with one inside product with utility

ui1 = δ1 + θzzi + εi1,

where the consumer characteristic zi is distributed standard normal. We observe the market share of
good 1 and a micro sample of consumer choices of size S such that S/N → χ. Further, assume that
the product level moments m̂ just identify β and so only the loglikelihood plays a role in estimating
(θ, δ).

Consider the relative asymptotic efficiency of a share constrained estimator to our efficient
estimator. When χ = 0, there is no efficiency loss since the micro sample is then negligibly small. As
χ grows, our estimator exploits the correlation between the scores of the micro likelihood whereas

24Indeed, then by a Taylor expansion,

v
ᵀ{δ̂·m(θ̂) − δ·m(θ)} ' v

ᵀ{δ̂·m(θ̂) − δ·m(θ̂)}︸ ︷︷ ︸
Op(1/

√
Nm)

+ v
ᵀ
∂θᵀδ·m(θ)︸ ︷︷ ︸

=0

(θ̂ − θ) + 1
2
∑

j

vj (θ̂ − θ)ᵀ∂θθᵀδjm(θ)(θ̂ − θ)︸ ︷︷ ︸
Op(1/S)

,

such that asymptotics are governed by the first right hand side term unless S/
√

Nm vanishes.
25One would have to draw the bootstrap population from the superpopulation for the bootstrap to be correct.
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Figure 5: Asymptotic relative efficiency of our estimator of δ1 = 0 compared to imposing the share
constraint as a function of χ for θz = 0, 1, 4, 10, 100 (brown, green, blue, magenta, red).

the share constrained estimator does not.26 Specifically, the share constrained estimator solves

∑
i

Dizi(yi1 − πzi
1 ) = 0, s1 − π1 = 0.

Note that the micro sample plays no role in the second moment. In contrast, our estimator uses (11)
which incorporates information on the correlation between the scores. In particular, the derivatives
of the micro term are

∑
iDizi(yi1 − πzi

1 ) and
∑
iDi(yi1 − πzi

1 ), the second of which is the analog
of the share constraint in the micro sample. While integrating this term over z leads to the share
constraint, doing so loses information. The information loss here is analogous to using a diagonal
weight matrix in the context of GMM.

Figure 5 illustrates the impact of the share constraint on efficiency as we vary θz and the size
of the micro sample as a fraction of the market size. We plot the asymptotic efficiency of the
constrained estimator relative to our (efficient) estimator (8). If θz = 0 then the correlation between
these two moments derived from (11) is zero, so then the share constrained estimator does not lose
efficiency. For θz 6= 0, the share constrained estimator is inefficient as long as χ > 0. Its inefficiency
is increasing in the magnitudes of θz and χ. Moreover, the relative asymptotic efficiency of the
constrained estimator goes to 0 as θz → ∞ for any χ > 0.

This example also provides a stark illustration of the implications of imposing the share constraint
on inference. Suppose θz = 0, because ∂θ δ̂ᵀ·m(θ̂) converges to ∂θδᵀ·m(θ) = 0 for this parameterization
(since θz = 0 and z has mean 0), the denominator in (22) converges to 0 and so the delta method is
invalid.27 Here the ratio between of the asymptotic variance implied by the delta method and the
actual asymptotic variance of the share constrained estimator is 0 (see appendix B), so the standard
errors using (22) will be too small.

26If χ = 1 then the entire population is in the micro sample and it is then clearly preferable to use the micro data
than to impose share constraints from the macro data. As was illustrated in figure 3, for χ = 1 our estimator and the
mixed logit estimator are equally efficient.

27While this example appears to be a knife edge case, this is because J = dθ = 1. In the usual case where J > dθ

the set of v’s for which the denominator in (22) converges to 0 has at least dimension J − dθ.
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To conclude, our estimator has no inference problems and inference can be done using standard
extremum estimation techniques. By contrast, the asymptotic variance for the share constrained
estimator should be based on the asymptotic variance formulas in appendix B which are based on
the moments in (41), also in appendix B, not on the more convenient formulas that obtain if N is
set to ∞. This problem extends to any estimator in which the share constraints are imposed to
hold.

6.3 Step 3: Adjustments to Likelihood-based Moments

One motivation for using a GMM estimator is to apply the method of simulated moments (MSM)
rather than simulated maximum likelihood. With the MSM, the simulated moments also have mean
zero at the truth, regardless of the number of simulation draws. Consequently, as Pakes and Pollard
(1989) have shown, the MSM estimator has a mean zero normal limit distribution whose convergence
rate is the square root of the slower of the total number of draws and the number of observations.
For example, if the number of draws per observation were fixed then the total number of draws
grows proportionally to the number of observations and the convergence rate is the square root of
the number of observations, albeit that the asymptotic variance would then be greater. However,
the derivatives of the simulated log L̂ do not have mean zero at the truth since they are nonlinear
in the simulated integrals. Step 3 replaces the score of the likelihood with approximations that are
able to take advantage of the linearity property. This results in a loss of efficiency in return for less
computational cost for a given level of numerical (as opposed to statistical) accuracy.

We can focus on the micro score because the macro score in (10) is equal to zero if observed
shares are equal to choice probabilities, which we imposed in section 6.2. We can ignore the double
counting discrepancy in the micro score between (10) and (11) because the micro score has mean
zero in both cases. So we will work with the micro score in (11).

6.3.1 Approximation of θz moments for linear simulation error

We first consider the score with respect to θz, i.e.

∂θz(k,d) log L̂ =
M∑
m=1

Nm∑
i=1

Jm∑
j=0

Dimyijm
πzim
jm

∫
sjm(zim, ν)

(
xkjmz

d
im −

Jm∑
`=1

xk`mz
d
ims`m(zim, ν)

)
dF (ν), (23)

which is a ratio of two integrals due to the presence of πzi
jm in the denominator. An commonly used

approximation to the score can be found by setting ν = 0 selectively as follows,

∂θz(k,d) log L̂ =
M∑
m=1

Nm∑
i=1

Jm∑
j=0

Dimyijm

∫
sjm(zim, ν)

(
xkjmz

d
im −

∑Jm
`=1 x

k
`mz

d
ims`m(zim, ν)

)
dF (ν)∫

sjm(zim, ν) dF (ν)

≈
M∑
m=1

Nm∑
i=1

Jm∑
j=0

Dimyijm

∫
sjm(zim, 0)

(
xkjmz

d
im −

∑Jm
`=1 x

k
`mz

d
ims`m(zim, ν)

)
dF (ν)∫

sjm(zim, 0) dF (ν)
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=
M∑
m=1

Nm∑
i=1

Jm∑
j=0

Dim(yijm − πzim
jm )xkjmzdim, (24)

The final line of (24) matches the correlation of demographics and product characteristics in the
micro sample to that of the model. This moment is linear in πzim

jm , its only approximated object, so
it can be approximated without simulation bias if one uses Monte Carlo integration. However, since
the share inversion is a nonlinear transformation of a simulated object, the number of simulations
required in the computation of δ(θ), which is an argument to sjm, requires the number of those
simulation draws to diverge faster than S not to affect efficiency and to avoid having to use a different
inference procedure,28 and at at least the same rate as S in order not to affect the convergence rate.

6.3.2 Handling θν moments

The score with respect to θν is similar to (23), replacing zdim with νk in the integrand, i.e.

∂θν(k) log L̂ =
M∑
m=1

Nm∑
i=1

Jm∑
j=0

Dim
yijm
πzim
jm

∫
sjm(zim, ν)

(
xkjmν

k −
Jm∑
`=1

xk`mν
ks`m(zim, ν)

)
dF (ν), (25)

Unfortunately, the above used approximation is not useful since the integral would simplify to zero.
There are at least three ways of dealing with this issue. The most common in the applied

literature is to simply drop the score with respect to θν and rely on product level moments for
identification. As discussed above, doing so may slow the rate of convergence of θ̂ν from

√
S to

√
J .

