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Abstract

The empirical risk minimization approach to data-driven decision making assumes that we can learn a
decision rule from training data drawn under the same conditions as the ones we want to deploy it under.
However, in a number of settings, we may be concerned that our training sample is biased, and that some
groups (characterized by either observable or unobservable attributes) may be under- or over-represented
relative to the general population; and in this setting empirical risk minimization over the training set
may fail to yield rules that perform well at deployment. Building on concepts from distributionally robust
optimization and sensitivity analysis, we propose a method for learning a decision rule that minimizes the
worst-case risk incurred under a family of test distributions whose conditional distributions of outcomes
Y given covariates X differ from the conditional training distribution by at most a constant factor, and
whose covariate distributions are absolutely continuous with respect to the covariate distribution of the
training data. We apply a result of Rockafellar and Uryasev to show that this problem is equivalent to
an augmented convex risk minimization problem. We give statistical guarantees for learning a robust
model using the method of sieves and propose a deep learning algorithm whose loss function captures
our robustness target. We empirically validate our proposed method in simulations and a case study
with the MIMIC-III dataset.

1 Introduction

When learning a data-driven decision rule, sampling bias in the data collection process may prevent prac-
titioners from accessing training data from the distribution that they intend to deploy the rule on. The
performance of a learned decision rule may suffer when deployed on populations that differ from the pop-
ulation its training data was drawn from. For example, suppose a practitioner plans to deploy a decision
rule across the country but only has data from a handful of states; they may need to reason about how
findings from one state generalize to others. Meanwhile, in randomized trials for estimating treatment ef-
fects, participants often volunteer or apply to be a part of the study: Attanasio et al. [2011] measures the
effect of a vocational training program on labor market outcomes in a randomized trial where participants
needed to apply to be a part of the study; and the effectiveness of antidepressants is typically assessed in
randomized trials involving volunteers [Wang et al., 2018]. In such studies, participants may differ from
non-participants in fundamental ways, and a decision rule based on trial data may perform poorly when
deployed on non-participants.

When learning a data-driven decision rule, practitioners typically select the rule that minimizes the risk
incurred on the training data. Formally, we suppose that the practitioner observes i.i.d. samples (X,Y )
from the training distribution P , where X ∈ X is the observed covariate vector and Y ∈ Y is the outcome.
Given decision rules h and a loss function L(h(X), Y ), the practitioner aims to compute

argmin
h

EP [L(h(X), Y )] . (1)

However, a decision rule that satisfies (1) is not guaranteed to perform well on test distributions Q that differ
from P , which may arise under sampling bias. The test distribution may differ from the training distribution
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along the observable covariates X. Furthermore, if there exists an unobserved covariate vector U ∈ U that
affects the outcome Y and the distribution of U changes from train-time to test-time, then the conditional
distribution of Y given X of Q will differ from that of P . In this work, we propose a method for learning
decision rules that are robust to these shifts.

Many previous works on learning models that are robust to unknown distribution shift apply distribu-
tionally robust optimization (DRO) [Ben-Tal et al., 2013]. The goal of DRO is to minimize the worst-case
risk over a family of plausible test distributions S (the robustness set), i.e.

argmin
h

sup
Q∈S

EQ [L(h(X), Y )] . (2)

In this work, we also adopt the DRO framework. To construct our robustness sets, we take inspiration from
previous works in the sensitivity analysis literature [Andrews and Oster, 2019, Dorn et al., 2021, Nie et al.,
2021, Yadlowsky et al., 2018], which studies the robustness of causal conclusions drawn from observational
data to selection bias. In sensitivity analysis, the statistician assumes a sensitivity model, which places
assumptions on the selection bias, and analyzes how the causal conclusions are affected by the assumed
selection bias. Motivated by the widely-adopted Γ-marginal sensitivity model of Tan [2006], which assumes
uniform upper and lower bounds on the amount of selection bias, we define our robustness sets with upper
and lower bounds on the likelihood ratio between the conditional test and conditional train distributions. In
particular, we consider robustness sets SΓ(P,QX), where Q ∈ SΓ(P,QX) if Q has conditional distribution
of Y given X that differs from the conditional distribution of P by at most a factor, so for some Γ > 1,

Γ−1 ≤
dQY |X=x(y)

dPY |X=x(y)
≤ Γ, ∀x ∈ X , y ∈ Y, (3)

and marginal distribution equal to QX .
The main contribution of this work is a method for solving

argmin
h

sup
Q∈SΓ(P,QX)

EQ [L(h(X), Y )] (4)

for any distribution QX that is absolutely continuous to PX . We show that the solution to the following risk
minimization problem

(h∗Γ, α
∗
Γ) = argmin

h,α
EP
[
LΓ

RU(h(X), α(X), Y )
]
, (5)

featuring data drawn from the training distribution P and a particular loss function LΓ
RU, also solves (4) for

any distribution QX that is absolutely continuous with respect to PX . We call the minimization problem
in (5) Rockafellar-Uryasev (RU) Regression and LΓ

RU the RU loss because we derive them from the results
of Rockafellar and Uryasev [2000]. A notable aspect of our proposed method is that it does not require any
knowledge of QX because it relies on the fact that the minimization of the worst-case risk over a sufficiently
flexible class of functions is equivalent to minimization of the conditional worst-case risk for every x ∈ X .

The remainder of the paper investigates RU Regression theoretically and empirically. In Section 3.1, we
demonstrate useful properties of the population RU risk, including convexity, differentiability, existence and
uniqueness of the minimizer, and strong convexity around the minimizer. In Section 3.2, these properties
enable us to derive estimation guarantees using the method of sieves [Geman and Hwang, 1982]. Furthermore,
the useful properties of the population RU risk also suggest that for practical implementation, the problem
in (5) can be solved via stochastic gradient descent. As a result, we propose to perform the optimization
in (5) by joint-training of neural networks, one for each of h and α, with the RU loss as the objective. In
Section 4, we validate our approach in simulations and a case study with the MIMIC-III dataset [Johnson
et al., 2016a].

1.1 Related Work

The DRO framework is widely used for learning models that are robust to unknown distribution shift [Duchi
and Namkoong, 2021, Duchi et al., 2020, Hu et al., 2018, Michel et al., 2022, Mohajerin Esfahani and Kuhn,
2018, Oberst et al., 2021, Oren et al., 2019, Sagawa et al., 2019, Thams et al., 2022]. Previous works that
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apply DRO for learning robust models typically specify a robustness set of interest and provide a method
for either evaluating the worst-case risk over the set, learning the solution that minimizes the worst-case risk
over the set, or both. These works vary in how they define the robustness set and whether they consider
robustness sets over the conditional distribution of Y given X, the marginal distribution over X, or the joint
distribution over (X,Y ).

Most of the previous works on learning models that are robust to unknown distribution shift limit the
extent to which the joint distribution over (X,Y ) can shift [Duchi and Namkoong, 2021, Duchi et al., 2020,
Hu et al., 2018, Michel et al., 2022, Mohajerin Esfahani and Kuhn, 2018, Oren et al., 2019, Sagawa et al.,
2019]. Duchi and Namkoong [2021] consider f -divergence balls about the joint training distribution as the
robustness sets. Duchi et al. [2020] propose marginal -DRO, predominantly focusing on the setting where the
conditional distribution of Y given X is fixed and the robustness set bounds the amount of covariate shift.
Similar to other works that directly place restrictions on the deviations from the joint training distribution,
marginal-DRO implicitly limits the amount of shift in the joint distribution by holding the conditional
distribution fixed. Hu et al. [2018], Oren et al. [2019], Sagawa et al. [2019] consider group-DRO, where
the joint training distribution is a mixture of m groups and each group g ∈ [m] has a corresponding joint
distribution Pg and the robustness set consists of all mixtures of these distributions. Michel et al. [2022]
model the robustness set by parametrizing the likelihood ratio between the joint training distribution and
the worst-case distribution. Mohajerin Esfahani and Kuhn [2018] consider Wasserstein balls about the joint
training distribution as the robustness sets. In contrast, the robustness sets that we propose restrict the
amount of shift in the conditional distribution but potentially allow for large deviations from the joint
training distribution. By directly placing constraints on the conditional distribution, the worst-case risk
minimization problem in (4) can be solved conditionally for every x ∈ X , resulting in a solution that is
agnostic to almost arbitrary covariate shift. Our target problem (4) and results are closely related to those
of Duchi and Namkoong [2021] and Duchi et al. [2020], and we discuss these connections in Section 2.1.

Also related to our work, Oberst et al. [2021], Thams et al. [2022] consider distribution shifts that arise
from changes in the conditional distribution. Oberst et al. [2021] focuses on learning linear models that are
robust to changes in the distribution of unobserved variables of bounded magnitude using noisy proxies for
the unobserved variables. Thams et al. [2022] proposes a method for evaluation of the worst-case loss under
a parametric robustness set, which consists of interpretable shifts in the distribution of observed variables.
Both of these works make more fine-grained assumptions about the distribution shift, such as access to proxy
variables or parametric shifts, while our shift model is nonparametric and may be viewed as more pessimistic.

Nevertheless, our shift model is based on the Γ-marginal sensitivity model [Tan, 2006], which is used
for modeling selection bias due to unmeasured confounding in causal inference. The Γ-marginal sensitivity
model and its extensions are used by many previous works that aim to study the sensitivity of causal
inference when treatment assignments may depend on unobserved confounders [Andrews and Oster, 2019,
Dorn et al., 2021, Jin et al., 2022, Nie et al., 2021, Yadlowsky et al., 2018]. These previous works focus
on obtaining partial identification bounds for treatment effects (i.e., the bound of argminh EQ [L(h(X), Y )])
under the Γ-sensitivity model, whereas we aim to develop decision rules with performance guarantees that
are as good as possible across deployment environments that may differ from the training environment across
unobservables.

The broader literature on data-driven decision making has been active in recent years, including contri-
butions from Athey and Wager [2021], Bertsimas and Kallus [2020], Elmachtoub and Grigas [2022], Foster
and Syrgkanis [2019], Kallus and Zhou [2021], Kitagawa and Tetenov [2018], Manski [2004], Nie and Wager
[2021], Stoye [2009], Swaminathan and Joachims [2015] and Zhao et al. [2012]. A recurring theme of this
line of work is in choosing loss functions L(·) that capture relevant aspects of various decision tasks. De-
pending on the setting, these loss functions may directly reflect the decision maker’s incurred loss [Bertsimas
and Kallus, 2020], leverage implicit representations via importance weighting [Kitagawa and Tetenov, 2018,
Swaminathan and Joachims, 2015], or even rely on pre-computed estimates of nuisance components [Athey
and Wager, 2021, Foster and Syrgkanis, 2019]. Our results pair naturally with this line of work, in that
our approach can be applied with generic loss functions to learn decision rules that are robust to potential
test/train bias. We also draw attention to Kallus and Zhou [2021], who consider learning optimal treatment
rules from confounded data, i.e., where the “treated” and “control” samples available for training may be
biased according to unobservable attributes. Our work is related to that of Kallus and Zhou [2021] in that
we both consider using robust optimization techniques to learn from data potentially corrupted via biased
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sampling; however, the type of bias we consider (test/train vs. treatment/control), and resulting algorithmic
and conceptual remedies, are different.

2 Robustness to Unknown Distribution Shifts

In this section, we formally specify the distribution shifts we consider and our goal of learning a decision
rule that is robust to these shifts. Next, we show that learning the robust decision rule is equivalent to an
augmented risk minimization problem, motivating the use of modern machine learning techniques for finding
the robust decision rule. Finally, we conclude the section with how our setup relates to previously studied
DRO problems.

We consider the general loss minimization setting. We have access to i = 1, . . . n covariate-outcome pairs
(Xi, Yi) ∈ X × Y, where X × Y ⊂ Rd × R , drawn independently from a distribution P , i.e., (Xi, Yi) ∼ P.
Given a loss function L(ŷ, y), we seek to learn a decision rule h : X → Y such that it achieves low loss
L(h(X), Y ). At test-time, the data (X,Y ) is distributed following a shifted distribution Q, which may differ
from P . We do not know Q. However, following the Γ-marginal sensitivity model [Tan, 2006], we assume
that there exists Γ > 1 such that

Γ−1 ≤
dQY |X=x(y)

dPY |X=x(y)
≤ Γ, ∀x ∈ X , y ∈ Y. (6)

In other words, we assume that QY |X may be shifted by up to a factor of Γ from PY |X . Then, for any
marginal covariate distribution QX , let SΓ(P, QX) denote the set of all distributions Q that both satisfy the
constraint (6) and have marginal distribution over X equal to QX . Given any choice of QX , the Γ-sensitivity
model motivates targeting a robust decision rule

h∗QX ,Γ ∈ argmin
h∈L2(PX ,X )

sup
{
EQ [L(h(X), Y )] : Q ∈ SΓ(P, QX)

}
, (7)

where L2(PX , X ) denotes the space of square-integrable measurable functions with respect to PX .
The formulation (7) may look challenging to use as the basis for a practical approach to learning. First,

it is formulated in terms of the marginal distribution QX which may sometimes be known [e.g., Nie et al.,
2021], but often is not known. Second, the optimization problem (7) has a min-max form that is not
obviously amenable to statistical learning. However, as shown below, both of these concerns can be resolved:
There exists a single function h∗Γ that solves the problem (7) simultaneously for any QX that is absolutely
continuous with respect to PX , and furthermore this h∗Γ can be characterized as the minimizer of a convex
loss defined in terms of the observed data distribution P . Specifically, we show the following.

Theorem 1. Suppose that (X, Y ) ∈ X ×Y are drawn i.i.d. with respect to a distribution P for some X ⊆ Rd
and Y ⊆ R. Let L(z, y) be a loss function that is convex in z for any y ∈ Y, and let Γ > 1. Then the
following augmented loss function,

LΓ
RU(z, a, y) = Γ−1L(z, y) + (1− Γ−1)a+ (Γ− Γ−1)(L(z, y)− a)+, (8)

is convex is (z, a) for any y ∈ Y. Furthermore, any solution

{h∗Γ, α∗Γ} ∈ inf
(h, α)∈L2(PX ,X )×L2(PX ,X )

EP
[
LΓ
RU(h(X), α(X), Y )

]
(9)

is also a solution to (7) for any QX that is absolutely continuous with respect to PX , i.e., QX � PX . Proof
in Appendix C.3.