A second alternative employed by e.g. Berry, Levinsohn and Pakes (2004) and Grieco, Murry and
Yurukoglu (2021) is introducing second choice data based on surveys of consumer purchases. Our
estimator could accommodate second choice data efficiently by including it directly in the likelihood.
There are two potential issues with second choice data. First, surveys rely on consumer responses
rather than revealed preference and can be sensitive to selection issues due to low response rates.
Perhaps Moreover importantly, such data is often prohibitively costly to obtain.

While we are unaware of its use in the literature, there is a third possibility that requires two
independent ν draws per simulation r, as we now explain. First, note that29 ∑Jm

j=0 sjm
(
xkjmν

k −∑Jm
`=0 s`mx

k
`mν

k
)

= 0, such that the right hand side in (25) can be expressed as

M∑
m=1

Nm∑
i=1

Jm∑
j=0

Dim

yijm − πzim
jm

πzim
jm

∫
sjm(zim, ν)

(
xkjmν

k −
Jm∑
`=0

xk`mν
ks`m(zim, ν)

)
dF (ν),

because summing the integrand over j equals zero and πzim
jm /πzim

jm = 1. Noting that the conditional
expectation of the last displayed equation given all z’s and x’s equals zero at the truth and that
the denominator only depends on z’s and x’s, we can remove the weighting in the denominator.
Removing the denominator affects efficiency but still provides a valid moment. So we are left with a

28Otherwise, there would be an extra term in the moment due to the error in simulating δ(θ), i.e. there would be
one term with δ(θ) and one expansion term involving the difference between the simulated and actual values of δ(θ).

29We set x0m = 0 without loss of generality.
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sum over the product of two integrals, namely

M∑
m=1

Nm∑
i=1

Jm∑
j=0

∫
Dim{yijm − sjm(zim, ν∗)} dF (ν∗) ×

∫
sjm(zim, ν)

(
xkjmν

k −
Jm∑
`=0

s`m(zim, ν)xk`mνk
)

dF (ν).

Thus, approximating the integrals with sums using independent Monte Carlo draws satisfies the
conditions of Pakes and Pollard (1989). While utilizing this moment will result in an estimator with
the same convergence rate as our estimator, it will result in a loss of efficiency.

6.4 Step 4: Population statistics instead of micro-data

One may further alter the correlation moment described in section 6.3.1 by integrating (24) over z,

M∑
m=1

Jm∑
j=0

( 1
Sm

Nm∑
i=1

Dimyijmx
k
jmz

d
im −

∫
πzjmx

k
jmz

d dG(z)
)
. (26)

This is the moment described in Berry, Levinsohn and Pakes (2004, equation 8) and Gandhi and
Nevo (2021, equation 4.4).

There are two possible motivations using (26) over (24). The stronger is that it is less data
intensive in that it may be computed using only statistics of the micro data. For example, Sweeting
(2013) uses data from a survey conducted by a third party that reports averages at the market-
demographic level which correspond to the first term in the summand of (26). The second is that
the right hand side of (26) does not involve a sum over observed consumers. However, in view of
Pakes and Pollard (1989), the total number of simulation draws needed is the same in both cases.
To simulate (24), we need only a finite number of simulation draws per consumer in order not to
affect the convergence rate, as long as all draws are independent, whereas for (26) one needs a
number of independent draws that is at least proportional to S.

However, using (26) over (24) comes at an additional cost in efficiency. In particular, (26) does
not exploit the consumer level data in the second term because it does not condition on zi. It is
straightforward to show that the variance of (26) is no less than that of (24). For the sake of ease
of notation, consider the single market case with x, z both scalars and let ωi =

∑J
j=0Dixjyijzi. The

moments in (24) and (26) (if evaluated at the truth) have the same Jacobian in expectation. The
variance contribution for observation i using (26) equals

V
{
ωi − E(ωi |Di, X)

}
= EV(ωi |Di, X) =

EV(ωi | zi, Di, X) + EV
{
E(ωi | zi, Di, X)

∣∣Di, X
}

≥ EV(ωi | zi, Di, X) = V
{
ωi − E(ωi | zi, Di, X)

}
,
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which is the variance contribution of observation i in (24). These two facts combined with the
sandwich formula for the asymptotic variance of the GMM estimator imply that using (24) dominates
(26).

7 Computation

While the efficient estimator is of theoretical interest in its own right, it must also be computationally
tractable in order to be appropriate for applied use. In this section, we discuss two critical
computational aspects of our estimator.

First, our estimator involves an optimization over δ which is a vector of length J . In modern
datasets, the number of products across all markets can run into the hundreds of thousands, posing
a potential problem for nonlinear optimization. However, there are a number of features of our
optimization problem that simplify this task considerably.

Second, any estimator must numerically approximate integrals over demographics z and taste
shocks ν.30 As discussed above, the choice of integration method will impact that accuracy of the
estimator. We discuss several approaches in section 7.2.

7.1 Dimensionality

We now describe a feasible algorithm for the computation of our estimates for which we use Newton’s
method with Trust Regions.

Recall from (8) that our optimization problem is

(β̂, θ̂, δ̂) = arg min
β,θ,δ

(
− log L̂(θ, δ) + Π̂(β, δ)

)
.

Like Berry, Levinsohn and Pakes (1995), we start by concentrating out β which leaves

(θ̂, δ̂) = arg min
θ,δ

(
− log L̂(θ, δ) + Π̂{β̂(δ), δ}

)
. (27)

We then have two levels of optimization. In the inner optimization we compute δ̂ as a function of θ,
i.e. for each candidate value θ we find a minimizer δ̂(θ). In the outer optimization we then minimize
over θ. This approach is similar to that in Berry, Levinsohn and Pakes (1995) with the important
exception that the inner loop objective is (8)—the same as the outer loop objective—rather than
the share constraint π = s.

The high-dimensional problem is now confined to the inner loop. For Berry, Levinsohn and
Pakes (1995), tractability followed from the existence of a contraction mapping to compute π = s.
For our problem, first suppose that (8) is just identified. In this case, Π̂{β̂(δ), δ} = 0 for all values of
δ, in which case we only need to optimize log L̂ in the inner loop. Conveniently, log L̂ is additively

30The exception to this is the mixed logit, which only uses micro data and hence only integrates over ν.
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separable across markets in δ·m and is globally concave in δ for fixed θ. So we can parallelize the
computation of δ̂·m(θ) market by market, and each computation is a globally concave problem.

The overidentified case is more complicated. To simplify exposition but without loss of generality,
we will take Ŵ in the definition of Π̂ in (12) to be (BᵀB)−1 where B is a J × db matrix with
rows bᵀjm, the instruments introduced in (13). Unfortunately, Π̂ is not additively separable in δ·m.
However, there are several convenient features which make the inner loop optimization tractable.

The first such feature is that β̂(δ) is simply a linear IV estimator, i.e. β̂(δ) = (Xᵀ
PBX)−1Xᵀ

PBδ,
with PB = B(BᵀB)−1Bᵀ an orthogonal projection matrix. Second, Π̂ is quadratic in δ. Thus, after
routine matrix algebra, (27) becomes31

− log L̂(θ, δ) + 1
2δ

ᵀ(PB − PPBX)δ (28)

Third, (28) is convex in δ. Fourth, barring collinearities the matrix PB − PPBX is a positive
semidefinite matrix of rank db −dβ . Note that by the spectral decomposition, PB −PPBX can hence
be expressed in the form KK

ᵀ for a dδ × (db − dβ) matrix K. This is convenient because X may
include many exogenous regressors (eg., brand or product—rather than product-market—dummies)
which also appear in B. Such K is not unique but all choices are equivalent: we derive an explicit
form for K in lemma 1 in appendix D.

Using these features, we now focus on the primary complication of applying Newton’s method to
optimize (28) over δ in the inner loop: computation of the inverse of the Hessian (with respect to δ).
Just storing a Hessian in 100,000 parameters would take 80Gb of memory, the computational cost
of taking the inverse is cubic in dδ, and the result could be subject to substantial numerical error.