We name the loss function in (8) the Rockafellar-Uryasev (RU) loss and the minimization problem in (9)
RU Regression because they are derived from the results in Rockafellar and Uryasev [2000]. We sketch the
proof of Theorem 1 here. First, we define notation that is used in the proof sketch, as well as the remainder
of the paper. Let Fx;h(x)(z) be the c.d.f. of L(h(x), Y ), where Y is distributed according to PY |X=x. So,
Fx;h(x)(z) is the distribution over the conditional losses when X = x. Define the function qLη (x;h(x)) to be
the η-th quantile of distribution over the conditional losses when X = x, i.e.

qLη (x;h(x)) = F−1
x;h(x)(η). (10)
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Also, define

η(Γ) =
Γ

Γ + 1
. (11)

Now, we proceed with the main proof. Convexity of LΓ
RU follows immediately using the standard rules

for composing convex function. We focus on the second claim of Theorem 1. Crucially, we realize that
minimizing the worst-case loss in (7) is equivalent to minimizing the worst-case loss conditionally for each
x ∈ X ,

min
h(x)∈R

sup
{
EQY |X [L(h(x), Y ) | X = x] : Q ∈ SΓ(P,QX)

}
. (12)

Given our sensitivity model (6), the Neyman-Pearson Lemma yields that

sup{EQY |X [L(h(X), Y ) | X = x] : Q ∈ SΓ(P,QX)}

= EPY |X
[
L(h(X), Y )

(
Γ−1 + (Γ− Γ−1)I(L(h(X), Y ) ≥ qLη(Γ)(X;h(X))

)
| X = x

]
.

(13)

So, for each x ∈ X , our conditional risk minimization problem in (12) can be written as

min
h(x)∈R

EPY |X
[
L(h(x), Y )

(
Γ−1 + (Γ− Γ−1)I(L(h(x), Y ) ≥ qLη(Γ)(X;h(x))

)
| X = x

]
. (14)

We realize that the objective in (14) is closely related to the conditional value-at-risk (CVaR) [Rockafellar
and Uryasev, 2000], which is widely considered in the finance literature. For a continuous random variable
W with quantile function (inverse c.d.f.) qW and η ∈ (0, 1), the η-CVaR of W is given by

CVaRη(W ) = E [W |W ≥ qW (η)] .

As a result, we can show that (14) can be re-expressed as

min
h(x)∈R

Γ−1EPY |X [L(h(x), Y ) | X = x] + (1− Γ−1) · CVaRη(Γ)(L(h(x), Y )). (15)

From Rockafellar and Uryasev [2000], computing the CVaR itself can be formulated as an optimization
problem. In particular,

CVaRη(Γ)(L(h(x), Y )) = min
α(x)∈R

α(x) +
1

1− η(Γ)
EPY |X [(L(h(x), Y )− α(x))+|X = x] , (16)

and the solution to the joint optimization problem

min
h(x),α(x)∈R

Γ−1 · EPY |X [L(h(x), Y ) | X = x]

+ (1− Γ−1) ·
(
α(x) +

1

1− η(Γ)
EPY |X [(L(h(x), Y )− α(x))+|X = x]

) (17)

also solves (15). By the definition of LΓ
RU in (8), the joint optimization problem in (17) can be written as

min
h(x),α(x)∈R

EPY |X
[
LΓ

RU(h(x), α(x), Y ) | X = x
]
. (18)

Lastly, functions h∗Γ, α
∗
Γ that for every x ∈ supp(PX) solve (18) also solve (9).

Now, we can show that h∗Γ solves (7) for any QX that is absolutely continuous to PX . Let T be any set
with nonzero measure with respect to QX . Then T must also have nonzero measure with respect to PX
because QX � PX . So, for any h ∈ L2(QX ,X )

sup
QY |X :Q∈SΓ(P,QX)

EQY |X [L(h∗Γ(X), Y ) | X ∈ T ] ≤ sup
QY |X :Q∈SΓ(P,QX)

EQY |X [L(h(X), Y ) | X ∈ T ]

for any set T with nonzero measure with respect to QX . This is sufficient to show that h∗Γ is a solution to
(7) for any QX � PX .
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Thus, we can show that our robust optimization problem in (7) can be formulated as (9), a risk mini-
mization problem under the training distribution P that involves learning an auxiliary function α along with
the decision rule h.

A key aspect of RU Regression is that the optimal decision rule is agnostic to the test covariate distribution
QX as long as it is absolutely continuous with respect to the training covariate distribution PX . This is
because we propose to learn the minimizer of the worst-case loss conditionally for every x ∈ X . So, the
minimizer is a conditional quantity. We can simply study (9) to learn a decision rule that is robust to
conditional shifts of the form in (6) and almost arbitrary covariate shifts.

In order for conditional risk minimization to be equivalent to the population risk minimization, we require
the decision rule h and auxiliary function α to come from a flexible class, such as L2(PX ,X ). For practical
implementation, in Section 4, we propose to use joint optimization of deep neural networks to learn the
solution of (9). We will use one neural network to represent h and another neural network to represent α
and train the networks with the RU loss using a standard optimization algorithm, such as stochastic gradient
descent or its variants.

2.1 Connections to Other DRO Frameworks

At a high level, our approach to learning decision rules under unknown conditional shifts is an instance of
DRO [Ben-Tal et al., 2013]. We draw connections between our work and related works that also use the
DRO framework to address distribution shift and point out subtleties of our shift model that require new
results.

Duchi and Namkoong [2021] consider worst-case shifts in the joint distribution over (X,Y ) and robustness
sets that are f -divergence balls about the training distribution P ; they propose to solve

argmin
h

sup
{
EQ [L(h(X), Y )] : Df (Q|P ) ≤ ρ

}
, Df (Q|P ) =

∫
f
(dQ
dP

)
dP, (19)

where Df is an f -divergence. Clearly, this problem is similar to (7), but we outline some key differences.
One difference between our DRO problem (7) and (19) is the robustness sets that are considered in each

problem. To cast (6) as a constraint of the form Df (Q|P ) ≤ ρ, we would need to consider an “improper”
f -divergence, i.e. with

f(z) =

{
0 Γ−1 ≤ z ≤ Γ

∞ else
. (20)

The fact that this function is discontinuous and unbounded means that the formal results (and proof strate-
gies) of Duchi and Namkoong [2021] cannot be applied in our setting.

A second difference between our DRO problem (7) and the problem in (19) is that (7) involves constraints
on the distribution shift that hold conditionally on x, as arises naturally from our motivating problem (and
also in the work of Dorn et al. [2021], Jin et al. [2022], Nie et al. [2021], Yadlowsky et al. [2018]). Constrain-
ing conditional shifts simultaneously for every x results in a substantially more complicated optimization
problem, requiring more delicate methods and analysis. For example, Levy et al. [2020] proposes a mini-
batch gradient-descent algorithm for learning the solution to (19); however, this algorithm cannot be used
with conditional constraints (unless one can gather multiple observations for every x, which is impossible for
continuous-valued x).

Lastly, our result in Theorem 1 resembles the dual formulation of the problem (19) from Duchi and
Namkoong [2021]:

argmin
h

inf
λ,η≥0

{
EP
[
λf∗

(L(h(X), Y )− η
λ

)]
+ λρ+ η

}
, (21)

where f∗ is the Fenchel conjugate of f . Similar to (9), (21) is an augmented risk minimization prob-
lem. Nevertheless, our method, which entails jointly optimizing over the arguments of the augmented risk
minimization problem, to our knowledge, has not been considered in the literature. In fact, comments
in Namkoong and Duchi [2016] suggest that analogous algorithms would be ill-conditioned with general
f -divergences due to the dependence on λ−1 in the first term. Nevertheless, for the improper function f
defined in (20), f∗(u) = Γ(u)+−Γ−1(u)−. It is not hard to see that λ can be removed from the optimization
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problem (21). So, our approach exploits special structure in our distribution shift model that is not present
in the problems studied in Duchi and Namkoong [2021].

Duchi et al. [2020] also applies the DRO framework and is very related to our work. They use DRO to
learn a model that is robust to worst-case shifts in the marginal distribution over X while the conditional
distribution of Y given X is held fixed. They consider a set of plausible subpopulations

Pα0,X := {QX,0 : PX = αQX,0 + (1− α)QX,1 for some α ≥ α0, distribution QX,1 on X} (22)

and aim to minimize the worst-case subpopulation risk

min
h

sup
QX,0∈Pα0,X

EQX,0
[
EPY |X [L(h(X), Y ) | X]

]
. (23)

The constraint on the allowable covariate shifts given in (22) is equivalent to requiring that 0 ≤ dQX,0(x)
dPX(x) ≤

1
α0

for all x ∈ X , which is similar to the bounds on the likelihood ratio between the conditional test and train
distributions we impose in (6). Nevertheless, our target problem (7) differs from (23) because (6) places
restrictions on shifts in the conditional distribution, which causes our minimization problem to be agnostic
to shifts in the covariate distribution. Notably, this relationship is not symmetric–placing restrictions on
the covariate distribution does not yield a minimization problem that is agnostic to shifts in the conditional
distribution.

3 Theoretical Guarantees

In this section, we first demonstrate useful properties of the population RU risk. We demonstrate that the
population RU risk has a unique minimizer and is strongly convex and smooth about the minimizer. These
properties enable us to obtain nonparametric estimation guarantees by applying the method of sieves in
Section 3.2.

3.1 Properties of Population RU Risk

First, we consider the problem of minimizing the population RU risk with respect to (h, α) over L2(PX ,X )×
L2(PX ,X ). We consider the following norm on this product space

||(h, α)||L2(PX ,X ) =
√
||h||2L2(PX ,X ) + ||α||2L2(PX ,X ).

Under the following two assumptions, we can show that any minimizer of the population RU risk lies in a
bounded subset of L2(PX ,X )× L2(PX ,X ).

Assumption 1. X × Y is compact.

Assumption 2. The loss function L(ŷ, y) = `(y − ŷ) for some function `(z) that is CL,l-strongly convex,
twice-differentiable and is minimized at `(0) = 0.

Since Y is bounded, Y ⊂ [−B,B]. So, we can define a bounded class of decision rules

H = {h ∈ L2(PX ,X ) | ||h||∞ ≤ 2B}.

We define a constant Mu such that

sup
h∈H,x∈X

qLη(Γ)(x;h(x)) < Mu, (24)

and note that Mu < ∞ because H is bounded and X × Y is compact. We define the bounded class A for
the auxiliary functions

A = {α ∈ L2(PX ,X ) | 0 ≤ α(x) ≤Mu ∀x ∈ X}.

Let Θ = H×A. In the following result, we show that minimizing the population RU risk over L2(PX ,X )×
L2(PX ,X ) is equivalent to minimizing the population RU risk over Θ.
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Lemma 2. Under Assumption 1, 2, if any minimizer of (h, α) 7→ EP
[
LΓ
RU(h(X), α(X), Y )

]
exists over

L2(PX ,X )× L2(PX ,X ), then it must lie in Θ. Proof in Appendix C.4.

From now on, we will only consider minimization of the population RU risk over Θ. We can show that
the population RU risk has at least one minimizer on Θ.

Lemma 3. Under Assumption 1, 2, EP
[
LΓ
RU(h(X), α(X), Y )

]
has at least one minimizer on Θ.

To show that the population RU risk is strictly convex on Θ, we make the following assumption on the
conditional distribution PY |X=x.

Assumption 3. For every x ∈ X , we assume that PY |X=x(y) is differentiable and strictly increasing in its
argument and has positive density on Y. We assume that supx∈X ,y∈R pY |X=x(y) ≤ Cp,u, where 0 < Cp,u <∞.

Lemma 4. Under Assumptions 1, 2, 3, EP
[
LΓ
RU(h(X), α(X), Y )

]
is strictly convex in (h, α) on Θ. Proof

in Appendix C.6.

As a consequence of strict convexity on Θ, the population RU risk must have at most one minimizer over
Θ. Meanwhile, Lemma 3 gives that it has at least one minimizer over Θ, as well. Combining these results
gives that the population RU risk has a unique minimizer over Θ. Because of Lemma 2, this means that the
population RU risk also has a unique minimizer over all of L2(PX ,X )× L2(PX ,X ).

Theorem 5. Under Assumptions 1, 2, 3, EP
[
LΓ
RU(h(X), α(X), Y )

]
has a unique minimizer (h∗Γ, α

∗
Γ) over

Θ. Proof in Appendix C.7.

In addition, we can develop an interpretation of α∗Γ that minimizes the population RU risk.

Lemma 6. Under Assumptions 1, 2, 3,

α∗Γ(x) = qLη(Γ)(x;h∗Γ(x)),

and there exists Ml > 0 such that
α∗Γ(x) > Ml ∀x ∈ X .

Proof in Appendix C.8.

Using Lemma 6, we can show that the population RU risk is strongly convex near the minimizer. We
define constants that will be used in the proof of strong convexity. Recall that under Assumption 2, we can
rewrite L(ŷ, y) = `(y − ŷ). Let `−1

1 be the inverse of `(z) where z > 0. Let `−1
2 be the inverse of `(z) where

z ≤ 0. Define

Ca,u := sup
i∈{1,2}

|`′(`−1
i (Mu))|, (25)

Ca,l := inf
i∈{1,2}

|`′(`−1
i (Ml))|. (26)

To define the next set of constants, we define qYc (x) to be the c-th quantile of Y where Y is distributed
according to PY |X=x.

Cp,l := inf
c∈[1− η(Γ)

2 ,1+
η(Γ)

2 ],x∈X
pY |X=x(qYc (x)), (27)

κ1 := (1− Γ−1) · CL,l · Cp,l
2Cp,u · (Ca,u · Ca,l + 1) + CL,l · Ca,l

· Ca,l
Ca,u

. (28)

Additionally, let

Ca,l,δ := inf
i∈{1,2}

|`′(`−1
i (Ml − δ))|, (29)

Cp,l,ε := inf
c∈[1− η(Γ)

2 ,1+
η(Γ)

2 ],b∈[−ε,ε],x∈X
pY |X=x(qYc (x) + b). (30)

We can show that in a || · ||∞-ball about the minimizer, the population RU loss is strongly convex, where
the constant of strong convexity approaches κ1 as the ball’s radius shrinks.
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Theorem 7. Suppose Assumptions 1, 2, 3, hold. Let Cδ = {(h, α) ∈ Θ | ||(h, α)− (h∗Γ, α
∗
Γ)||∞ < δ}, and let

0 < ε < 1−η(Γ)
2Cp,u

. There exists 0 < δ(ε) < Ml such that EP
[
LΓ
RU(h(X), α(X), Y )

]
is κ1,ε-strongly convex on

Cδ(ε), where

κ1,ε := (Γ− Γ−1)
CL,l · (1− η(Γ)− 2Cp,u · ε) · Cp,l,ε

2Cp,u · (Ca,u · Ca,l,δ(ε) + 1) + CL,l · Ca,l,δ(ε)
·
Ca,l,δ(ε)

Ca,u
. (31)

As ε→ 0,
κ1,ε → κ1.

Proof in Appendix C.9.

To show that the population RU risk is smooth in an || · ||∞-ball around the minimizer, we require an
additional assumption on the loss function L. Essentially, we need L to be CL,u-smooth for some constant
0 < CL,u <∞.

Assumption 4. The second derivative of `(z) as defined in Assumption 2 is upper bounded by CL,u, where
0 < CL,u <∞.

The constant for smoothness depends on the constant Cp,u from Assumption 3, Ca,u from (25), Ca,l,δ
from (29), and CL,u from Assumption 4. Let

κ2 := (Γ− Γ−1) ·
(

2Cp,u

(
Ca,u +

1

Ca,l

))
+ Γ · CL,u. (32)

We can show that in an || · ||∞ ball about the minimizer, the population RU risk is smooth, where the
constant for smoothness of the population RU risk approaches κ2 as the radius of the ball decreases.

Theorem 8. Suppose Assumptions 1, 2, 3, 4 hold. Let Cδ = {(h, α) ∈ Θ | ||(h, α) − (h∗Γ, α
∗
Γ)||∞ < δ}. For

every 0 < ε < 1−η(Γ)
2Cp,u

, there is 0 < δ(ε) < Ml such that EP [LRU(h(X), α(X), Y )] is κ2,ε-smooth in (h, α) on

Cδ(ε) where

κ2,ε := (Γ− Γ−1) ·
(

2Cp,u

(
Ca,u +

1

Ca,l,δ(ε)

))
+ Γ · CL,u. (33)

As ε→ 0,
κ2,ε → κ2.

Proof in Appendix C.10.

3.2 Estimation Guarantees via Method of Sieves

To simplify notation, we denote θ := (h, α) and rewrite the population RU risk as EP
[
LΓ

RU(θ(X), Y )
]
. The

empirical risk is accordingly

ÊP
[
LΓ

RU(θ(X), Y )
]

=
1

n

n∑
i=1

LΓ
RU(θ(Xi), Yi). (34)

In addition, we will denote the minimizer of the population RU risk as simply θ∗ := (h∗Γ, α
∗
Γ), omitting the

dependence on Γ.
Thus far, we have demonstrated that θ∗ is the minimizer of the population RU risk over the infinite-

dimensional space Θ. In practice, we aim to minimize the empirical RU loss (34). However, due to the
computational difficulties of estimating infinite-dimensional models using finite-samples, we do not minimize
the empirical risk over Θ directly. Instead, we apply the method of sieves [Geman and Hwang, 1982]; we
consider optimizing the empirical risk over an increasing sequence of sieves Θ1 ⊆ Θ2 ⊆ · · · ⊆ Θ, which are
finite-dimensional parameter spaces. The sieves we consider have the property that infθ∈Θm ||θ− θ∗||∞ → 0
as m→∞. To ensure consistency, we increase the complexity of the sieves with the sample size. We let

θ̂n = argmin
θ∈Θn

ÊP
[
LΓ

RU(θ(X), Y )
]
.
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To estimate h, it is sufficient to consider sieves that consist functions bounded between −2B and 2B. To
estimate α, it is sufficient to consider sieves that consist of nonnegative, bounded functions because any
minimizer of the population RU risk has 0 ≤ α∗(x) ≤ Mu for all x ∈ X . In order to make our sieve-based
estimates h(x), α(x) be bounded, we use the same strategy as in Jin et al. [2022]; we truncate standard
sieve space to bounded functions. The following two natural examples of truncated sieve spaces were also
discussed by Jin et al. [2022]:

Example 1 (Polynomials). Let Pol(Jn) be the space of polynomials on [0, 1] of degree Jn or less; that is

Pol(Jn) =
{
x 7→

Jn∑
k=0

akx
k, x ∈ [0, 1] : ak ∈ R

}
.

Let Pol(Jn, a, b) be the space of polynomials on [0, 1] of degree Jn or less that are bounded between a and
b; that is

Pol(Jn, a, b) =
{
x 7→ min(max(f(x), a), b), x ∈ [0, 1] : f ∈ Pol(Jn)

}
.

Then, we define the sieve with truncation as Θn = Hn × An, where Hn = {x 7→
∏d
k=1 fk(xk) : fk ∈

Pol(Jn,−2B, 2B), k = 1, . . . d} and An = {x 7→
∏d
k=1 fk(xk) : fk ∈ Pol(Jn, 0,Mu)} for Jn → ∞. We can

also define the sieve without truncation as Θ̃n = H̃n × Ãn, where H̃n = {x 7→
∏d
k=1 fk(xk) : fk ∈ Pol(Jn)}

for Jn →∞ and Ãn = {x 7→
∏d
k=1 fk(xk) : fk ∈ Pol(Jn)} for Jn →∞.

Example 2 (Univariate Splines). Let Jn be a positive number, and let t0, t1, . . . tJn , tJn+1 be real numbers
with 0 = t0 < t1 < . . . tJn < tJn+1 = 1. Partition [0, 1] into Jn+1 subintervals Ij = [tj , tj+1), j = 0, . . . Jn−1
and IJn = [tJn , tJn+1]. We assume that the knots t1, t2 . . . tJn have bounded mesh ratio:

max0≤j≤JN (tj+1 − tj)
min0≤j≤Jn(tj+1 − tj)

≤ c for some constant c > 0.

Let r ≥ 1 be an integer. A spline of order r with knots t1 . . . tJn is given by

Spl(r, Jn) =
{ r−1∑
k=0

akx
k +

Jn∑
j=1

bj [max{x− tj , 0}]r−1, x ∈ [0, 1] : ak, bj ∈ R}.

Let Spl(r, Jn, a, b) be the space of splines that are bounded between a and b; that is

Spl(r, Jn, a, b) =
{
x 7→ min(max(f(x), a), b), x ∈ [0, 1] : f ∈ Spl(r, Jn)

}
.

Then, we define the sieve with truncation as Θn = Hn × An, where Hn = {x 7→
∏d
k=1 fk(xk) : fk ∈

Spl(r, Jn,−2B, 2B), k = 1, . . . d} and An = {x 7→
∏d
k=1 fk(xk) : fk ∈ Spl(r, Jn, 0,Mu)} for Jn →∞. We can

also define the sieve without truncation as Θ̃n = H̃n×Ãn, where H̃n = {x 7→
∏d
k=1 fk(xk) : fk ∈ Spl(r, Jn)}

for Jn →∞ and Ãn = {x 7→
∏d
k=1 fk(xk) : fk ∈ Spl(r, Jn)} for Jn →∞.

We prove results that demonstrate the consistency of the sieve estimation procedure. Let

θ∗m = argmin
θ∈Θm

EP
[
LΓ

RU(θ(X), Y )
]
. (35)

First, we show that θ∗m is the unique minimizer of the population RU risk over the sieve space Θm. Then,
we prove that the sieve approximation error, the bias that results from minimizing the population RU risk
over a finite-dimensional sieve space, converges to zero as the dimension of the sieve spaces goes to infinity.
Then, we consider θ̂m,n, the minimizer of the empirical risk over Θm, i.e.

θ̂m,n = argmin
θ∈Θm

ÊP
[
LΓ

RU(θ(X), Y )
]

for a sufficiently large integerm. We can show that the estimation error, the error that results from estimating
the minimizer of the empirical risk (in finite samples) in a fixed sieve space, converges to zero in probability.
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Lemma 9. Under Assumptions 1, 2, 3, EP
[
LΓ
RU(θ(X), Y )

]
has a unique minimizer over Θm called θ∗m.

Proof in Appendix C.11

Theorem 10. Under Assumptions 1, 2, 3, as m→∞,

||θ∗m − θ∗||L2(PX ,X ) → 0.

Proof in Appendix C.12

Lemma 11. Under Assumptions 1, 2, 3, θ̂m,n exists with probability approaching 1 and

θ̂m,n
p−→ θ∗m

as n→∞ and m sufficiently large. Proof in Appendix C.13.

Combining Theorem 10 and Lemma 11 implies the consistency of the sieve estimation procedure: as
m,n→∞,

||θ̂m,n − θ∗||L2(PX ,X ) ≤ ||θ̂m,n − θ∗m,n||L2(PX ,X ) + ||θ∗m,n − θ∗||L2(PX ,X )
p−→ 0.

To obtain a rate of convergence, we consider the classes of sufficiently smooth functions. Given a d-tuple
β = (β1, . . . βd) of nonnegative integers, set [β] = β1 + β2 + · · · + βd and let Dβ denote the differential

operator defined by Dβ = ∂[β]

∂x
β1
1 ...∂x

βd
d

. A real-valued function h on X is p-smooth if it is m times continuously

differentiable on X and Dβh satisfies a Hölder condition (Definition 3) with exponent γ for all d-tuples β of
nonnegative integers with [β] = m. Denote the Hölder class, or the class of all p-smooth real-valued functions
on X , by Λp(X ), and the space of all m-times differentiable real-valued functions on X by Cm(X ). Define a
Hölder ball with smoothness p = m+ γ as

Λpc(X ) =
{
h ∈ Cm(X ) : sup

[β]≤m
sup
x∈X
|Dβh(x)| ≤ c, sup

[β]=m

sup
x,y∈X ,
x6=y

|Dβh(x)−Dβh(y)|
|x− y|γ2

≤ c
}
.

To ensure that h, α are bounded, we define the truncated function class

Λpc(X , a, b) := {x 7→ min(max(f(x), a), b), f ∈ Λc(X )}.

To obtain a rate of convergence for the estimators, we impose the following assumption on the true optimizer.

Assumption 5. Assume that θ∗ ∈ Λpc(X ,−2B, 2B) × Λpc(X , 0,Mu) for some c > 0. We redefine Θ :=
Λpc(X ,−2B, 2B)× Λpc(X , 0,Mu).

We also required that the second moment of Y , where Y is distributed following PY |X=x, is bounded for
all x ∈ X .

Assumption 6. We assume that supx∈X EPY |X
[
Y 2 | X = x

]
<∞.

In addition, we require the following condition on the density of PX .

Assumption 7. PX has a density that is bounded away from 0 and ∞, i.e. 0 < infx∈X pX(x) <
supx∈X pX(x) <∞ for all x ∈ X .

Under this last assumption, || · ||L2(PX ,X ) � || · ||L2(λ,X ), where λ is the Lebesgue measure. Finally, with
these assumptions, we can apply a result from Chen [2007] to show the following rate of convergence. The
proof of the result requires balancing the sieve approximation error and estimation error. To get a handle
on the sieve approximation error, we use the result from Timan [2014] that for the sieves Θ̃Jn in Example 1
and 2 and θ∗ ∈ Λpc(X )× Λpc(X ) for X compact,

inf
θ∈Θ̃Jn

||θ − θ∗||∞ = O(J−pn ).

Theorem 12. Let Jn = ( n
logn )

1
2p+d . Under Assumptions 1, 2, 3, 4, 5, 6, 7,

||θ̂n − θ∗||L2(PX ,X ) = OP

(( log n

n

) p
2p+d

)
.

Proof in Appendix C.14.
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4 Experiments

We evaluate the empirical performance of RU Regression when neural networks are used to learn h, α.
First, we demonstrate that RU Regression enables us to learn models that are robust to conditional shifts in
simulation experiments with synthetic data. Second, we apply RU Regression in a semi-synthetic distribution
shift experiment with patient length-of-stay data from the MIMIC-III dataset Johnson et al. [2016a]. The
code for our experiments is available in https://github.com/roshni714/ru_regression.

4.1 Simulations with Synthetic Data

We perform two simulations with synthetic data. We first consider a one-dimensional toy example because it
permits visualization of the data distributions and the learned models. Next, we show that similar trends hold
in a high-dimensional simulation. Implementation details for these experiments can be found in Appendix
A.

4.1.1 Methods

We compare the following three baselines.

1. Standard ERM - We fit a neural network model with the squared loss function

L(ŷ, y) = (y − ŷ)2 (36)

on the training data.

2. Oracle ERM - We fit a neural network model with the squared loss function (36) on data sampled from
the test distribution.

3. Rockafellar-Uryasev Regression (RU Regression) - We fit two neural networks with the RU loss function,
where one network learns h and the other network learns α, on the training data. We set L to the
squared loss function (36). A visualization for the model architecture is provided in Figure 3 in
Appendix A.

The Standard ERM and RU Regression methods are not necessarily trained on data from the same distribu-
tion as the test distribution (see further details in Section 4.1.2 and Section 4.1.3). The Oracle ERM method
is used to provide an upper bound on the performance of Standard ERM and RU Regression because it is
trained on the same distribution as the test distribution.

4.1.2 One-Dimensional Toy Example

Data Generation. We generate a synthetic dataset of samples of the form (Xi, Yi, Ui), where Xi ∈ R
represents observed covariates, Yi ∈ R represents the outcome, and Ui ∈ {0, 1} represents an unobserved
variable that influences the outcome Yi. We suppose the data is distributed as follows

Xi ∼ Uniform[0, 10], Ui ∼ Bernoulli(p), Yi|Xi ∼ N(
√
Xi + Ui(3

√
Xi + 1), 1). (37)

The outcomes Yi can be clustered into two bands corresponding to Ui = 1 and Ui = 0, respectively. In
this simulation, we consider distribution shift that results from varying p, the probability that Ui = 1. We
suppose that in the training distribution p = 0.2, so we are less likely to observe examples with Ui = 1. At
test-time, we evaluate the learned models on data distributions where p ∈ [0.1, 0.2, 0.5, 0.7, 0.9]. These data
distributions are visualized in Figure 1.
Results. From Table 1, Standard ERM achieves low test MSE on test distributions that are similar to the
training distribution p ∈ [0.1, 0.2]. However, the test MSE of Standard ERM increases as p increases. The RU
Regression methods achieve higher test MSE on the original training distribution than Standard ERM but
are more robust than Standard ERM as p increases. Note that Oracle ERM outperforms both the Standard
ERM and RU Regression methods; this is expected because the Oracle ERM model is trained on data from
the same distribution as the test distribution. We note that RU Regression matches the performance of the
Oracle ERM model when p = 0.5.
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Figure 1: From left to right, we visualize the distribution over (Xi, Yi) as p varies in [0.1, 0.2, 0.5, 0.7, 0.9].
We note that as p increases the proportion of samples where Ui = 1 increases.
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Figure 2: Left: We visualize the decision rules ĥ that are learned in our one-dimensional toy example.
Standard ERM incurs low error on samples with Ui = 0 but high error on samples with Ui = 1. Models
learned via RU Regression incur lower error on samples with Ui = 1. The Oracle ERM model visualized
here is the model that is trained on the data distribution when p = 0.5. Right: We visualize the auxiliary
function α̂Γ that is learned in the RU Regression methods for our one-dimensional toy example. We realize
that the learned α̂Γ closely tracks qLη(Γ)(x; ĥΓ(x)) as expected.

In addition, we visualize the regression functions learned from each of the methods. From the left plot of
Figure 2, it is clear that the regression model learned via Standard ERM incurs high error on samples with
Ui = 1 and low error on samples with Ui = 0, which explains why the method performs poorly on distributions
with higher p (higher proportion of samples with Ui = 1). Furthermore, we observe that increasing Γ yields
regression functions that incur lower error on samples with Ui = 1, relative to the Standard ERM model.
The Oracle ERM model visualized in Figure 2 is the model that is trained on data generated when p = 0.5.
We see that this model makes similar predictions as the RU Regression models, which explains why the RU
Regression models perform similarly to the Oracle ERM model on the p = 0.5 test distribution.