Fortunately, we do not need to store or directly invert the full Hessian of (28), H + KK
ᵀ,

where H is the Hessian of − log L̂. Instead, we can compute the inverse Hessian exploiting the
above-mentioned features. The inverse of the Hessian of (28) is then

H−1 −H−1K(I + K
ᵀ
H−1K)−1K

ᵀ
H−1, (29)

where I is the identity matrix.32

Since log L̂ is additively separable in the δ·m’s, H is block diagonal, so H−1 can be efficiently
computed and stored. To appreciate the importance of this feature, note that if one has 1,000
markets with 100 inside goods in each market, the problem reduces from inverting a full 100,000
by 100,000 matrix H + KK

ᵀ to inverting a thousand 100 by 100 matrices, which is both much
less demanding computationally and reduces memory demand by a factor 1,000.33 This makes the

31PPBX = PBX(Xᵀ
PBX)−1X

ᵀ
PB .

32To see this, note that for ∆ = I + K
ᵀ
H−1K,(

H−1 − H−1
K∆−1

K
ᵀ
H−1)(H + KK

ᵀ) = I + H−1
KK

ᵀ − H−1
K∆−1

K
ᵀ − H−1

K∆−1
K

ᵀ
H−1

KK
ᵀ =

I + H−1
K ∆−1(I + K

ᵀ
H−1

K)︸ ︷︷ ︸
=I

K
ᵀ − H−1

K∆−1
K

ᵀ − H−1
K∆−1

K
ᵀ
H−1

KK
ᵀ = I.

33100, 0002/(1002 × 1, 000)
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optimization step of the inner loop practical for many products.
The outer loop is over a low dimensional parameter vector, albeit computations of the derivatives

involves application of the chain rule to account for inner loop optimization. We have verified that
this procedure can be used successfully for problems with over 100,000 products and millions of
consumers.

7.2 Numerical integration

As we have pointed out, the largest disadvantage of our estimator is that a computable version
relies on numerical integration which is costly since in order not to affect the asymptotic behavior,
we need the numerical error to be negligible. However, as always, we can arbitrarily reduce the
numerical approximation error by incurring a higher computational cost. In contrast, the MSM
can achieve the same convergence rate by averaging over noisy approximations of these integrals.
But as mentioned section 6.3.1, numerical approximation of the share inversion adds an additional
source of complexity for estimators in our setting that enforce share constraints.

Our estimator evaluates two types of integrals, those over ν (e.g., πz) and those over both ν and
z (e.g., π). This distinction suggests different integration methods for each type.

Quadrature methods are well suited for micro integrals over ν only. The distribution of ν is
assumed known and is usually a familiar and tractable one, often normal. Moreover, ν is often of
small dimension, so the curse of dimensionality associated with tensor product quadrature methods
is less binding. If ν is of high dimension, sparse quadrature methods can be viable alternatives.34

The integrals over both z and ν are more difficult to compute. In addition to (z, ν) being
higher dimensional than ν, the distribution of z is usually informed by data and so less amenable to
quadrature methods (e.g., the distribution of income in the consumer population). On the other
hand, they are only computed for each product (J) rather than each product-consumer pair (JS).
Given this, (quasi-)Monte Carlo methods with a high number of draws are appropriate, albeit
this requires the number of Monte Carlo draws to grow faster than the square of the prevailing
convergence rate, which is the same number as is needed for MSM not to lose efficiency.

We will experiment with alternative numerical integration approaches in section 9 in a future
version of this manuscript.

8 Inference

This section describes inference on functions of model parameters, including elasticities and counter-
factuals. As we discussed above the conformant property of our estimator ensures that it can be
applied under a wide variety of conditions. This also applies to our inference procedure. In all cases,

34The designed quadrature approach of Bansal et al. (2021) may be particularly attractive as all nodes have positive
weights.
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inference will be built upon the Hessian of our objective function (8),

β

θz

θν

δ


∂βm̂

ᵀ
Ŵ∂βᵀm̂ 0 0 ∂βm̂

ᵀ
Ŵ∂δᵀm̂

0 −∂θzθzᵀ log L̂ −∂θzθνᵀ log L̂ −∂θzδᵀ log L̂
0 −∂θνθzᵀ log L̂ −∂θνθνᵀ log L̂ −∂θνδᵀ log L̂

∂δm̂
ᵀ
Ŵ∂βᵀm̂ −∂δθzᵀ log L̂ −∂δθνᵀ log L̂ ∂δm̂

ᵀ
Ŵ∂δᵀm̂ − ∂δδᵀ log L̂

 . (30)

The Hessian alone is sufficient since our estimator is efficient so the usual sandwich formula collapses.
As we will see below, the Hessian conforms to provide valid inference in each of the cases described
in section 4.2. Importantly, the researcher does not need to assume or determine the rates of
convergence of the estimator in her situation to conduct inference correctly.35

First consider the leading case where S/J → ∞ and θz 6= 0. In this case, our estimator is
asymptotically equivalent to a two-step estimator that first estimates (θ, δ) and then plugs in δ̂ to
estimate β. With the two-step estimator, the information matrix for ψ = [θᵀ, δᵀ]ᵀ is the Hessian of
− log L̂. Notice that this is the (ψ,ψ) block of (30) with the exception of the ∂δm̂ᵀ

Ŵ∂δᵀm̂ term in
the (δ, δ) block. However, that term diverges at rate J and is dominated by −∂δδᵀ log L̂. Similarly,
because ψ̂ converges faster than β̂, the (β, β) block in (30) is all that matters for inference on β. To
see this, note that by the partitioned inverse formula, the (β, β) block of the inverse of (30) is

(
((β, β) block) − ((β, δ) block) ∗ ((δ, δ) block)−1 ∗ ((δ, β) block)

)−1

=
(
∂βm̂

ᵀ
Ŵ∂βᵀm̂ − ∂βm̂

ᵀ
Ŵ∂δᵀm̂ ∗

(
∂δm̂

ᵀ
Ŵ∂δᵀm̂ − ∂δδᵀ log L̂

)−1 ∗ ∂δm̂
ᵀ
Ŵ∂βᵀm̂

)−1
.

Again, since the loglikelihood dominates, the second term inside the outer inverse is asymptotically
negligible, so the limiting distribution of β̂ is determined entirely by the product level moments.

Now consider the case where S/J → ∞ and θz = 0. As we show in appendix F, the scores of
the objective with respect to θν and δ become collinear, leading to a loss of rank in the Hessian of
log L̂. However, rank is preserved in (30) due to the presence of the product level moments in the
(δ, δ) block. As noted above, this affects the rate of convergence as Π̂ will enter the dominant term
of the (ψν , ψν) block of the inverse Hessian. However, the rate of θ̂z is unaffected since the score
with respect to θz is not collinear and the dominant term of the (θz, θz) block of the inverse Hessian
will be

−
(
∂θzθzᵀ log L̂− ∂θzδᵀ log L̂

(
∂δδᵀ log L̂

)−1
∂δθzᵀ log L̂

)−1
, (31)

as we show in lemma 4 in appendix F. Expression (31) converges at rate S.
Now consider the case where S/J → 0. The clearest intuition comes form the extreme case

where S = 0 (i.e., Berry, Levinsohn and Pakes, 1995). As we discussed in section 4.2.1, θ, δ are
not identified off the likelihood alone since log L̂micro = 0 and log L̂macro is maximized for any θ by

35Recall that the use of the plural ‘rates’ is due to the fact that different elements of our estimator vector converge
at different rates.
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choosing δ such that π = s as we have shown in section section 6.2.36 Consequently, ∂ψψᵀ log L̂ is
then singular, indeed of rank dδ.37 However, analogous to the θz = 0 case, the (ψ,ψ) block in (30)
has full rank due to the product level moments entering the (δ, δ) block. Note that because here the
micro data is not available to pin down θz, we need db ≥ dβ + dθz + dθν to preserve identication
rather than db ≥ dβ + dθν in the θz = 0 case above. It can be shown that the dominant term of the
(θ, θ) block of the inverse Hessian has the same form as the corresponding expression for the Berry,
Levinsohn and Pakes (1995) estimator which is Op(J−1); see lemma 5 in appendix F. Returning to
the case where S/J → 0 but some micro data exists. Now Π̂ will dominate dominate log L̂ in the
Hessian, and all parameters converge at rate

√
J . However, for the same reasons as stated above,

the Hessian remains invertible.
The remaining cases are merely combinations of the above logic. If S/J converges to a non-zero

constant, both log L̂ and Π̂ contribute to the limiting distribution and both are accounted for
in the Hessian with the appropriate weighting. If θz → 0, the contribution of Π̂ to the limiting
distribution of θ, δ will be non-negligible but accounted for in the Hessian. To summarize, under
different scenarios the relative importance of log L̂ and Π̂ vary. However, by using (30) for inference,
we include all relevant terms so that inference is valid across all these scenarios.

A second complication is that δ grows with J , so (30) is also growing. To address this, write
γ = [βᵀ, θᵀ, δᵀ]ᵀ. Recall from section 4.2 that we assume that limM→∞ maxm Jm < ∞. Since γ’s
dimension grows with the number of markets, the following theorem provides an inference method
for finite-dimensional linear combinations Λγ of γ, where Λ has a fixed number of rows. Its proof is
outlined in appendix F.2.

Theorem 2. Assume that

(I) The parameter space of β, θ, δ·1, δ·2, ... the Cartesian product of their individual parameter
spaces and each one of β, θ, δ·1, δ·2, ... is bounded away from the boundary, uniformly across
m.38

(II) (i) The population in each market consists of i.i.d. draws from a superpopulation; (ii) The
consumer micro sample (if present) in each market consists of a randomly chosen subset of
the population in that market; (iii) There is independence across markets;

(III) (i) The model described in section 2.1 is correctly specified; (ii) µzjm and µνjm are for all m
linear in θz, θν respectively;

(IV) One of the following two scenarios applies: (i) S is fixed and the intersection ΓM of the set
satisfying the product level exclusion restrictions and the set of maximizers of the expectation
of the macro loglikelihood is such that ΓM → Γ as M → ∞ where Γ consists of a singleton;

36Notice that since the log L̂macro integrates over z, we need not distinguish between θz and θν in this case.
37For any given θ, there is a unique δ that maximizes log L̂—or equivalently satisfies the share constraint (Berry,

1994)—so the degree of underidentification is dθ.
38In other words, there is a common positive minimum distance between each parameter vector and the corresponding

boundary.
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(ii) S grows to infinity and the intersection ΓM of the set satisfying the product level exclusion
restrictions and the set of maximizers of the expectation of the macro loglikelihood is such that
ΓM → Γ as M → ∞ where Γ consists of a singleton;

(V) (i) M → ∞; (ii) Jm can differ across m but does not change; (iii) limM→∞ maxm≤M Jm < ∞;
(iv) lim infM→∞ minm≤M Nm/M = ∞;

(VI) {Λ} is a sequence of matrices that is such that for a given fixed M∗, the first dβ+dθ+
∑M∗
m=1 Jm

columns of Λ are fixed and the remaining columns consist of zeros.

Then,
(ΛV̂ Λᵀ)−1/2Λ(γ̂ − γ) d→ N(0, I),

where V̂ is the inverse of (30).

Although the number of unknown coefficients increases (the number of δ’s increases), it only
does so as more markets are added. In other words, (subject to identification) one could estimate
θ off finitely many markets with an increasing number of consumers in the micro sample. The
problem is hence inherently different from that in the seminonparametric estimation literature in
which there are infinitely many parameters from the outset.

To conduct inference on finite-dimensional nonlinear functions of γ one can apply the delta
method. This enables the researcher to conduct inference on arbitrary differentiable functions of
the model parameters, such as elasticities, pass-through rates, or counterfactual outcomes.

9 Monte Carlo Experiments

This section will appear in a future version of the manuscript.

10 Conclusion

Random coefficients discrete choice demand models are a workhorse of applied industrial organization.
GMM-based estimators have combined data at the consumer and product level to enhance the
precision of estimates of substitution patterns. In this paper, we provide a method that optimally
combines the likelihood for purchase data with product level exogeneity restrictions into a unified
estimator that conforms to a wide variety of data environments and achieves efficiency in each. Our
estimator does not require additional parametric assumptions relative to a GMM estimator. By
showing how to transform our estimator into those used previously in the literature, we illustrate
several tradeoffs between statistical efficiency and other researcher concerns, such as computational
tractability and data availabilty. With that said, we show that our estimator is computationally
tractable, suggesting that it will be directly useful for applied work in a wide variety of settings.
Indeed, our estimator has an additional advantage that inference is more straightforward and correct
under more applicable assumptions than the standard approach.
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Appendix
A Gradients and Hessians
The derivations below assume that µzijm, µνijm are linear in θ. Define bijm = bijm(ν) = ∂θ(µzijm+µνijm),
which does not depend on θ by construction. Thus, πzi·m

jm =
∫
πijm(ν) dF (ν) where

πijm(ν) =
exp(µzijm + µνijm + δjm)∑G
g=0 exp(µzigm + µνigm + δgm)

. (32)

Then,
∂θ log πzi·m

jm =
∫
πijm(ν)∆bijm(ν) dF (ν)∫

πijm(ν) dF (ν) , (33)

where ∆bijm(ν) = bijm(ν) − b̄i·m(ν) with b̄i·m(ν) =
∑Jm
j=0 πijm(ν)bijm(ν). Further,

∂δ log πzi·m
jm =

∫
πijm(ν)∆1ijm(ν) dF (ν)∫

πijm(ν) dF (ν) , (34)

where the k-th element of ∆1ijm equals 1(j = k) − πikm(ν) for k = 1, . . . , Jm.
To obtain the gradient of LL we moreover need the gradient of log πjm. But since πjm is simply

an integral of πzjm over z, the gradient of log πjm is identical to that of log πzi·m
jm except that z is

integrated out in both numerator and denominator in (33) and (34). An analogous argument applies
to the Hessians. So we only present the Hessians for the micro contributions.

They are,

∂θθᵀ log πzi·m
jm =

∫
πijm(ν)∆bijm(ν)∆bᵀijm(ν) dF (ν)∫

πijm(ν) dF (ν) − ∂θ log πzi·m
jm ∂θᵀ log πzi·m

jm

−
Jm∑
g=0

∫
πijm(ν)πigm(ν)∆bigm(ν)∆bᵀigm(ν) dF (ν)∫

πijm(ν) dF (ν) , (35)

∂δδᵀ log πzi·m
jm =

∫
πijm(ν)∆1ijm(ν)∆1

ᵀ
ijm(ν) dF (ν)∫

πijm(ν) dF (ν) − ∂δ log πzi·m
jm ∂δᵀ log πzi·m

jm

−

∫
πijm(ν)

[
πikm(ν)

{
1(k = t) − πitm(ν)

}]
k,t=1,...,Jm

dF (ν)∫
πijm(ν) dF (ν) , (36)

where the notation [·]k,t=··· means a matrix whose (k, t) element is given by the argument in square
brackets and, finally,

∂δθᵀ log πzi·m
jm =

∫
πijm(ν)∆1ijm(ν)∆bᵀijm(ν) dF (ν)∫

πijm(ν) dF (ν) − ∂δ log πzi·m
jm ∂θᵀ log πzi·m

jm . (37)

The δθᵀ Hessian term has one fewer term because it is zero.
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B Asymptotic variances
This appendix provides formulas for the asymptotic variance of our estimator and the estimator that
maximizes the mixed logit objective function subject to the share constraints for a single market,
i.e. m = 1; the multimarket case is an obvious extension. The formulas below are valid for the case
in which selection is random; otherwise an adjustment should be made, e.g. πD=0

j should replace πj
and some cancellations do then not obtain.