Furthermore, we verify that the solution learned by the neural network is consistent with Theorem 6,
which states that

α∗Γ(x) = qLη(Γ)(x;h∗Γ(x)) ∀x ∈ X .

For each RU Regression method, we plot the function α̂Γ(x) learned by the neural network. In addition,

with access to the data generating process, we can explictly compute the function qLη(Γ)(X; ĥΓ(X)). In the

right plot of Figure 2, we observe that α̂Γ closely matches qLη(Γ)(X; ĥΓ(X)) across the possible values of X.

4.1.3 High-Dimensional Experiment

Data Generation. We generate a synthetic dataset of samples of the form (Xi, Yi, Ui), where Xi ∈ Rd
represents observed covariates, Yi ∈ R represents the outcome, and Ui ∈ {0, 1} represents an unobserved
variable that influences the outcome Yi. Since we aim to consider a high-dimensional example, we set d = 16.
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Method Test MSE
p = 0.1 p = 0.2 p = 0.5 p = 0.7 p = 0.9

Standard ERM 6.939 ± 0.174 10.480 ± 0.126 20.866 ± 0.304 27.880 ± 0.484 34.913 ± 0.668
RU Regression

10.074 ± 0.247 11.846 ± 0.138 17.029 ± 0.236 20.522 ± 0.308 24.046 ± 0.540
(Γ = 2)

RU Regression
12.456 ± 0.431 13.388 ± 0.309 16.093 ± 0.179 17.898 ± 0.300 19.750 ± 0.584

(Γ = 4)
RU Regression

13.419 ± 0.306 14.057 ± 0.255 15.895 ± 0.133 17.119 ± 0.143 18.388 ± 0.304
(Γ = 8)

RU Regression
13.613 ± 0.400 14.197 ± 0.308 15.873 ± 0.140 16.983 ± 0.262 18.142 ± 0.480

(Γ = 16)
Oracle ERM 6.306 ± 0.187 10.480 ± 0.126 15.743 ± 0.152 13.341 ± 0.123 6.274 ± 0.176

Table 1: Results from the one-dimensional simulation experiment. We report the mean and standard
deviation of the test MSE from 6 random trials, where the randomness is over the dataset generation.
Standard ERM incurs high test MSE for high values of p. RU Regression is more robust to deviations from
the training distribution than Standard ERM. RU Regression matches the performance of Oracle ERM at
p = 0.5.

Method Test MSE
p = 0.1 p = 0.2 p = 0.5 p = 0.7 p = 0.9

Standard ERM 0.028 ± 0.000 0.043 ± 0.000 0.088 ± 0.002 0.118 ± 0.002 0.148 ± 0.003
RU Regression

0.041 ± 0.002 0.049 ± 0.001 0.071 ± 0.001 0.086 ± 0.003 0.100 ± 0.004
(Γ = 2)

RU Regression
0.054 ± 0.008 0.057 ± 0.006 0.067 ± 0.002 0.073 ± 0.006 0.080 ± 0.011

(Γ = 4)
RU Regression

0.056 ± 0.003 0.058 ± 0.002 0.066 ± 0.001 0.071 ± 0.002 0.076 ± 0.004
(Γ = 8)

RU Regression
0.057 ± 0.003 0.059 ± 0.002 0.066 ± 0.000 0.070 ± 0.002 0.074 ± 0.003

(Γ = 16)
Oracle ERM 0.025 ± 0.000 0.043 ± 0.000 0.066 ± 0.000 0.056 ± 0.000 0.025 ± 0.000

Table 2: Results from the high-dimensional (d = 16) simulation experiment. We report the mean and
standard deviation of the test MSE from 6 random trials, where the randomness is over the dataset generation.
Standard ERM incurs high test MSE for high values of p. RU Regression is more robust to deviations from
the training distribution than Standard ERM. RU Regression matches the performance of Oracle ERM at
p = 0.5.

We suppose the data is distributed as follows

Xi ∼ Uniform[0, 1]d, Ui ∼ Bernoulli(p), Yi|Xi ∼ N(aTXi + 0.5 · Ui, 0.1), (38)

where a ∈ Rd is a constant vector. Similar to the one-dimensional example, the outcomes Yi can be clustered
into two hyperplanes Yi = aTXi + 0.5 for samples with Ui = 1 and Y = aTXi for samples with Ui = 0. As
in the one-dimensional example, we consider distribution shifts which result from varying p, the probability
that Ui = 1. For the training distribution, we set p = 0.2, so examples with Ui = 1 occur with lower
frequency in the training set. At test-time, we evaluate the learned models on data distributions where
p ∈ [0.1, 0.2, 0.5, 0.7, 0.9].
Results. The results from the high-dimensional simulation are consistent with those from the one-dimensional
simulation. From Table 2, Standard ERM achieves low test MSE on test distributions that are similar to
the training distribution p ∈ [0.1, 0.2]. However, the test MSE of Standard ERM increases as p increases.
The RU Regression methods achieve higher test MSE on the original training distribution than Standard
ERM but are more robust than Standard ERM as p increases. We note that RU Regression matches the
performance of the Oracle ERM model when p = 0.5.

4.2 MIMIC-III Data

Accurate patient length-of-stay predictions are useful for scheduling and hospital resource management
[Harutyunyan et al., 2019]. Many recent works study the problem of predicting patient length-of-stay from
patient covariates [Daghistani et al., 2019, Morton et al., 2014, Sotoodeh and Ho, 2019]. In this experiment,
we evaluate our approach on electronic health record data drawn from the publicly available MIMIC-III
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Method Weighted Test MSE
No Shift Shift

Standard ERM 3.230 ± 0.079 6.926 ± 0.265
RU Regression

3.227 ± 0.074 6.663 ± 0.253
(Γ = 1.50)

RU Regression
3.274 ± 0.072 6.607 ± 0.247

(Γ = 2.00)
RU Regression

3.349 ± 0.070 6.313 ± 0.237
(Γ = 2.50)

RU Regression
3.441 ± 0.068 6.060 ± 0.224

(Γ = 3.00)

Table 3: Results from MIMIC-III Experiment. We report the weighted test MSE and bootstrap standard
error with 5000 bootstrap samples.

dataset [Johnson et al., 2016a]. We study the robustness of regression models when the distribution of
patients observed at test time differs from the distribution of patients observed at train-time.

Data. In this experiment, the observed covariates Xi consist of 17 different medical measurements of a
patient recorded within the first 24 hours of hospital stay (see Appendix A.3 for details on the particular
covariates). The outcome Yi is the patient length-of-stay in the ICU in days. To simulate the biased test
distributions, we compute a weight

wi =
Yi∑
i Yi

for each test example i, and we report the weighted test MSE.

Weighted Test MSE =

ntest∑
i=1

wiL(h(Xi), Yi).

Reporting the weighted test MSE allows us to simulate the test MSE on a biased test distribution where
patients with length of stay equal to Yi are sampled with probability wi.

We compare the following methods.

1. Standard ERM - We fit a neural network model with the squared loss function (Equation 36) on the
training data.

2. Rockafellar-Uryasev Regression (RU Regression) - We fit two neural networks with the LΓ
RU loss func-

tion, where one network learns h and the other network learns α, on the training data. A figure for
the training pipeline is provided in Figure 3 in Appendix A.

Results. As seen in Table 3, RU Regression trades performance in the environment with no shift for
improved performance under the shifted distribution. The RU Regression performs worse than standard ERM
in the environment with no shift but is more accurate than the standard ERM in the shifted environment.
Thus, at a modest cost in shift-free accuracy, our method achieved considerable improvements in a new
shifted environment. We emphasize that RU Regression was not given any information on how the test set
might differ from the training set; we simply posited that the shift is some re-weighting of the type (6), and
asked RU Regression to be robust to any such shift (up to a factor Γ = 3). We report the bootstrap standard
error obtained with 5000 bootstrap samples.
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A Experiment Details

A.1 One-Dimensional Toy Example

A.1.1 Models

For the Standard ERM and Oracle ERM models, we train a neural network with 2 hidden layers and 128
units per layer and ReLU activation to learn the regression function h. For the RU Regression model, we
jointly train two neural networks to learn the regression function h and the quantile function α, respectively.
A visualization of the model architecture for RU Regression is provided in Figure 3. Each of the neural
networks has 2 hidden layers and 64 units per layer and ReLU activation. We note that overall the Standard
ERM and Oracle ERM models have 18.8K trainable parameters, and the RU Regression model has 10.6K
trainable parameters.

A.1.2 Dataset Splits

For all methods, the train, validation, and test sets consists of 7000, 1400, and 10000 samples, respectively.
For Standard ERM and RU Regression, the train and validation sets are generated via the data model
specified in Equation 37 with p = 0.2. For Oracle ERM, the train and validation set is generated with the
same data model with the parameter p matching that of the test distribution. All methods are evaluated on
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the same test sets, which are generated via the data model in Equation 37 with parameter p taking value
in [0.1, 0.2, 0.5, 0.7, 0.9]. For each of 6 random seeds [0, 1, 2, 3, 4, 5], a new dataset (Standard ERM/RU
Regression train and validation sets, Oracle ERM train and validation sets, and test sets) is generated.

A.1.3 Training Procedure

The models are trained for a maximum of 100 epochs with batch size equal to 1750 and we use the Adam
optimizer with learning rate 1e-2. Each epoch we check the loss obtained on the validation set and select
the model that minimizes the loss on the validation set.

A.2 High-Dimensional Experiment

A.2.1 Models

We use the same models as in the one-dimensional experiment. See Section A.1.1 for details.

A.2.2 Dataset Splits

For all methods, the train, validation, and test sets consists of 100000, 20000, and 20000 samples, respectively.
In the data model in Equation 38, we set

a = [0.098, 0.430, 0.206, 0.090,−0.153, 0.292,−0.125, 0.784,

0.927,−0.233, 0.583, 0.0578, 0.136, 0.851,−0.858,−0.826]

in all experiments. For Standard ERM and RU Regression, the train and validation sets are generated
via Equation 38 with p = 0.2. For Oracle ERM, the train and validation set is generated with the same
data model with the parameter p matching that of the test distribution. All methods are evaluated on
the same test sets, which are generated via the data model in Equation 38 with parameter p taking value
in [0.1, 0.2, 0.5, 0.7, 0.9]. For each of 6 random seeds [0, 1, 2, 3, 4, 5], a new dataset (Standard ERM/RU
Regression train and validation sets, Oracle ERM train and validation sets, and test sets) is generated.

A.2.3 Training Procedure

The models are trained for a maximum of 50 epochs with batch size equal to 25000 and we use the Adam
optimizer with learning rate 1e-2. Each step we check the loss obtained on the validation set and select the
model that minimizes the loss on the validation set.

A.3 MIMIC-III Experiment

A.3.1 Dataset

Medical Information Mart for Intensive Care III (MIMIC-III) is a freely accessible medical database of
critically ill patients admitted to the intensive care unit (ICU) at Beth Israel Deaconess Medical Center
(BIDMC) from 2001 to 2012 [Johnson et al., 2016b, Goldberger et al., 2000]. During that time, BIDMC
switched clinical information systems from Carevue (2001-2008) to Metavision (2008-2012). To ensure data
consistency, only data archived via the Metavision system was used in the dataset.

A.3.2 Feature Selection and Data Preprocessing

We select the same patient features and imputed values as in Harutyunyan et al. [2019]. A total of 17
variables were extracted from the chartevents table to include in the dataset - capillary refill rate, blood
pressure (systolic, diastolic, and mean), fraction of inspired oxygen, Glasgow Coma Score (eye opening
response, motor response, verbal response, and total score), serum glucose, heart rate, respiratory rate,
oxygen saturation, respiratory rate, temperature, weight, and arterial pH. For each unique ICU stay, values
were extracted for the first 24 hours upon admission to the ICU and averaged. Normal values were imputed
for missing variables as shown in Table 4.
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Variable MIMIC-III item ids from chartevents table Imputed value
Capillary refill rate (223951, 224308) 0
Diastolic blood pressure (220051, 227242, 224643, 220180, 225310) 59.0
Systolic blood pressure (220050, 224167, 227243, 220179, 225309) 118.0
Mean blood pressure (220052, 220181, 225312) 77.0
Fraction inspired oxygen (223835) 0.21
GCS eye opening (220739) 4
GCS motor response (223901) 6
GCS verbal response (223900) 5
GCS total (220739 + 223901 + 223900) 15
Glucose (228388, 225664, 220621, 226537) 128.0
Heart Rate (220045) 86
Height (226707, 226730) 170.0
Oxygen saturation (220227, 220277, 228232) 98.0
Respiratory rate (220210, 224688, 224689, 224690) 19
Temperature (223761, 223762) 97.88
Weight (224639, 226512, 226531) 178.6
pH (223830) 7.4

Table 4: Variables included in dataset

Following the cohort selection procedure in Wang et al. [2020], we further restrict to patients with
covariates within physiologically valid range of measurements and length-of-stay less than or equal to 10
days.

A.3.3 Training Details

Models. For the Standard ERM model, we train a neural network with 2 hidden layers and 128 units per
layer and ReLU activation to learn the regression function h. For the RU Regression model, we jointly train
two neural networks to learn the regression function h and the quantile function α, respectively. Each of
the neural networks has 2 hidden layers and 64 units per layer and ReLU activation. A visualization of
the model architecture for RU Regression is provided in Figure 3. We note that overall the Standard ERM
model has 18.8K trainable parameters, and the RU Regression model has 10.6K trainable parameters.

Dataset Splits. For all methods, the train, validation, and test sets consists of 7045, 4697, and 7829
samples, respectively.

B Standard Results

Definition 3. A function h on X is said to satisfy a Holder condition with exponent β if there is a positive
number γ such that |h(x)− h(x0)| ≤ γ|x− x0|β for x0, x ∈ X .

Lemma 13. If there is a function Q0(θ) such that (i) Q0(θ) is uniquely maximized at θ0; (ii) θ0 is an
element of the interior of a convex set Θ and Q̂n(θ) is concave; and (iii) Q̂n(θ)→ Q0(θ)for all θ ∈ Θ, then

θ̂n exists with probability approaching one and θ̂n
p−→ θ0 (Theorem 2.7, Newey and McFadden [1994]).

Lemma 14. If a functional J : V → R is Gâteaux differentiable J ′ at u0 ∈ V and has a relative extremum
at u0, then J ′(u0; v) = 0 for all v ∈ V.

Lemma 15. If {ei} is an orthonormal basis (a maximal orthonormal sequence) in a Hilbert space H then
for any element u ∈ H the ‘Fourier-Bessel series‘ converges to u:

u =

∞∑
i=1

〈u, ei〉ei.
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Lemma 16. Let X be a Hilbert space, and suppose f : X → [−∞,∞] is lower semicontinuous and convex.
If C is a closed, bounded, and convex subset of X, then f achieves its minimum on C; i.e., there is some
x0 ∈ C with f(x0) = infx∈C f(x).

Lemma 17. Let A be a 2× 2 symmetric matrix with tr(A) > 0 and det(A) ≥ 0. Then

λmin(A) ≥ detA

trA
, λmax(A) ≤ trA.

Proof in Appendix D.1.

Lemma 18. Let H(h, α) = G(h) +F (h, α), where G is strongly convex and Gâteaux differentiable in h and
F is jointly convex in (h, α), strictly convex in α, and Gâteaux differentiable in (h, α). Then H is strictly
convex in (h, α). Proof in Appendix D.2.

C Proofs of Main Results

C.1 Notation

We introduce notation that is used in the proofs and technical lemmas.

LΓ
RU,1(z, y) := Γ−1L(z, y) (39)

LΓ
RU,2(a) := (1− Γ−1)a (40)

LΓ
RU,3(z, y, a) := (Γ− Γ−1) · (L(z, y)− a)+. (41)

Define

Rf,c := {x ∈ X | f(x) < c} (42)

Sf,c := {x ∈ X | f(x) > c}. (43)

When we consider loss functions L that satisfy Assumption 2, we define

`1(y) :=

{
`(y) y > 0

0 y ≤ 0
, `2(y) :=

{
0 y > 0
`(y) y ≤ 0

, (44)

T1,x(c) := EPY |X=x
[`(Y − c) | X = x] , (45)

T3,x(c, d) :=

{
EPY |X=x

[(`(Y − c)− d)I(`(Y − c) > d) | X = x] d > 0

EPY |X=x
[`(Y − c)− d | X = x] d ≤ 0

. (46)

C.2 Technical Lemmas

We prove lemmas about the transforms T1,x(c), T3,x(c, d). These enable us to establish more general prop-
erties of the RU loss.

Lemma 19. Under Assumption 2, T1,x(c) is twice-differentiable in c and

EP
[
LΓ
RU,1(h(X), Y )

]
= Γ−1EPX [T1,X(h(X))] .

Proof in Appendix D.3.

Lemma 20. Under Assumption 2, 3, T3,x(c, d) is differentiable in c, d. In particular,

T d3,x(c, d) =

{
−Pr(`(Y − c) > d | X = x) d > 0

−1 d ≤ 0
.

Equivalently,

T d3,x(c, d) =

{
−1 + PY |X=x(c+ `−1

1 (d))− PY |X=x(c+ `−1
2 (d)) d > 0

−1 d ≤ 0
.
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In addition, T3,x(c, d) is twice-differentiable in c, d when d > 0. The second derivatives are

T cc3,x(c, d) =
∑

i∈{1,2}

|`′(`−1
i (d))| · pY |X=x(c+ `−1

i (d)) + EPY |X [`′′(Y − c)I(`(Y − c) > d)] ,

T dd3,x(c, d) =
∑

i∈{1,2}

pY |X=x(c+ `−1
i (d))

|`′(`−1
i (d))|

,

T cd3,x(c, d) = pY |X=x(c+ `−1
1 (d))− pY |X=x(c+ `−1

2 (d)),

where `−1
1 is the inverse of `(z) when z > 0 and `−1

2 is the inverse of `(z) when z < 0.
Also,

EP
[
LΓ
RU,3(h(X), α(X), Y )

]
= (Γ− Γ−1)EPX [T3,X(h(X), α(X))] .

Proof in Appendix D.4.

Lemma 21. Under Assumption 2, 3, there are symmetric matrices Ax(c, d), Bx(c, d) such that

Ax(c, d) � ∇2T3,x(c, d) � Bx(c, d)

when d > 0. The entries of Ax(c, d) are given by

Ax,11(c, d) =
∑

i∈{1,2}

|`′(`−1
i (d))| · pY |X=x(c+ `−1

i (d)) + CL,l · Pr(`(Y − c) > d | X = x)

Ax,22(c, d) =
∑

i∈{1,2,}

pY |X=x(c+ `−1
i (d))

|`′(`−1
i (d))|

,

Ax,12(c, d) = pY |X=x(c+ `−1
1 (d))− pY |X=x(c+ `−1

2 (d)).

The entries of Bx(c, d) are given by

Bx,11(c, d) =
∑

i∈{1,2}

|`′(`−1
i (d))| · pY |X=x(c+ `−1

i (d)) + EPY |X=x
[`′′(Y − c) | X = x] ,

Bx,22(c, d) =
∑

i∈{1,2}

pY |X=x(c+ `−1
i (d))

|`′(`−1
i (d))|

,

Bx,12(c, d) = pY |X=x(c+ `−1
1 (d))− pY |X=x(c+ `−1

2 (d)).

Proof in Appendix D.5.

We give a few additional lemmas related to the RU loss. These lemmas are used in proofs of many of the
results from Section 3.1.

Lemma 22. Under Assumption 1, 2 3, EP
[
LΓ
RU(h(X), α(X), Y )

]
is Gâteaux differentiable in (h, α) on

L2(PX ,X )× L2(PX ,X ) and twice-Gâteaux differentiable in (h, α) on C, where

C = {(h, α) ∈ Θ | α(x) > 0 ∀x ∈ X}.

Proof in Appendix D.6.

Lemma 23. Under Assumption 2, EP
[
LΓ
RU,1(h(X), Y )

]
is strongly convex in h. Proof in Appendix D.7.

Lemma 24. Under Assumptions 1, 2, 3, EP
[
LΓ
RU,3(h(X), α(X), Y )

]
is strictly convex in α on A.

Proof in Appendix D.8.
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C.3 Proof of Theorem 1

First, we verify the first claim of the theorem–the convexity of LΓ
RU. We verify that LΓ

RU,3 is convex in (z, a).
We note that L(z, y) − a is convex in (z, a) because L is convex in z and does not depend on a, so it is
convex in (z, a), and −a is clearly convex in a and doesn’t depend on z, so it is also convex in (z, a). Thus,
their sum must also be convex in (z, a). In addition, we note the function z 7→ (z)+ is nondecreasing in z.
Since the composition of a nondecreasing function a convex function is convex, we have that (L(z, y)− a)+

is convex in (z, a). Thus, the third term of the RU loss LΓ
RU,3 is convex in (z, a). By an analogous argument,

we can also show that LΓ
RU,1 + LΓ

RU,2 is convex in (z, a). Since the sum of convex functions is convex, LRU

is convex in (z, a).
We proceed to the proof of the second claim of the theorem. The proof of this part relies on the following

lemmas.

Lemma 25. Solving the worst-case population risk minimization problem

argmin
h∈L2(QX ,X )

sup
{
EQ [L(h(X), Y )] : Q ∈ SΓ(P,QX)

}
(47)

amounts to solving the worst-case risk minimization problem conditionally for each x

argmin
h(x)∈R

sup
{
EQY |X [L(h(x), Y ) | X = x] : Q ∈ SΓ(P,QX)

}
. (48)

Proof in Appendix D.9.

Theorem 26 (Rockafellar and Uryasev [2000], Theorem 1). For each x, let the loss L(h, x) be a random
variable with distribution on R induced by x ∈ Rd, which has density p(x). Let

Fβ(h, α) = α+ (1− β)−1

∫
x∈Rd

(L(h, x)− α)+p(x)dx.

As a function of α, Fβ(h, α) is convex and continuously differentiable. The β-CVaR of the loss associated
with any h ∈ H can be determined from the formula

φβ(h) = min
α∈R

Fβ(h, α). (49)

The set consisting of the values of α for which the minimum is Aβ(h) = argminα∈R Fβ(h, α) and is a
nonempty closed bounded interval (perhaps reducing to a single point).

Theorem 27 (Rockafellar and Uryasev [2000], Theorem 2). Minimizing the β-CVaR of the loss with h over
all h ∈ H is equivalent to minimizing Fβ(h, α) over all (h, α) ∈ H × R, in the sense that

min
h∈H

φβ(h) = min
(h,α)∈H×R

Fβ(h, α),

where, moreover a pair (h∗, α∗) achieves the second minimum iff h∗ achieves the first minimum and α∗ ∈
Aβ(h) = argminα∈R Fβ(h, α). The minimization over (h, α) ∈ H×R produces a pair (h∗, α∗), not necessarily
unique such that h∗ minimizes the β-CVaR and α∗ gives the corresponding β-VaR.

First, we apply Lemma 25 to see that (7) is equivalent to minimizing the worst case loss conditionally
for every x ∈ X ,

min
h(x)∈R

sup
{
EQY |X [L(h(x), Y ) | X = x] : Q ∈ SΓ(P,QX)

}
. (50)

By the Neyman-Pearson lemma, we can verify for any decision rule h,

sup{EQY |X [L(h(X), Y ) | X = x] : Q ∈ SΓ(P,QX)}

= EPY |X
[
L(h(X), Y )

(
Γ−1 + (Γ− Γ−1)I(L(h(X), Y ) ≥ qLη(Γ)(X;h(X))

)
| X = x

]
,

(51)
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where qLη (x;h(x)) is as defined in (10) and η(Γ) is as defined in (11). So, the problem in (50) can be rewritten
as

min
h(x)∈R

EPY |X
[
L(h(x), Y )

(
Γ−1 + (Γ− Γ−1)I(L(h(x), Y ) ≥ qLη(Γ)(X;h(x))

)
| X = x

]
. (52)

Thus, we can focus on the optimization problem in (52). We realize that this optimization problem depends
EPY |X

[
L(h(x), Y )I(L(h(x), Y ) ≥ qLη (X;h(x))) | X = x

]
, which can be rewritten as follows

EPY |X
[
L(h(x), Y )I(L(h(x), Y ) ≥ qLη (X;h(x))) | X = x

]
= CVaRη(Γ)(L(h(x), Y )) · Pr(L(h(x), Y ) ≥ qLη(Γ)(X;h(x)) | X = x).

By the definition of qLη (X;h(x)), we have that Pr(L(h(x), Y ) ≥ qLη(Γ)(X;h(x)) | X = x) = 1 − η(Γ). Thus,
we have that

EPY |X
[
L(h(X), Y )I(L(h(X), Y ) > qLη (X;h(X))) | X = x

]
= (1− η(Γ)) · CVaRη(Γ)(L(h(x), Y )). (53)

Now, the problem in (52) can be written as

min
h(x)∈R

EPY |X
[
L(h(X), Y )

(
Γ−1 + (Γ− Γ−1)I(L(h(x), Y ) ≥ qLη(Γ)(X;h(x))

)
| X = x

]
(54)

= min
h(x)∈R

Γ−1 · EPY |X [L(h(X), Y )) | X = x] + (Γ− Γ−1) · (1− η(Γ))CVaRη(Γ)(L(h(x), Y )) (55)

= min
h(x)∈R

Γ−1 · EPY |X [L(h(X), Y )) | X = x] + (1− Γ−1) · CVaRη(Γ)(L(h(x), Y )). (56)

By Theorem 26, we have that

CVaRη(Γ)(L(h(x), Y )) = min
α(x)∈R

α(x) +
1

1− η(Γ)
EPY |X [(L(h(x), Y )− α(x))+|X = x] . (57)

By Theorem 27, we can use (57) to write (56) as a joint optimization problem over both h(x) and α(x) as
follows

min
h(x)∈R

Γ−1 · EPY |X [L(h(X), Y )) | X = x] + (1− Γ−1) · CVaRη(Γ)(L(h(x), Y ))

= min
h(x),α(x)∈R

Γ−1 · EPY |X [L(h(x), Y )) | X = x]

+ (1− Γ−1) ·
(
α(x) +

1

1− η(Γ)
EPY |X [(L(h(x), Y )− α(x))+|X = x]

)
= min
h(x),α(x)∈R

Γ−1 · EPY |X [L(h(x), Y )) | X = x] + (1− Γ−1)α(x)

+ (Γ− Γ−1)EPY |X [(L(h(x), Y )− α(x))+|X = x]

= min
h(x),α(x)∈R

EPY |X=x

[
LΓ

RU(h(x), α(x), Y ) | X = x
]
,

where the last line follows from the definition of LΓ
RU in (8). So, (56) is equivalent to the augmented

conditional risk minimization

min
h(x),α(x)∈R

EPY |X
[
LΓ

RU(h(x), α(x), Y ) | X = x
]
. (58)

Lastly, functions h∗Γ, α
∗
Γ that for every x ∈ supp(PX) solve (18) also solve (9).

Now, we can show that h∗Γ solves (7) for any QX that is absolutely continuous to PX . Let T be any set
with nonzero measure with respect to QX . Then T must also have nonzero measure with respect to PX
because QX � PX . So, for any h ∈ L2(QX ,X )

sup
QY |X :Q∈SΓ(P,QX)

EQY |X [L(h∗Γ(X), Y ) | X ∈ T ] ≤ sup
QY |X :Q∈SΓ(P,QX)

EQY |X [L(h(X), Y ) | X ∈ T ]

for any set T with nonzero measure with respect to QX . This is sufficient to show that h∗Γ is a solution to
(7) for any QX � PX .
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C.4 Proof of Lemma 2

Suppose for the sake of contradiction (h, α) is a minimizer of the population RU risk and (h, α) /∈ Θ. There
are three cases

1. (h, α) ∈ Hc ×A,

2. (h, α) ∈ H ×Ac,

3. (h, α) ∈ Hc ×Ac.

First, we focus on the case where (h, α) ∈ Hc ×A. We consider h̄,

h̄(x) =


h(x) h(x) ∈ [−2B, 2B]

2B h(x) > 2B

−2B h(x) < −2B

.

We note that (h̄, α) ∈ Θ. We define Rh,−2B and Sh,2B following (42) and (43).

EP
[
LΓ

RU(h(X), α(X), Y )
]
− EP

[
LΓ

RU(h̄(X), α(X), Y )
]

= EP
[
(LΓ

RU(h(X), α(X), Y )− LΓ
RU(h̄(X), α(X), Y )I(Rh,−2B)

]
+ EP

[
(LΓ

RU(h(X), α(X), Y )− LΓ
RU(h̄(X), α(X), Y )I(Sh,2B)

]
because they only differ on Rh,−2B and Sh,2B . Analyzing the second term on the right side above, we see
that

EP
[
(LΓ

RU(h(X), α(X), Y )− LΓ
RU(h̄(X), α(X), Y )) · I(Sh,2B)

]
= EPX

[(
Γ−1T1,X(h(X), α(X))) + (Γ− Γ−1) · T3,X(h(X), α(X))

)
I(Sh,2B)

]
,

where T1,X , T3,X are defined in Lemma 19 and Lemma 20, respectively. For x ∈ Sh,2B ,

Γ−1T1,x(h(x), α(x)) + (Γ− Γ−1) · T3,x(h(x), α(x))− Γ−1T1,x(h̄(x), α(x))− (Γ− Γ−1) · T3,x(h̄(x), α(x))

= (h(x)− h̄(x)) ·
(

Γ−1T c1,x(h̃(x), α(x)) + (Γ− Γ−1) · T c3,X(h̃(x), α(x))
)

h̃(x) ∈ [h̄(x), h(x)] (59a)

= (h(x)− h̄(x)) · EPY |X=x

[
Γ−1 · (−`′(Y − h̃(x))) + (Γ− Γ−1) · (−`′(Y − h̃(x))) · I(`(Y − h̃(x)) > α(x))

]
(59b)

≥ (h(x)− h̄(x)) · EPY |X=x

[
Γ−1 · (−`′(Y − h̃(x)))

]
(59c)

> 0. (59d)

(59a) follows from the Mean Value Theorem, the differentiability of T1,x (Lemma 19), and the differentiability
of T3,x (Lemma 20). (59b) follows from Lemma 19 and Lemma 20. The inequality in (59c) comes from the

observation that for x ∈ Sh,2B , we have that Y − h̃(x) ≤ −B because Y ∈ [−B,B] and h̃(x) ∈ [2B, h(x)].