We use ψ = [θᵀ, δᵀ]ᵀ and use Ωm to denote E
∑J
j=0 Yij log πzi·

j , Ωm
ψ its gradient, Ωm

ψψ its Hessian,
and ΩM = E

∑J
j=0 Yij log πj . Let similar symbols be analogous defined. Formulas for these gradients

and Hessians can be found in appendix A.
The asymptotic variance for our estimator is then

−
{
χΩm

ψψ + (1 − χ)ΩM
ψψ

}−1
, (38)

where χ = limN→∞(S/N). This is for
√
N(ψ̂ − ψ) and χ > 0. Fr χ = 0, consider the limit

distribution of
√
S(ψ̂ − ψ) for χ > 0, i.e. multiply (38) by χ and then let χ ↓ 0. This takes some

caution since ΩM
ψψ is generally singular.

The promised but incorrect asymptotic variance for the share constraint estimator is

−
[

I

∂θδ
ᵀ

]
Φ−1

[
I ∂θᵀδ

] /
χ, (incorrect variance) (39)

where ∂θᵀδ = −(ΩM
δδ )−1ΩM

δθ and Φ = Ωm
θθ+∂θδᵀΩm

δθ+Ωm
θδ∂θᵀδ+∂θδᵀΩm

δδ∂θᵀδ. The correct asymptotic
variance formula for the share constrained estimator is

−
[
χΦ χ(Ωm

θδ + ∂θδ
ᵀΩm

δδ)
ΩM
δθ ΩM

δδ

]−1 [
χΦ 0
0 ΩM

δδ

] [
χΦ ΩM

θδ

χ(Ωm
δθ + Ωm

δδ∂θᵀδ) ΩM
δδ

]−1

. (40)

The formula in (40) is based on the fact that the share constrained estimator uses the following
moment conditions: 

N∑
i=1

J∑
j=0

yijDi

(
∂θ log πzi

j + ∂θ δ̂
ᵀ
∂δ log πzi

j

)
= 0,

N∑
i=1

J∑
j=0

yij∂δ log πj = 0,
(41)

where

∂θ δ̂
ᵀ = −

N∑
i=1

J∑
j=0

yij∂θδᵀ log πj
( N∑
i=1

J∑
j=0

yij∂δδᵀ log πj
)−1

.

Finally, a mixed logit estimator ignoring the product share information would have asymptotic
variance

(−Ωm
ψψ)−1/χ. (42)
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C Share constraints

C.1 Some theory

Consider the situation in which we a randomly selected consumer level sample from a single market
in addition to product level data including shares. Then the objective function can be written as

Ω(ψ) =
Ī∑
i=1

{
DiL

m
i (ψ) + ω(1 −Di)LMi (ψ)

}
, (43)

for ω = 1 where Lmi , LMi are the likelihood for the data on which we have detailed and less detailed
information respectively and Di is the micro selection dummy which is independent of everything
else and equals one with probability χ. We allow for 0 ≤ ω < ∞ to incorporate the possibility of
unequal weighting. Both intuition and mathematics indicate that choosing ω = 1 is optimal.

Theorem 3. Under the stated assumptions we have,
√
Ī(ψ̂−ψ) d→ N(0, V ), where V = (χA+ω(1−

χ)B)−1(χA+ω2(1−χ)B)(χA+ω(1−χ)B)−1, with A = −E
{
∂ψψᵀLm1 (ψ)

}
and B = −E

{
∂ψψᵀLM1 (ψ)

}
.

The optimal weight ω equals one.

Proof. The asymptotic distribution is an immediate consequence of standard extremum estimation
theory. Since both A,B ≥ 0, the first derivative of V with respect to ω equals zero at ω = 1 and
the second derivative of V with respect to ω equals

χC−1BC−1 + χ2C−1BC−1BC−1 + 3ωχ3C−1BC−1BC−1BC−1 ≥ 0,

where C = χA+ ω(1 − χ)B, which follows from tedious but simple calculus.

We now turn to the possibility that one maximizes the consumer level likelihood subject to the
product level shares matching the choice probabilities. We do so by considering the asymptotic
variance of

ψ̂∗
ω = arg max

ψ

Ī∑
i=1

{
DiL

m
i (ψ) + ωLMi (ψ)

}
, (44)

as a function of ω and then letting ω → ∞. Note that imposing that the gradient of
∑Ī
i=1 L

M
i

equal zero is equivalent to imposing the product level share equations. Note further that there is
a subtle but important difference between (43) and (44) in that in (44) we sum over all LMi , not
only over those we lack consumer level data on. Finally, using only the product level likelihood is
insufficient for identification since all first order conditions are satisfied by setting shares equal to
choice probabilities.

Theorem 4. Let V ∗
ω be the asymptotic variance of ψ̂∗

ω. Then

V ∗
∞ = lim

ω→∞
V ∗
ω = {χAU0(Uᵀ

0AU0)−1U
ᵀ
0A+B}−1 ≥ V,

where U0 contains a full set of orthogonal unit length eigenvectors of the null space of B.

Proof. Standard extremum estimation theory yields

V ∗
ω = (χA+ ωB)−1{χA+ (2χω + ω2)B}(χA+ ωB)−1.

Taking ω → ∞ means that the 2χωB term is negligible compared to ω2B. The same is not true
for χA since B does not have full rank. Use the spectral decomposition B = U1D1U

ᵀ
1 where U1
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contains orthogonal eigenvectors corresponding to nonzero eigenvalues. It is straightforward to verify
that the inverse of χA+ ω2B is (up to terms that vanish as ω → ∞) equal to U0(χUᵀ

0AU0)−1Uᵀ
0 +

U1D
−1
1 Uᵀ

1 /ω
2.39 Pre and postmultiply by χA+ ωB and take ω → ∞ to obtain V ∗

∞. Finally, note
that

V ∗
∞

−1 − V −1 = χAU0(Uᵀ
0AU0)−1U

ᵀ
0A+B − {χA+ (1 − χ)B} =

χ{AU0(Uᵀ
0AU0)−1U

ᵀ
0A−A+B} =

χ[(A−B)U0{Uᵀ
0 (A−B)U0}−1U

ᵀ
0 (A−B) − (A−B)] ≤ 0,

since the right hand side is minus an annihilator matrix.

The proof shows that equality of the asymptotic variance only obtains if A−B is in the null space
of B, which would happen if the coefficients on all consumer level regressors equaled zero. Conversely,
one would expect the difference to be large if the consumer level regressors are informative.

A second consequence is that the efficiency improvement is greatest for the estimation of the δ
coefficients. The intuition for this finding is that imposing the aggregate share equations does not
limit the exploitation of variation in the micro level regressors, but it does suggest that information
contained only in the consumer level sample is not used to recover coefficients on product level
coefficients.

C.2 Another share constraint example

Example 2. Consider the case of one inside good and one outside good without random coefficients,
but with possible selection on consumer characteristic zi, i.e. the utility of the inside and outside
goods is respectively δ + ziθ + εi1 and εi0, such that πz1 = πz1(ψ) = Pr(yi = 1 | zi = z) =
exp(δ + zθ)/{1 + exp(δ + zθ)}. Selection on zi produces a selection probability χ(z) = Pr(Di = 1 |
zi = z).

Consider the problem of estimating the logarithm of the choice probability π∗ = Pr(yi = 1) =∫
πz1 dG(z) if π∗ is close to zero. Using the share constraint equality this produces an (asymptotic)

variance equal to 1/{π∗(1 − π∗)}, which goes to infinity as π∗ → 0.
Our estimator of π∗ is

∫
πz1(ψ̂) dG(z), where

ψ̂ = arg max
ψ

N∑
i=1

1∑
j=0

yij

(
Di log πzi

j (ψ) + (1 −Di) log
∫
πzj (ψ) dG(z)

)
.

Our estimator makes use of the consumer level data to exploit the parametric assumptions on
πz. Consequently, the variance of our estimator of π∗ is less. The efficiency gain is increasing in
the correlation between χ(zi) and πzi

1 , basically if the consumer level sample is weighted towards
purchasers. But even if χ = χ(z) > 0 is flat in z is our estimator more accurate.