So, −`′(Y − h̃(x)) > 0. Meanwhile, h(x) − h̄(x) > 0. So, the product of −`′(Y − h̃(x)) · (h(x) − h̄(x)) > 0.
Since Pr(`(Y − h̃(x)) > α(x)|X = x) ≥ 0, (59c) holds. For the same reason, (59d) holds as well. Thus, if
Sh,2B has positive measure, then

EP
[
(LΓ

RU(h(X), α(X), Y )− LΓ
RU(h̄(X), α(X), Y ))I(X ∈ Sh,2B)

]
> 0.

An analogous argument can be used to show that for Rh,−2B with positive measure,

EP
[
(LΓ

RU(h(X), α(X), Y )− LΓ
RU(h̄(X), α(X), Y ))I(X ∈ Rh,−2B)

]
> 0.

Thus, as long as Rh,−2B ∪ Sh,2B has positive measure, which must be the case under our assumption that
the minimizer (h, α) ∈ Hc × A, then there is (h̄, α) ∈ Θ that achieves lower population RU risk. This is a
contradiction, so the minimizer cannot be in Hc ×A.
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Now, we consider the next case that the minimizer (h, α) ∈ H ×Ac. Consider ᾱ ∈ A,

ᾱ(x) =


0 α(x) < 0

α(x) 0 ≤ α(x) ≤Mu

Mu α(x) > Mu

Note that (h, ᾱ) ∈ Θ. We define Rα,0 and Sα,Mu
according to (42) and (43), respectively. We have that

EP
[
LΓ

RU(h(X), α(X), Y )
]
− EP

[
LΓ

RU(h(X), ᾱ(X), Y )
]

= EP
[
(LΓ

RU(h(X), α(X), Y )− LΓ
RU(h(X), ᾱ(X), Y ))I(Rα,0)

]
+ EP

[
(LΓ

RU(h(X), α(X), Y )− LΓ
RU(h(X), ᾱ(X), Y ))I(Sα,Mu

)
]
.

because they only differ on Rα,0 and Sα,Mu
. We find that

EP
[
(LΓ

RU(h(X), α(X), Y )− LΓ
RU(h(X), ᾱ(X), Y )) · I(Rα,0)

]
= (1− Γ−1)EP [(α(X)− ᾱ(X))I(Rα,0)] + (Γ− Γ−1)EP [(L(h(X), Y )− α(X))+ · I(Rα,0)]

− (Γ− Γ−1)EP [(L(h(X), Y )− ᾱ(X))+ · I(Rα,0)]

= (1− Γ−1)EX [α(X)I(Rα,0)] + (Γ− Γ−1)EP [(L(h(X), Y )− α(X))I(Rα,0)]

− (Γ− Γ−1)EP [L(h(X), Y )I(Rα,0)]

= (1− Γ)EP [α(X) · I(Rα,0)] .

If Rα,0 has positive measure, then

EP
[
(LΓ

RU(h(X), α(X), Y )− LΓ
RU(h(X), ᾱ(X), Y )) · I(Rα,0)

]
> 0

because on Rα,0, we have that α(X) < 0 and also (1− Γ) < 0. In addition,

EP
[
(LΓ

RU(h(X), α(X), Y )− LΓ
RU(h(X), ᾱ(X), Y )) · I(Sα,Mu)

]
= EPX

[
EPY |X

[
LΓ

RU,2(α(X))− LΓ
RU,2(ᾱ(X)) + LΓ

RU,3(h(X), α(X), Y )− LΓ
RU,3(h(X), ᾱ(X), Y ) | X

]
I(Sα,Mu

)
]
.

For x ∈ Sα,Mu
, we compute

EPY |X
[
LΓ

RU,2(α(X))− LΓ
RU,2(ᾱ(X)) + LΓ

RU,3(h(X), α(X), Y )− LΓ
RU,3(h(X), ᾱ(X), Y ) | X = x

]
(60a)

= EPY |X=x

[
(1− Γ−1)(α(X)− ᾱ(X)) | X = x

]
(60b)

+ EPY |X=x

[
(Γ− Γ−1)

(
T3,X(h(X), α(X))− T3,X(h(X), ᾱ(X))

)
| X = x

]
(60c)

= (1− Γ−1)(α(x)− ᾱ(x)) + (Γ− Γ−1)
(
T3,x(h(x), α(x))− T3,x(h(x), ᾱ(x))

)
(60d)

= (1− Γ−1)(α(x)− ᾱ(x)) + (Γ− Γ−1) · (α(x)− ᾱ(x)) · T d3,x(h(x), α̃(x)) α̃(x) ∈ [ᾱ(x), α(x)] (60e)

= (1− Γ−1)(α(x)− ᾱ(x)) + (Γ− Γ−1) · (α(x)− ᾱ(x)) · (−1 + Fx;h(x)(α̃(x))) (60f)

> (1− Γ−1)(α(x)− ᾱ(x)) + (Γ− Γ−1) · (α(x)− ᾱ(x)) · (−1 + η(Γ)) (60g)

= 0. (60h)

In the above derivation, we have that (60d) follows from Lemma 20 and Assumption 2. Next, we apply the
Mean Value Theorem to T3,x(c, d) to arrive at (60e). After that, we use the definition of T d3,x(c, d) for d > 0
from Lemma 20, where α̃(x) > 0. Finally, we recall that Fx;h(x) is the distribution over L(h(x), Y ) = `(Y −
h(x)) when Y is distributed according to PY |X=x. We can show (60g) as follows. Since α̃(x) ∈ [ᾱ(x), α(x)]
and x ∈ Sα,Mu

, we have that

Fx;h(x)(α̃(x)) ≥ Fx;h(x)(ᾱ(x)) = Fx;h(x)(Mu),

and we have that
qLη(Γ)(x;h(x)) = F−1

x;h(x)(η(Γ)) < Mu
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by the definition of Mu (24). So, we see that η(Γ) < Fx;h(x)(Mu). In addition, we note that α(x)− ᾱ(x) > 0
for x ∈ Sα,Mu and Γ− Γ−1 > 0. We conclude that if Sα,Mu has positive measure, then

EP
[
(LΓ

RU(h(X), α(X), Y )− LΓ
RU(h(X), ᾱ(X), Y )) · I(Sα,Mu)

]
> 0.

Thus, as long as Rα,0 ∪ Sα,Mu has positive measure, which must be the case because we assumed that
(h, α) ∈ H×Ac, there is (h, ᾱ) ∈ Θ that achieves lower population RU risk than the minimizer (h, α). This
is a contradiction, so any minimizer cannot be in H×Ac.

Combining the two previous arguments, we can show that any minimizer also cannot be in Hc × Ac.
Thus, any minimizer of the population RU risk must lie in Θ.

C.5 Proof of Lemma 3

The main goal of this proof is to apply Lemma 16 to the function EP
[
LΓ

RU(h(X), α(X), Y )
]

and set Θ.
Clearly, the population RU risk is continuous. We have the RU loss is convex from the first part of Theorem
1, so the population RU risk is also convex in (h, α). In addition, Θ ⊂ L2(PX ,X ) × L2(PX ,X ), which is
a Hilbert space. In addition, since L∞ balls are closed in L2(PX ,X ), and Θ consists of a product of L∞

balls (one of which is not centered at 0), so Θ is closed in L2(PX ,X ). Also, Θ is convex and bounded. Thus
Lemma 16 holds, so EP

[
LΓ

RU(h(X), α(X), Y )
]

must achieve a minimum on Θ.

C.6 Proof of Lemma 4

Let

F (h, α) = EP
[
LΓ

RU,3(h(X), α(X), Y )
]

G(h) = EP
[
LΓ

RU,1(h(X), Y )
]

H(h, α) = EP
[
LΓ

RU,1(h(X), Y )
]

+ EP
[
LΓ

RU,3(h(X), α(X), Y )
]
.

Note that
EP
[
LΓ

RU(h(X), α(X), Y )
]

= H(h, α) + EP
[
LΓ

RU,2(α(X))
]
. (61)

Since the population RU risk is the sum of H and a function that is convex in (h, α), then it suffices to show
that H is strictly convex. The main goal of this proof is to show that the conditions of Lemma 18 hold so
that we can conclude that H, as defined above, is strictly convex in (h, α).

First, we note that F,G,H are all Gâteaux differentiable by Lemma 22.
Second, we show that G satisfies the conditions of Lemma 18. By Lemma 23, G is strongly convex with

constant Γ−1CL,l.
Third, we show that F satisfies the conditions of Lemma 18. It follows from the first part of Theorem 1

that F is jointly convex in (h, α). Also, F is strictly convex in α on A by Lemma 24.
As a result, F,G satisfy the conditions of Lemma 18. So, we have that H(h, α) is strictly convex in (h, α).

Furthermore, because EP
[
LΓ

RU,2(α)
]

is convex in α and does not depend on h, it is also jointly convex in

(h, α). Due to the decomposition in (61), EP
[
LΓ

RU(h(X), α(X), Y )
]

is the sum of a strictly convex function
and a convex function in (h, α), and is thus strictly convex.

C.7 Proof of Theorem 5

First, by Lemma 2 we have that

argmin
(h,α)∈L2(PX ,X )×L2(PX ,X )

EP
[
LΓ

RU(h(X), α(X), Y )
]

= argmin
(h,α)∈Θ

EP
[
LΓ

RU(h(X), α(X), Y )
]
.

Second, we can show that EP
[
LΓ

RU(h(X), α(X), Y )
]

has a unique minimizer on Θ. By Lemma 4, we have

that EP
[
LΓ

RU(h(X), α(X), Y )
]

is strictly convex on Θ, so it has at most one minimizer on the convex set Θ.

From Lemma 3, we have that EP
[
LΓ

RU(h(X), α(X), Y )
]

has at least one minimizer on Θ. Thus, there is a
unique minimizer (h∗Γ, α

∗
Γ) on Θ. Finally, (h∗Γ, α

∗
Γ) is also the unique minimizer over L2(PX ,X )×L2(PX ,X ).
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C.8 Proof of Lemma 6

Let L(h, α) = EP
[
LΓ

RU(h(X), α(X), Y )
]

as the population RU risk. Since L(h, α) is Gâteaux differentiable
(Lemma 22) and has a unique minimizer at (h∗Γ, α

∗
Γ) (Theorem 5), we can use Lemma 14 to realize that the

Gâteaux derivative in the direction φ is equal to 0 for all φ ∈ L2(PX ,X ), i.e.

L′α(h∗Γ, α
∗
Γ;φ) = 0, ∀φ ∈ L2(PX ,X ).

Recall that from Lemma 22, we have that

L′α(h, α;φ) = (1− Γ−1)EPX [φ(X)] + (Γ− Γ−1) · EPX
[
T d3,X(h∗Γ(X), α∗Γ(X))φ(X)

]
.

So, at (h∗Γ, α
∗
Γ), we have that

EPX
[
φ(X) ·

( 1− Γ−1

Γ− Γ−1
+ T d3,X(h∗Γ(X), α∗Γ(X))

)]
= 0, ∀φ ∈ L2(PX ,X ).

We note that by Lemma 20,
T d3,x(h(x), α(x)) = −1 + Fx;h(x)(α(x)),

where Fx;h(x) is the distribution over L(h(x), Y ) where Y is distributed according to PY |X=x. So, we have
that

EPX
[
φ(X) · (−η(Γ) + FX,h∗Γ(X)(α

∗
Γ(X))

]
= 0, ∀φ ∈ L2(PX ,X ).

So, −η(Γ) + Fx,h∗Γ(x)(α
∗
Γ(x)) must be equal to 0 almost everywhere for the above equation to hold for all φ.

Therefore, we conclude that
α∗Γ(x) = F−1

x;h∗Γ(x)(η(Γ)) = qLη(Γ)(x;h∗Γ(x)).

Now, with this definition of α∗Γ, we can show that there exists Ml > 0 such that α∗Γ(x) > Ml for all
x ∈ X . We aim to show that infx∈X ,h∈H q

L
η(Γ)(x;h(x)) > 0. For convenience, we define

m(x) := qL1
2
(x;h(x)).

We note that η(Γ) > 1
2 . So,

qLη(Γ)(x;h(x)) ≥ m(x).

We have that for any x ∈ X , h ∈ H,

Pr(L(h(X), Y ) ≤ m(X) | X = x) =
1

2
.

Recall that under Assumption 2, L(h(x), y) = `(y − h(x)). We can apply Assumption 2 to see that

Pr(Y ∈ [h(x) + `−1
2 (m(x)), h(x) + `−1

1 (m(x))] | X = x) =
1

2
.

Now, we can use the upper bound on the density of pY |X=x from Assumption 3 to see that

Cp,u · (`−1
1 (m(x))− `−1

2 (m(x))) ≥ 1

2
.

Rearranging, we have that

`−1
1 (m(x))− `−1

2 (m(x)) ≥ 1

2Cp,u
.

So,

max{`−1
1 (m(x)),−`−1

2 (m(x))} ≥ 1

4Cp,u
.

Applying ` to both sides, we conclude that

m(x) ≥ `
(

1

4Cp,u

)
.
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Since 1
4Cp,u

> 0, we have that m(x) is lower bounded by a positive constant for any choice of h ∈ H, x ∈ X .

Thus, we have that

α∗Γ(x) = qLη(Γ)(x;h(x)) ≥ inf
x∈X ,h∈H

qL1
2
(x;h(x)) ≥ `

(
1

4Cp,u

)
.

So, let Ml = `( 1
4Cp,u

)/2. Then α∗(x) > Ml for all x ∈ X .

C.9 Proof of Theorem 7

The constant for strong convexity depends on lower bounds on the conditional density pY |X=x(·) and on
|`′(`−1(·))| when these functions are evaluated over a particular region. To ensure that they can be lower
bounded, we pick the radius of the || · ||∞ ball about the minimizer.