To illustrate, suppose that zi is binary with 0 < Pr(zi = 1) = p < 1 and χ does not vary with z.
Suppose further that δ = −θ/2 such that π1

1 = 1 − π0
1 and that θ is such that π0

1 = π∗3. Then, the
asymptotic variance of our estimator is

π∗(1 − π∗3)
(1 − π∗){χ+ (1 − χ)π∗2(1 − π∗3)} → 0

39Just premultiply by U
ᵀ
0 , U

ᵀ
1 and postmultiply by U0, U1 (four combinations) noting that U

ᵀ
0 U0 and U

ᵀ
1 U1 are the

identity matrix and the other products are zero matrices.
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as π∗ → 0, so the only case in which we do not get an improvement is χ = 0, i.e. when we have
no consumer level data. Note that χ = lim(S/N). Thus, in this example with significant observed
consumer heterogeneity the asymptotic variance of our estimator goes to zero even though the
asymptotic variance of the raw log share estimator goes to infinity.

D Computation
The following lemma shows that the dδ × dδ matrix PB −PPBX used in (28) can be expressed as the
product of a dδ × (db − dβ) matrix with its transpose. Note than when computing K it is useful to
first project out all exogenous regressors that appear in both X and B because it is less expensive
to compute the singular value decomposition of a matrix of lower rank.

Lemma 1. Let X = [C X̃] and B = [C B̃], i.e. C are the columns shared by X and B. Let further
X∗ = MCX̃ and B∗ = MCB̃ with MC an annihilator matrix (for C). Then,

∀δ : {δ −Xβ̂(δ)}ᵀPB{δ −Xβ̂(δ)} = δ
ᵀ
KK

ᵀ
δ, (45)

where K = UBMU
ᵀ
BUX

with UB,UX matrices with orthonormal columns spanning exactly the
column spaces of B∗ and X∗, respectively.

Proof. Recall from the text in section 7 that (45) can be expressed as δᵀP∗δ where P∗ = PB−PPBX .
Noting that PB = PC + PB∗ and PPBX = PC + PPB∗X∗ , we have P∗ = PB∗ − PPB∗X∗ . The stated
result then follows by application of the singular value decomposition to both B∗ and X∗.

E Selection
Our methodology combines the micro-sample with the product shares by integrating out zim in the
choice probabilities when individual i is outside the micro-sample, yielding

πD=0
jm (δ, θ) =

∫
Pr(yijm = 1 ∩Dim = 0 | zim = z) dGm(z).

This allows for a variety of forms of selection. Clearly, random selection poses no difficulty as in
this case πD=0

jm = Pr(Dim = 0)πjm, leading to the logliklihood prested in (9) (up to a constant).
Interestingly, deterministic selection based on yi·m of the form Dim = D∗

im1(yi0m ∈ J) where
D∗
im is random is also straightforward. This case is common, for example with vehicle registration

data, administrative data of regulated industries, or data on sales of a particular subset of firms. In
this case,

Pr(Dim = 1 ∩ yijm = 1 | zim) =
{

0 j 6∈ J

Pr(D∗
im = 1)πzim

jm j ∈ J
,

so we have,

πD=0
jm =

{
πjm j 6∈ J

Pr(D∗
im = 0)πjm j ∈ J

.

Moreover, in both of the above cases, because only logarithms of the choice probabilities appear in
the loglikelihood, the Pr(D∗

im = 0) factor only adds a constant to the loglikelihood and is hence
irrelevant.

Selection dependent on zim can be accommodated by accounting for selection when integrating
over the distribution of demographics. GD=0

m (z), the distribution of zim in market m but not in the
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micro sample, and its complement GD=1
m (z) are easy to compute from the consumer-level data and

the known distribution of zim in the population, Gm(z). If selection does not depend on yi·m except
through zim then,

πD=0
jm =

∫
Pr(Dim = 0 | zi = z)πzjm dGm(z) = Pr(Dim = 0)

∫
πzjm(δ, θ) dGD=0

m (z).

More general forms would have to be explicitly modeled and are outside the scope of this paper.

F Inference

F.1 Technical lemmas

This appendix shows several statements asserted in section 8. First we show that the scores of the
objective function with respect to θν and δ are collinear if θz = 0, for which the following lemma
suffices.

Lemma 2. Let ψνm = [θνᵀ, δᵀm]ᵀ. If θz = 0 then ∂ψν
mψ

νᵀ
m

logL can have rank at most Jm.

Proof. Consider the case in which S = N , which is no less favorable than any other case. Then,
since θz = 0, πzjm is flat in z and hence at the truth,

∂ψν
m

log L̂ =
Nm∑
i=1

Jm∑
j=0

yijmvjm,

for some (Jm + dθν )-dimensional vectors {vjm}Jm
j=0. Now, because the expectation of the score is

zero at the truth,
∑Jm
j=0 πjmvjm = 0, so v0m = −

∑Jm
j=1 πjmvjm/π0m is a linear combination of the

remaining vjm’s, so the {vjm} span a space of dimension no greater than Jm. Further,

E
(
∂ψν

m
log L̂ ∂ψνᵀ

m
log L̂

)
= E

(
Jm∑
j=0

Jm∑
j∗=0

YijmvjmYij∗mv
ᵀ
j∗m

)
=

Jm∑
j=0

πjmvjmv
ᵀ
jm,

which hence has rank no greater than Jm. Apply the information matrix equality.

Lemma 3.

− ∂θθᵀ log L̂− ∂θδᵀ log L̂
(
−∂δδᵀ log L̂+ ∂δδᵀΠ̂

)
∂δθᵀ log L̂ '

−
(
∂θθᵀ log L̂− ∂θδᵀ log L̂

(
∂δδᵀ log L̂

)−1
∂δθᵀ log L̂

)
+

∂θδᵀ log L̂
(
∂δδᵀ log L̂

)−1
∂δδᵀΠ̂

(
∂δδᵀ log L̂

)−1
∂δθᵀ log L̂.

Proof. Simply uses (A+B)−1 ≈ A−1 −A−1BA−1 for A dominating B.

From here on, we use the convention that superscripts to a matrix indicate the corresponding
block of the inverse of the matrix.

Lemma 4. If S/J → ∞ and θz = 0 then the dominant term of the (θz, θz) block of the inverse
Hessian evaluated at the truth is

−
(
∂θzθzᵀ log L̂− ∂θzδᵀ log L̂

(
∂δδᵀ log L̂

)−1
∂δθzᵀ log L̂

)−1
,
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Proof. First, note that by partitioned inverses,

Ω̂ψψ =

−∂θzθzᵀ log L̂ −∂θzθνᵀ log L̂ −∂θzδᵀ log L̂
−∂θνθzᵀ log L̂ −∂θνθνᵀ log L̂ −∂θνδᵀ log L̂
−∂δθzᵀ log L̂ −∂δθνᵀ log L̂ −∂δδᵀ log L̂+ ∂δδᵀΠ̂∗


−1

,

where ∂δδᵀΠ̂∗ = ∂δδᵀΠ̂ − ∂δβᵀΠ̂(∂ββᵀΠ̂)−1∂βδᵀΠ̂. Since −E∂ψνψνᵀ log L̂ is positive semidefinite with
rank J by lemma 2, we can replace ∂ψνψνᵀ log L̂ with A∂δδᵀ log L̂Aᵀ. Thus, by partitioned inverses
we get

Ω̂θzθz '
(
∂θzδᵀ log L̂− ∂θzδᵀ log L̂Aᵀ

(
−A∂δδᵀ log L̂Aᵀ + ∂δδᵀΠ̂∗

)−1
A∂δθzᵀ log L̂

)−1

'
(

−∂θzθzᵀ log L̂+ ∂θzδᵀ log L̂
(
∂δδᵀ log L̂

)−1
∂δθzᵀ log L̂

)
,

as asserted.

Lemma 5. Absent consumer data and evaluated at the truth,

Ω̂θνθν '
(
∂θδ

ᵀ
∂δδᵀΠ̂∗∂θᵀδ

)−1
,

where ∂δδᵀΠ̂∗ was defined in lemma 4 and where δ(θ) solves the (expectation) share constraint.

Proof. By lemma 3 we get,

Ω̂θνθν =
(

−∂θνθνᵀ log L̂− ∂θνδᵀ log L̂
(
−∂δδᵀ log L̂+ ∂δδᵀΠ̂∗

)−1
∂δθνᵀ log L̂

)−1
'(

−∂θνθνᵀ log L̂+ ∂θνδᵀ log L̂
(
∂δδᵀ log L̂

)−1
∂δθνᵀ log L̂+

∂θνδᵀ log L̂
(
−∂δδᵀ log L̂

)−1
∂δδᵀΠ̂∗

(
∂δδᵀ log L̂

)−1
∂δθνᵀ log L̂

)−1
'
(
∂θδ

ᵀ
∂δδᵀΠ̂∗∂θᵀδ

)−1
,

where the last step follows by Khinchine’s weak law of large numbers and the implicit function
theorem. Note that the right hand side in the lemma statement is exactly the θν component of the
asymptotic variance matrix of a BLP GMM estimator.

F.2 Outline of the proof of theorem 2

The sketch of the proof uses fairly standard arguments. However, there are a few unusual features
to the problem that need to be addressed. We will throughout consider the case where S grows; the
fixed S case is simpler.

First, there is the issue that even if θz 6= 0 and S,Nm grow fast relative to M , there are different
convergence rates, namely

√
J for β̂ and

√
S for θ̂, δ̂ (unless S increases faster than Nm). In the

general case, there are more scenarios. The differing convergence rates are not themselves a major
issue, but the fact that the Hessian of the loglikelihood can have reduced rank means that we also
have to consider the contribution of the Π̂ component of the objective function.

A second issue is that the dimension of δ grows. However, the dimension of δ grows only because
markets are added. And if a market m is added then there are Nm additional consumers in the

44



population. Since we have assumed Jm to be finite, having Nm increase is sufficient to recover δ·m
for a given value of θ. We will focus on inference for θ, and show that the increasing dimensions
become sums over markets, with the δ·m parameter vectors only entering the terms for market m in
those sums.

The sketch of the proof follows a standard pattern. First, we take a standard extreme value
theory expansion and then strip out all dominated terms. What is left has a limiting normal
distribution.

F.2.1 Expansion

Let Ω̂ = Ψ̂ + δᵀKK
ᵀδ/2, with Ψ̂ = − log L̂, denote the objective function after partialing out β

and let subscripts to Ω̂, Ψ̂ denote partial derivatives (omitting the transpose on the second) and
m-subscripts to all objects indicate markets. In what follows it will be easiest to think of KK

ᵀ as a
projection matrix, because that is what is up to finite scale. Indeed, in what is below we will follow
the example of section 7 and assume without loss of generality that the optimal weight matrix is
(BᵀB)−1. Omitting a hat means the population equivalent with the same norming, i.e. Ψ is also
a sum, with the understanding that everything is conditional on exogenous product-level objects,
including instruments.40 In the discussion below, we will think of Sm as being deterministic and let
χm = Sm/Nm, which can vary with the sample size.41

We focus on asymptotics for θ̂, which has the most interesting features, particularly θ̂ν . A
standard extremum estimation expansion suggests42

θ̂ − θ ' −
[
I 0

] [Ωθθ Ωθδ

Ωδθ Ωδδ

]−1 [
Ω̂θ

Ω̂δ

]
, (46)

such that we need to show that43

− (Ωθθ − ΩθδΩ−1
δδ Ωδθ)−1/2(Ω̂θ − ΩθδΩ−1

δδ Ω̂δ)
d→ N(0, I). (47)

The matrix [I 0] serves the same role as Λ in the statement of theorem 2, with the only distinction
being that here we have already concentrated out β.

F.2.2 Eliminating endogeneity

Recall from lemma 1 that KK
ᵀ = PB −PPBX where X can have endogenous elements. Now, PB is

exogenous, but

PPBX = B(Bᵀ
B)−1B

ᵀ
X{Xᵀ

B(Bᵀ
B)−1B

ᵀ
X}−1X

ᵀ
B(Bᵀ

B)−1B
ᵀ
.

To address the endogeneity issue, one simply replaces XᵀB with X̄ᵀB where X̄ has its rows replaced
with E(xjm |B). This can be done without affecting asymptotics since the difference between the
terms involving XᵀB and X̄ᵀB is dominated by the term involving X̄ᵀB. So from here on in this
proof sketch, we will take X to be exogenous without loss of generality.

40So by population ‘objects,’ we mean that the various expectations are taken over everything except B, assuming
that B includes the exogenous components of X.

41Random Sm are not usually a serious complication.
42Such an expansion does not automatically obtain here because δ grows in dimension, but that is a minor nuisance

given the features of the model, as we will argue in appendix F.2.8.
43This requires the application of partitioned inverses to (46).
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F.2.3 Everything is a sum over markets

The second thing to notice is that everything entails sums over markets, not some complicated
inverses. This is obvious for Ω̂θ = Ψ̂θ =

∑M
m=1 Ψ̂mθ, but it also applies to the monstrosity

ΩθδΩ−1
δδ Ω̂δ = Ψθδ(Ψδδ+KK

ᵀ)−1(Ψ̂δ+KK
ᵀ
δ) =

M∑
m=1

Ψmθδ·mΨ−1
mδ·mδ·m

(
Ψ̂mδ·m+Km

M∑
m∗=1

K
ᵀ
m∗δ·m∗

)

−
M∑
m=1

Ψmθδ·mΨ−1
mδ·mδ·m

Km∆−1
M∑
m=1

K
ᵀ
mΨ−1

mδ·mξ·m

(
Ψ̂mδ·m + Km

M∑
m∗=1

K
ᵀ
m∗ξ·m∗

)
, (48)

which follows from (29) plus K
ᵀX = 0, and where ∆ =

(
I +

∑M
m=1 K

ᵀ
mΨ−1

mδ·mδ·m
Km

)−1. The fact
that everything is a sum over markets means that the fact that the dimension of δ increases only
adds terms to each of these sums, so that the concern about the increasing matrix dimensions raised
in section 8 is addressed.

F.2.4 Ugliness vanishes

The right hand side in (48) can be rewritten as A
ᵀ(I − Z(I + Z

ᵀ
Z)−1Zᵀ)

a, where the A
ᵀ
a

portion corresponds to the first right hand side term and the remainder to the second. The relevant
part of this reinterpretation is the fact that Z is a matrix consisting of vertically stacked blocks
Zm = Ψ−1/2

mδ·mδ·m
Km and that Z

ᵀ
Z is negligible compared to I. This is so, because

tr(Zᵀ
Z) =

M∑
m=1

tr(Kᵀ
mΨ−1

mδ·mδ·m
Km) ≤ max

m=1,...,M

tr(Kᵀ
K)

Ψmin(Ψmδ·mδ·m) = max
m=1,...,M

db − dβ
Ψmin(Ψmδ·mδ·m) = o(1),

under mild regularity conditions. Note that if all Nm’s diverge at the same rate (which they need
not) then the order would typically be M/N .44 Thus, we can ignore the second right hand side
term in (48) from here on.

Thus, up to asymptotically negligible terms, the ‘numerator’ in (47) equals

M∑
m=1

(
Ψ̂mθ − Ψmθδ·mΨ−1

mδ·mδ·m
Ψ̂mδ·m

)
−

M∑
m=1

Ψmθδ·mΨ−1
mδ·mδ·m

Km

M∑
m=1

K
ᵀ
mξ·m. (49)

Analogously, the ‘denominator’ portion of (47) is (up to asymptotically negligble) terms equal to

( M∑
m=1

(Ψmθθ − Ψmθδ·mΨ−1
mδ·mδ·m

Ψmδ·mθ) +
M∑
m=1

Ψmθδ·mΨ−1
mδ·mδ·m

Km

M∑
m=1

K
ᵀ
mΨ−1

mδ·mδ·m
Ψmδ·mθ

)−1/2
.