Define
gi(x;h, α) = h(x) + `−1

i (α(x)). (62)

For 0 < ε < 1−η(Γ)
2Cp,u

, we pick 0 < δ(ε) < Ml to ensure that for (h, α) ∈ Cδ(ε), we have that

sup
x∈X ,i∈{1,2}

|gi(x;h, α)− gi(x;h∗Γ, α
∗
Γ)| < ε.

By Lemma 6, we have that α∗Γ(x) > Ml for all x ∈ X . We consider (h, α) ∈ Cδ(ε). For such α, we have
that ||α − α∗Γ||∞ ≤ δ(ε), and so α(x) ≥ Ml − δ(ε) for all x ∈ X . Since δ(ε) < Ml, for (h, α) ∈ Cδ(ε), we
have that α(x) > 0. Since the RU loss is twice-differentiable when α(x) > 0 (Lemma 22), we have that it is
twice-differentiable on Cδ(ε).

Let L(h, α), L1(h, α), L3(h, α) be shorthand for the population RU risk, the first term of the population
RU risk, and the third term of the population RU risk, respectively.

L(h, α) = EP
[
LΓ

RU(h(X), α(X), Y )
]
,

L1(h, α) = EP
[
LΓ

RU,1(h(X), Y )
]
,

L3(h, α) = EP
[
LΓ

RU,3(h(X), α(X), Y )
]
.

We compute the second Gâteaux derivative of the population RU risk.

〈L′′(h, α;ψ, φ), (ψ, φ)〉 (63a)

= 〈L′′1(h, α;ψ, φ) + L′′3(h, α;ψ, φ), (ψ, φ)〉 (63b)

≥ 〈L′′3(h, α;ψ, φ), (ψ, φ)〉 (63c)

= (Γ− Γ−1) · EPX
[[
ψ(X) φ(X)

]
∇2T3,X(h(X), α(X))

[
ψ(X)
φ(X)

]]
(63d)

≥ (Γ− Γ−1)EPX
[[
ψ(X) φ(X)

]
AX(h(X), α(X))

[
ψ(X)
φ(X)

]]
(63e)

(63b) follows from Lemma 22. (63c) holds because 〈L′′1(h, α; (ψ, φ), (ψ, φ))〉 ≥ 0 because L1(h, α) is strongly
convex in h (Lemma 23) and does not depend on α. Next, (63d) follows from Lemma 20. Finally, Ax(c, d)
is the lower bound on the Hessisan matrix of T3,x(c, d) defined in Lemma 21.

To develop a lower bound for 〈L′′(h, α;ψ, φ), (ψ, φ)〉, we aim to apply Lemma 17 to Ax(h(x), α(x)). Before
we verify the conditions of Lemma 17, we introduce the following notation

ai,x := |`′(`−1
i (α(x)))| i = 1, 2,

fi,x := pY |X=x(h(x) + `−1
i (α(x))) i = 1, 2,

and we develop upper and lower bounds on ai,x for i ∈ {1, 2},
∑
i∈{1,2} fi,x, and 1− Fx;h(x)(α(x)).

First, we focus on ai,x. By the definition of Θ, we have that α(x) ≤ Mu. Since |`′(`−1
i (y))| is strictly

increasing in y and on Cδ(ε), α(x) ≥Ml − δ(ε) for all x ∈ X , we can recall the definition of Ca,l,δ, Ca,u from
(29), (25) to see that

0 < Ca,l,δ(ε) ≤ ai,x ≤ Ca,u <∞ i = 1, 2, x ∈ X .
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Second, we aim to show that
∑
i={1,2} fi,x is similarly upper and lower bounded. The upper bound is

straightforward from Assumption 3. To obtain the lower bound, we first analyze
∑
i∈{1,2} pY |X=x(h∗Γ(x) +

`−1
i (α∗Γ(x)), which can be written as

∑
i∈{1,2} pY |X=x(gi(x;h∗Γ, α

∗
Γ)) using the definition of g in (62).

Let `−1
i (qLη(Γ)(x;h∗Γ)) corresponds to the ci,x-th quantile of Y , where Y is distributed following PY |X=x.

We realize that

∑
i∈{1,2}

pY |X=x(gi(x;h∗Γ, α
∗
Γ)) =

∑
i∈{1,2}

pY |X=x(h∗Γ(x) + `−1
i (α∗Γ(x))

=
∑

i∈{1,2}

pY |X=x(h∗Γ(x) + `−1
i (qLη(Γ)(x;h∗Γ(x))))

=
∑

i∈{1,2}

pY |X=x(h∗Γ(x) + qYci,x(x)− h∗Γ(x))

=
∑

i∈{1,2}

pY |X=x(qYci,x(x)).

Furthermore, we realize that either c1,x or c2,x lies in [1 − η(Γ)
2 , 1 + η(Γ)

2 ]. First, because qLη(Γ)(x;h∗Γ(x))

corresponds to the η(Γ)-th quantile of the conditional losses, we must have that

c1,x − c2,x = η(Γ). (64)

In addition, c1,x ≤ 1, so c2,x ≤ 1 − η(Γ). So, c2,x ∈ [0, 1 − η(Γ)]. Suppose that c2,x ∈ [1 − η(Γ)
2 , 1 − η(Γ)],

then clearly the desired claim holds. If c2,x /∈ [1 − η(Γ)
2 , 1 − η(Γ)], this means that c2,x ∈ [0, 1 − η(Γ)

2 ). So,

we must have that c1,x ∈ [η(Γ), 1 + η(Γ)
2 ). Thus, we have that at least one of c1,x, c2,x lies in the interval

[1− η(Γ)
2 , 1 + η(Γ)

2 ].
Now, we have that ∑

i∈{1,2}

fi,x =
∑

i∈{1,2}

pY |X=x(gi(x;h, α)),

and δ(ε) was chosen so that for (h, α) ∈ Cδ(ε)

sup
x∈X ,i∈{1,2}

|gi(x;h, α)− gi(x;h∗Γ, α
∗
Γ)| = sup

x∈X ,i∈{1,2}
|gi(x;h, α)− pY |X=x(qYci,x(x))| < ε.

Thus, we realize that for (h, α) ∈ Cδ(ε),

gi(x;h, α) = qYci,x(x) + bi(x), bi(x) ∈ (−ε, ε), i ∈ {1, 2}, x ∈ X . (65)

So, for (h, α) ∈ Cδ(ε), we realize that a lower bound on
∑
i∈{1,2} fi,x =

∑
i∈{1,2} pY |X(gi(x;h, α)) is given by

Cp,l,ε from (30). Thus, we have that

0 < Cp,l,ε ≤
∑

i∈{1,2}

fi,x ≤ 2Cp,u <∞ i = 1, 2, x ∈ X ,

and clearly each fi,x must be nonnegative.
Third, we aim to show that 1− Fx;h(x)(α(x)) is similarly upper and lower bounded on Cδ(ε). Clearly, an

upper bound on this quantity is 1. To compute the lower bound, we see that for (h, α) ∈ Cδ(ε),

1− Fx;h(x)(α(x)) = 1− PY |X=x(g1(x;h, α)) + PY |X=x(g2(x;h, α))

= 1− PY |X=x(qYc1,x(x) + b1(x)) + PY |X=x(qYc2,x(x) + b2(x)) b1(x), b2(x) ∈ (−ε, ε)
≥ 1− c1,x − Cp,u · ε+ c2,x − Cp,u · ε
= 1− η(Γ)− 2Cp,uε

> 0.

30



The first line follows from the definition of F and gi from (62). In the second line, we apply (65). In the
third line, we note that the c.d.f. of PY |X=x at qYci,x(x) + bi(x) can be closely approximated by the value of

the c.d.f. at qYci,x(x). Next, we apply (64). The last line follows because ε < 1−η(Γ)
2Cp,u

. Thus, we have that

1− Fx;h(x)(α(x)) ≥ 1− η(Γ)− 2Cp,uε > 0. (66)

Now, we finally verify the conditions of Lemma 17. We note that Ax(h(x), α(x)) is a symmetric matrix
by definition. We realize that trAx(h(x), α(x)) ≥ 0 because

trAx(h(x), α(x)) = Ax,11(h(x), α(x)) +Ax,22(h(x), α(x)) (67)

=
∑

i∈{1,2}

ai,x · fi,x +
∑

i∈{1,2}

fi,x
ai,x

+ CL,`(1− Fx;h(x)(α(x))) (68)

≥ CL,`(1− Fx;h(x)(α(x))) (69)

> 0. (70)

(69) follows from the observation that fi,x, ai,x ≥ 0. (70) follows from (66). In addition, we see that
detAx(h(x), α(x)) ≥ 0 because

detAx(h(x), α(x)) (71a)

= Ax,11(h(x), α(x)) ·Ax,22(h(x), α(x))− (Ax,12(h(x), α(x)))2 (71b)

=
( ∑
i∈{1,2}

ai,x · fi,x + CL,l(1− Fx;h(x)(α(x)))
)
· (
∑

i∈{1,2}

fi,x
ai,x

)− (f1,x − f2,x)2 (71c)

=
(a1,x

a2,x
+
a2,x

a1,x
+ 2
)
· f1,x · f2,x + CL,l(1− Fx;h(x)(α(x))) ·

( ∑
i∈{1,2}

fi,x
ai,x

)
(71d)

≥ CL,l · (
∑

i∈{1,2}

fi,x
ai,x

) · (1− Fx;h(x)(α(x))) (71e)

≥ CL,l ·
1

Ca,u
· (
∑

i∈{1,2}

fi,x) · (1− η(Γ)− 2Cp,uε) (71f)

≥ CL,l ·
1

Ca,u
· Cp,l,ε · (1− η(Γ)− 2Cp,uε) (71g)

> 0. (71h)

Thus, we can apply Lemma 17 to Ax(h(x), α(x)) to see that

λmin(Ax(h(x), α(x)) ≥ detAx(h(x), α(x))

trAx(h(x), α(x))
.

We can combine the lower bound on detA from (71g) with the following upper bound on trA to find a lower
bound on λmin(Ax(h(x), α(x)) that does not depend on the choice of x ∈ X and (h, α) ∈ Cδ(ε).

trAx(h(x), α(x)) =
∑

i∈{1,2}

ai,x · fi,x +
∑

i∈{1,2}

fi,x
ai,x

+ CL,l(1− Fx;h(x)(α(x))) (72a)

≤ 2Cp,u(Ca,u +
1

Ca,l,δ(ε)
) + CL,l (72b)

=
2Cp,u(Ca,u · Ca,l,δ(ε) + 1) + CL,l · Ca,l,δ(ε)

Ca,l,δ(ε)
(72c)
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Therefore, applying(72c) and (71g), we find that

λmin(Ax(h(x), α(x)) ≥ detAx(h(x), α(x))

trAx(h(x), α(x))

≥
(
CL,l · (1− η(Γ)− 2Cp,uε) ·

1

Ca,u
· Cp,l,ε

)
·
( Ca,l,δ(ε)

2Cp,u(Ca,u · Ca,l,δ(ε) + 1) + CL,l · Ca,l,δ(ε)

)
≥ CL,l · (1− η(Γ)− 2Cp,u · ε) · Cp,l,ε

2Cp,u · (Ca,u · Ca,l,δ(ε) + 1) + CL,l · Ca,l,δ(ε)
·
Ca,l,δ(ε)

Ca,u
.

Recall the definition of κ1,ε from (31). We realize that for all x ∈ X , (h, α) ∈ Cδ(ε), we have that

(Γ− Γ−1) ·Ax(h(x), α(x)) � κ1,ε · I2.

Revisiting (63e), we have that

〈L′′(h, α; (ψ, φ)), (ψ, φ)〉 ≥ (Γ− Γ−1) · EPX
[[
ψ(X) φ(X)

]
AX(h(X), α(X))

[
ψ(X)
φ(X)

]]
(73)

≥ EPX
[[
ψ(X) φ(X)

]
κ1,εI2

[
ψ(X)
φ(X)

]]
(74)

= κ1,εEPX
[
ψ(X)2 + φ(X)2

]
(75)

= κ1,ε||(ψ, φ)||2. (76)

Thus, EP
[
LΓ

RU(h(X), α(X), Y )
]

is κ1,ε strongly convex in (h, α) on Cδ(ε). We note that as ε → 0, then
δ(ε) → 0, as well. So, Ca,l,δ(ε) → Ca,l, where Ca,l is defined in (26) and Cp,l,ε → Cp,l, where Cp,l is defined
in (27), and ε · Cp,u → 0. So, we have that

lim
ε→0

(Γ− Γ−1)
CL,l · (1− η(Γ)− 2Cp,u · ε) · Cp,l,ε

2Cp,u · (Ca,u · Ca,l,δ(ε) + 1) + CL,l · Ca,l,δ(ε)
·
Ca,l,δ(ε)

Ca,u

= (Γ− Γ−1) · CL,l · (1− η(Γ)) · Cp,l
2Cp,u · (Ca,u · Ca,l + 1) + CL,l · Ca,l

· Ca,l
Ca,u

= (1− Γ−1) · CL,l · Cp,l
2Cp,u · (Ca,u · Ca,l + 1) + CL,l · Ca,l

· Ca,l
Ca,u

Thus, as ε→ 0, then κ1,ε → κ1, where κ1 is defined in (28).

C.10 Proof of Theorem 8

Let L(h, α), L1(h, α), L3(h, α), ai,x, fi,x be defined as in the proof of Theorem 7. To show that the population
RU risk is κ2-smooth on Cδ(ε), we show that

〈L′′hα(h, α;ψ, φ), (ψ, φ)〉 ≤ κ2||(ψ, φ)||2L2(PX ,X ).

We have that

〈L′′(h, α;ψ, φ), (ψ, φ)〉
= 〈L′′1(h, α;ψ, φ) + L′′3(h, α;ψ, φ), (ψ, φ)〉

≤ EPX
[[
ψ(X) φ(X)

]
·
(

Γ−1∇2T1,X(h(X), α(X)) + (Γ− Γ−1)∇2T3,X(h(X), α(X))
)[ψ(X)

φ(X)

]]
≤ EPX

[[
ψ(X) φ(X)

]
·
(

Γ−1∇2T1,X(h(X), α(X)) + (Γ− Γ−1)∇2BX(h(X), α(X))
)[
ψ(X)
φ(X)

]]
,
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The second line follows from Lemma 22. The matrix Bx(h(x), α(x)) is as defined in Lemma 21. It suffices
to show that there is κ2,ε such that

Γ−1∇2T1,x(h(x), α(x)) + (Γ− Γ−1)Bx(h(x), α(x)) � κ2,εI2 ∀x ∈ X .