(50)

F.2.5 Separation of micro and macro likelihoods

Because of the separation into sums over markets described above and in view of the indepen-
dence across markets, we now first look at the likelihoods in individual markets, before summing.
Let R

zi
jmθ = ∂θ log πzim

jm = ∂θπ
zim
jm /πzim

jm , Rjmθ = ∂θ log πjm, and let R with other subscripts be
44There are Nm identical terms in Ψmδ·mδ·m and if all Nm’s were equal then 1/Nm = M/N .
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analogously defined. Then by (10), Ψmψmψm is the sum of
Ψmicro
mψmψm

= Sm

Jm∑
j=0

E
(
πzim
jm (Rzim

jmψm
− Rjmψm)(Rzim

jmψm
− Rjmψm)ᵀ

)
,

Ψmacro
mψmψm

= Nm

Jm∑
j=0

πjmRjmψmR
ᵀ
jmψm

.

As noted in lemma 2, Ψmacro
mψmψm

has rank Jm, which is consistent with the intuition of recovering δ·m
once θ is known. But the upshot is that Ψmψmψm has Jm eigenvalues diverging at rate Nm and dθ
eigenvalues diverging at a possibly slower rate: Sm if θz 6= 0 is fixed. However, it is easy to show
that Ψmδ·mδ·m is invertible and diverges at rate Nm.

F.2.6 The expectations meet expectations

It is straightforward to show that
E
(
Ψ̂micro
mψm

(Ψ̂micro
mψm

)ᵀ
∣∣∣ x) = Ψmicro

mψmψm
,

E
(
Ψ̂micro
mψm

(
Ψ̂macro
mψm

)ᵀ ∣∣∣ x) = 0,

E
(
Ψ̂macro
mψm

(
Ψ̂macro
mψm

)ᵀ ∣∣∣ x) = Ψmacro
mψmψm

.

Indeed, this is essentially the information matrix equality. For instance, by the law of iterated
expectations (conditioning on x, ξ),

E
(
Ψ̂micro
mψm

(
Ψ̂macro
mψm

)ᵀ ∣∣∣ x) = Sm

Jm∑
j=0

E
(
E
(
πzim
jm (Rzim

jmψmψm
− Rjmψmψm)

∣∣∣ x, ξ)Rᵀ
jmψmψm

∣∣∣∣ x) =

Sm

Jm∑
j=0

E
(
E(∂ψmπ

zim
jm − ∂ψmπjm | x, ξ)Rᵀ

jmψmψm

∣∣∣ x) = 0.

Consequently, E
(
Ψ̂mθΨ̂ᵀ

mθ

∣∣ x) = Ψmθθ, E
(
Ψ̂mθΨ̂ᵀ

mδ·m

∣∣ x) = Ψmθδ·m , and E
(
Ψ̂mδ·mΨ̂ᵀ

mδ·m

∣∣ x) =
Ψmδ·mδ·m . Now, note that K

ᵀδ = K
ᵀξ because β has been concentrated out. Further, by the

assumptions at the beginning of this section, KK
ᵀE(ξξᵀ | b)KK

ᵀ = KK
ᵀ. So the variation in the

KK
ᵀξ term in the second expression of (48) is accounted for by the KK

ᵀ term inside the inverse in
the same expression.

In sum, conditional on x, b, the expectation of the outer product of the product of (49) and (50)
is the identity matrix. This is tedious, but uneventful, to show.

F.2.7 Applying limit results

Note that (49) is the sum of two components. The first term is i.i.d. conditional on the second and
hence has a limiting normal distribution conditional on the second by e.g. Eicker’s central limit
theorem. The second term consists of martingale difference sequences and since both conditions in
Davidson (1994, theorem 24.3) are satisfied, the sum of the two components converges to a standard
normal.
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F.2.8 About that extremum estimation expansion

In (48) we ignored higher order terms. This would be uneventful in a standard setting. We now
explore a bit more why this is reasonable here. First, consider the estimation of δ(θ̃) for arbitrary
fixed θ̃. The first order condition is

0 = Ψ̂δ{θ̃, δ̂(θ̃)} + KK
ᵀ
δ̂(θ̃). (51)

Note that (51) holds for any value of θ̃, but we only need to consider values of θ̃ near the truth. We
first focus on the likelihood component of (51). Note that

Ψ̂δ{θ̃, δ̂(θ̃)} =
M∑
m=1

Ψ̂mδ·m{θ̃, δ̂·m(θ̃)}.

Given that δ̂·m is finite-dimensional and Ψmδ·mδ·m is positive definite, standard extreme value theory
would suggest that

Ψ̂mδ·m{θ̃, δ̂·m(θ̃)} ' Ψ̂mδ·m{θ̃, δ·m(θ̃)} + Ψmδ·mδ·m{θ̃, δ·m(θ̃)}{δ̂·m(θ̃) − δ·m(θ̃)}, (52)

where ' again means that omitted terms are negligible. Note that Ψmδ·mδ·m is positive definite and
generally has minimum eigenvalue diverging at rate Nm, such that plugging (52) back into (51),
solving for δ̂, and ignoring dominated terms yields

δ̂·m(θ̃) − δ·m(θ̃) ' −
[
Ψmδ·mδ·m{θ̃, δ·m(θ̃)}

]−1Ψ̂mδ·m{θ̃, δ·m(θ̃)} = Op(N−1/2
m ). (53)

Note that the convergence rate in (53) is the rate at a given θ̃, so it is different from, indeed no
slower than, the rate at which δ̂·m(θ̂) − δ·m(θ) converges.

There are two issues that we have glossed over getting from (51) to (53). The first issue is that
we are doing everything at a fixed value of θ̃ instead of as a function. However, given the degree of
smoothness, this will not be a problem. The second issue is that the number of markets M , and
hence the number of δ·m’s, increases with M . However, in view of how these differences are to be
used below, the rate of the omitted term in (53), and our conditions on the various rates, this too
will be of secondary concern.

Now, note that

0 = Ω̂θ{θ̂, δ̂(θ̂)} ' Ω̂θ(θ, δ) + Ωθθ(θ, δ)(θ̂ − θ) +
M∑
m=1

Ωθδ·m(θ, δ){δ̂·m(θ̂) − δ·m(θ)} '

Ω̂θ(θ, δ) + Ωθθ(θ, δ)(θ̂ − θ) +
M∑
m=1

Ωθδ·m(θ, δ){δ̂·m(θ) − δ·m(θ)} +
M∑
m=1

Ωθδ·m(θ, δ){δ·m(θ̂) − δ·m(θ)}

' Ω̂θ(θ, δ)−
M∑
m=1

Ωθδ·m(θ, δ){Ωδ·mδ·m(θ, δ)}−1Ω̂δ·m +
(

Ωθθ(θ, δ)+
M∑
m=1

Ωθδ·m(θ, δ)∂θᵀδ·m(θ)
)

(θ̂−θ),

which by the implicit function theorem takes us to (46) up to terms that are shown to be negligble
in appendix F.2.4.45

45The implicit function theorem is needed to obtain ∂θᵀδ = −Ω−1
δδ Ωδθ.
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F.2.9 Final comments

The results above are different from those in Berry, Linton and Pakes (2004) because here we assume
that M → ∞ and maxm Jm is finite, whereas there S = 0, N = ∞, M = 1, J1 → ∞. So our results
neither imply nor are implied by those there.

G Miscellanea

G.1 Weight matrix is block-diagonal

Note that the expectation of the score of log L̂ given x, ξ is for γ = [βᵀ, θᵀ, δᵀ]ᵀ under random
sampling equal to

E
(

M∑
m=1

Nm∑
i=1

Dim

Jm∑
j=0

Yijm
πzim
jm

∂γπ
zim
jm +

M∑
m=1

Nm∑
i=1

(1 −Dim)
Jm∑
j=0

(1 −Dim)Yijm
πjm

∂γπjm

∣∣∣∣∣ x, ξ
)

=

E
(

M∑
m=1

Nm∑
i=1

Dim∂γ

Jm∑
j=0

πzim
jm︸ ︷︷ ︸

=1

+
M∑
m=1

Nm∑
i=1

(1 −Dim)∂γ
Jm∑
j=0

πjm︸ ︷︷ ︸
=1

∣∣∣∣∣ x, ξ
)

= 0.
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