Applying Lemma 19 and Assumption 4, we have that

∇2T1,x(h(x), α(x)) =

[
EPY |X=x

[`′′(Y − h(x))] 0
0 0

]
� CL,uI2. (77)

From the proof of Theorem 7, for 0 < ε < 1−η(Γ)
2Cp,u

, there exists 0 < δ(ε) < Ml so that for (h, α) ∈
Cδ(ε), (Γ − Γ−1)∇2T3,x(h(x), α(x)) is positive definite. So, on this set Cδ(ε), Bx(h(x), α(x)) is also cer-
tainly positive definite. So, Bx(h(x), α(x)) satisfies the conditions of Lemma 17, so we can conclude that
λmax(Bx(h(x), α(x))) ≤ trBx(h(x), α(x)). We can compute an upper bound on trBx(h(x), α(x)). We note
that for (h, α) ∈ Cδ(ε), α(x) ≥Ml−δ(ε) for all x ∈ X because α∗(x) > Ml by Lemma 6 and ||α−α∗||∞ < δ(ε).
So, we have that

trBx(h(x), α(x)) =
∑

i∈{1,2}

ai,x · fi,x +
∑

i∈{1,2}

fi,x
ai,x

+ EPY |X=x
[`′′(Y − h(x))]

≤ 2Cp,u(Ca,u +
1

Ca,l,δ(ε)
) + CL,u.

We arrive at the second inequality by recalling the definition of Cp,u from Assumption 3, Ca,u from (25),
Ca,l,δ from (29), and CL,u from Assumption 4. So, we have that

Bx(h(x), α(x)) �
(

2Cp,u(Ca,u +
1

Ca,l
) + CL,u

)
I2. (78)

Combining the constants from (77) and (78), we have that for (h, α) ∈ Cδ(ε)

Γ−1∇2T1,x(h(x), α(x)) + (Γ− Γ−1)Bx(h(x), α(x)) � κ2,εI2 ∀x ∈ X ,

where κ2,ε is defined as in (33). Thus, we conclude that EP
[
LΓ

RU(h(X), α(X), Y )
]

is κ2,ε-smooth in (h, α)
on Cδ(ε). As, ε→ 0, δ(ε)→ 0. So, Ca,l,δ(ε) → Ca,l. This implies that κ2,ε → κ2 as the radius of the || · ||∞-ball
shrinks.

C.11 Proof of Lemma 9

We note that Θm is a convex subset of Θ. By Lemma 4, the population RU risk is strictly convex on Θ.
So, it is strictly convex on Θm, which means that it has at most one minimizer on Θm. In addition, by an
analogous argument as the proof of Lemma 3, the population RU risk has at least one minimizer on Θm.
Combining these two facts, it has a unique minimizer on Θm called θ∗m.

C.12 Proof of Theorem 10

In this proof, we use the following lemma.

Lemma 28. Define πm : Θ→ Θm to be the projection of θ∗ onto Θm. Under Assumptions 1, 2,3,

||πm(θ∗)− θ∗||L2(PX ,X ) → 0.

Proof in Appendix D.10.

To simplify notation, let L(θ) = EP
[
LΓ

RU(θ(X), Y )
]
. For the sake of contradiction, assume that θ∗m does

not limit to θ∗. This means that there exists δ1 > 0 such that for every m ∈ N, there is Am ≥ m such that

||θ∗Am − θ
∗||L2(PX ,X ) > δ1.
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We have that θ∗ ∈ Θm ⊂ Θ. In addition, θ∗ ∈ Θ by Lemma 2. By the strict convexity of the population
RU risk on Θ (Lemma 4), for some ε > 0, we have that

L(θAm) > L(θ∗) + ε

because by strict convexity, ||θ − θ∗||L2(PX ,X ) > δ1 implies that L(θ) > L(θ∗) + ε for some ε > 0.
Note that L(θ) is continuous at θ∗, so there exists δ2 > 0 such that ||θ − θ∗||L2(PX ,X ) < δ2 implies that

|L(θ)−L(θ∗)| < ε. Since θ∗ is the unique minimizer of the population RU risk, we have that L(θ) < L(θ∗)+ε
in particular. Since πm(θ∗)→ θ∗, there exists M ∈ N such that ||πm(θ∗)− θ∗||L2(PX ,X ) < δ2 for m ≥M. By
continuity of the population RU risk, we have that

L(πm(θ∗)) < L(θ∗) + ε for m ≥M. (79)

In addition, there exists AM ≥M so that ||θ∗AM − θ
∗||L2(PX ,X ) > δ, implying that

L(θ∗AM ) > L(θ∗) + ε.

However, this is a contradiction because θ∗AM is by definition the unique minimizer of the population RU
risk over ΘAM , but we find that πAM (θ∗) ∈ ΘAM satisfies

L(πAM (θ∗)) < L(θ∗AM ).

Thus, we must have that ||θ∗m − θ∗||L2(PX ,X ) → 0 as m→∞.

C.13 Proof of Lemma 11

The goal of the proof is to verify that the conditions of Lemma 13 hold so that we can conclude that θ̂m,n

exists with probability approaching 1 and θ̂m,n
p−→ θ∗m. First, we note that over the sieve space Θm, the

population RU risk is uniquely minimized at θ∗m by Theorem 9. To check the second condition, we observe
that for m sufficiently large, θ∗m ∈ Int(Θm) because θ∗m → θ∗ by Theorem 10 and θ∗ = (h∗, α∗) where
0 < Ml ≤ α∗(x) < Mu for all x ∈ X . Furthermore, it follows from the first part of Theorem 1 that

θ 7→ LΓ
RU(θ(x), y) is convex, which implies that the empirical risk ÊP [LRU(θ(X), Y )] is also convex. Third,

by the Weak Law of Large Numbers, we have the following pointwise convergence

ÊP
[
LΓ

RU(θ(X), Y )
] p−→ EP

[
LΓ

RU(θ(X), Y )
]
.

Thus, ÊP [LRU(θ(X), Y )] and EP
[
LΓ

RU(θ(X), Y )
]

satisfy the conditions of Lemma 13. So, we have that θ̂m,n

exists with probability approaching 1 and θ̂m,n
p−→ θ∗m.

C.14 Proof of Theorem 12

The main goal of this proof is to show that the following theorem applies to our setting.

Theorem 29 (Chen [2007], Theorem 3.2). Let Zi be distributed i.i.d. following a distribution P . Let θ∗ ∈ Θ
be the population risk minimizer

θ∗ = argmin
θ∈Θ

EP [l(θ, Zi)] .

Let θ̂n be the empirical risk minimizer given by

1

n

n∑
i=1

l(θ̂n, Zi) ≤ inf
θ∈Θn

1

n

n∑
i=1

l(θ, Zi) +OP (ε2n).

Let || · || be a norm on Θ such that ||θ̂n− θ∗|| = oP (1). Let Fn = {l(θ, Zi)− l(θ∗, Zi) : ||θ− θ∗|| ≤ δ, θ ∈ Θn}.
For some constant b > 0, let

δn = inf
{
δ ∈ (0, 1) :

1√
nδ2

∫ δ

bδ2

√
H[](w

1+ d
2p ,Fn, || · ||)dw ≤ 1

}
,

where H[](w,Fn, || · ||r) is the Lr(P ) metric entropy with bracketing of the class Fn.
Assume that the following conditions hold.
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1. In a neighborhood of θ∗, E [l(θ, Zi)− l(θ∗, Zi)] � ||θ − θ∗||2.

2. There is C1 > 0 s.t. for all small ε > 0

sup
θ∈Θn:||θ−θ∗||≤ε

Var [l(θ, Zi)− l(θ∗, Zi)] ≤ C1ε
2.

3. For any δ > 0, there exists a constant s ∈ (0, 2) such that

sup
θ∈Θn:||θ−θ∗||≤δ

|l(θ, Zi)− l(θ∗, Zi)| ≤ δsU(Zi)

with E [U(Zi)
γ ] ≤ C2 for some γ ≥ 2.

Then ||θ̂n − θ∗|| = OP (εn), where
εn = max{δn, inf

θ∈Θn
||θ∗ − θ||}.

We will use the following lemmas to show that the conditions of the above theorem are satisfied for our
setting.

Lemma 30 (Chen and Shen [1998], Lemma 2). For θ ∈ Λpc(X ), we have that ||θ||∞ ≤ 2c1−
2p

2p+d ||θ||
2p

2p+d

L2(λ,X ),

where λ is the Lebesgue measure.

Lemma 31. Under Assumptions 2, 4 5, 6, for any h ∈ Λpc(X ), there exists L̄(X,Y ) such that

|L(h(x), y)− L(h∗Γ(x), y))| ≤ L̄(x, y) · |h(x)− h∗Γ(x)|,

where supx∈X EPY |X
[
L̄(x, Y )2 | X = x

]
≤M <∞. Proof in Appendix D.11.

For the metric, we will use || · ||L2(PX ,X ). Since any function θ ∈ Θ only depends on X, || · ||L2(PX ,X ) =

|| · ||L2(P,X×Y). From Theorem 10, Lemma 11, we have that θ̂n
p−→ θ∗ with respect to the L2(PX ,X ) norm.

So, ||θ∗ − θ̂n||L2(PXX ) = oP (1).
First, we note that our observed data (Xi, Yi) is i.i.d.
We aim to verify the second condition. We note that by Theorems 7 and 8, the population RU risk is

strongly convex and smooth in a || · ||∞-ball about the minimizer θ∗. We note that all θ in this || · ||∞-ball
about θ∗ also must lie in a || · ||L2(PX ,X )-ball about θ∗. So, in a L2(PX ,X )-neighborhood of θ∗, we have that

EP
[
LΓ

RU(θ(X), Y )
]
− EP

[
LΓ

RU(θ∗(X), Y )
]
� ||θ − θ∗||2L2(PX ,X ).

We aim to verify the third condition. First, we show the following three intermediate results.

EP
[
(L(h(X), Y )− L(h∗Γ(X), Y ))2

]
. ||h− h∗Γ||2L2(PX ,X ). (80)

EP
[
(α(X)− α∗Γ(X))2

]
� ||α− α∗Γ||2L2(PX ,X ). (81)

EP
[
((L(h(X), Y )− α(X))+ − (L(h∗Γ(X), Y )− α∗Γ(X))+)2

]
. ||θ − θ∗||2L2(PX ,X ). (82)

(80) can be shown by apply Lemma 31.

EP
[
(L(h(X), Y )− L(h∗Γ(X), Y ))2

]
= EP

[
L̄(X,Y )2 · (h(X)− h∗Γ(X))2

]
= EPX

[
EPY |X

[
L̄(X,Y )2 · (h(X)− h∗Γ(X))2 | X = x

]]
≤ sup
x∈X

EPY |X
[
L̄(x, Y )2 | X = x

]
· ||h− h∗Γ||2L2(PX ,X )

� ||h− h∗Γ||2L2(PX ,X ).
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(81) is true by definition. So, we proceed to show (82). We use (80), (81).

EP
[
((L(h(X), Y )− α(X))+ − (L(h∗Γ(X), Y )− α∗Γ(X))+)2

]
≤ EP

[
((L(h(X), Y )− α(X))− (L(h∗Γ(X), Y )− α∗Γ(X)))2

]
= EP

[
((L(h(X), Y )− L(h∗Γ(X), Y ))− (α(X)− α∗Γ(X)))2

]
≤ 2EP

[
(L(h(X), Y )− L(h∗Γ(X), Y ))2

]
+ 2EP

[
(α(X)− α∗Γ(X))2

]
. ||h− h∗Γ||2L2(PX ,X ) + ||α− α∗Γ||2L2(PX ,X )

= ||θ − θ∗||2L2(PX ,X ).

Now, we consider θ ∈ Bε where

Bε = {θ ∈ Θn | ||θ − θ∗||L2(PX ,X ) ≤ ε}.

We aim to show that VarP
[
LΓ

RU(θ(X), Y )− LΓ
RU(θ∗(X), Y )

]
. ε2 when ||θ − θ∗||L2(PX ,X ) ≤ ε.

VarP
[
LΓ

RU(θ(X), Y )− LΓ
RU(θ∗(X), Y )

]
≤ EP

[
(LΓ

RU(θ(X), Y )− LΓ
RU(θ∗(X), Y ))2

]
≤ 3EP

[
(L(h(X), Y )− L(h∗Γ(X), Y ))2

]
+ 3EP

[
(α(X)− α∗Γ(X))2

]
+ 3EP

[
((L(h(X), Y )− α(X))+ − (L(h∗Γ(X), Y )− α∗Γ(X))+)2

]
. ‖h− h∗Γ‖2L2(PX ,X ) + ‖α− α∗Γ‖2L2(PX ,X ) + ‖θ − θ∗‖2L2(PX ,X )

. ‖θ − θ∗‖2L2(PX ,X ).

The second line comes from the Cauchy-Schwarz inequality and the second last line comes from (80), (81),
and (82). This prove the third condition.

Finally, we verify the fourth condition. We consider θ ∈ Bδ, where

Bδ = {θ ∈ Θn | ||θ − θ∗||2L2(PX ,X ) ≤ δ}.

Using a similar argument as in the previous condition, we apply Lemma 31.

|LΓ
RU(θ(x), y)− LΓ

RU(θ∗(x), y)| . |L̄(x, y) · (h(x)− h∗(x))|+ |α(x)− α∗(x)| (83)

. |L̄(x, y)| · ||θ − θ∗||∞ (84)

. |L̄(x, y)| · ||θ − θ∗||
2p

2p+d

L2(λ) (85)

. |L̄(x, y)| · ||θ − θ∗||
2p

2p+d

L2(PX ,X ). (86)

Since Assumption 5 holds, we can apply Lemma 30 to see that for θ ∈ Θ, ||θ||∞ . ||θ||
2p

2p+d

L2(λ), where λ is the

Lebesgue measure. This gives (85). Under Assumption 7, ||θ−θ′||L2(PX ,X ) � ||θ−θ′||L2(λ), which gives (86).

Therefore, the fourth condition holds with s = 2p
2p+d and U(Xi, Yi) = |L̄(Xi, Yi)|. So, by Theorem 29, we

have that ||θ̂n − θ∗||L2(PX ,X ) = OP (max{δn, infθ∈Θn ||θ − θ∗||L2(PX ,X )}).
Let Fn = {LΓ

RU(θ(Xi), Yi)−LΓ
RU(θ∗(Xi), Yi) : ||θ− θ∗||L2(PX ,X ) ≤ δ, θ ∈ Θn}. Let H[](w,Fn, || · ||L2(PX ,X )

be the L2(PX ,X )-metric entropy with bracketing of the class Fn.
Since in our setting, we satisfy the fourth condition of Theorem 29 with s = 2p

2p+d ,

H[](w,Fn, || · ||2) ≤ logN(w1+ d
2p ,Θn, || · ||L2(PX ,X )).

Recall that Θ̃n is the sieve space without truncation. We note that the covering number of Θn is upper
bounded by the covering number of Θ̃n, so we have that

H[](w,Fn, || · ||2) ≤ logN(w1+ d
2p , Θ̃n, || · ||L2(PX ,X )).
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For the finite-dimensional linear sieves, such as those in Example 1 and 2 without truncation, we have
that

logN(w1+ d
2p , Θ̃n, || · ||L2(PX ,X )) . dim(Θ̃n) log(

1

w
)

from Van de Geer and van de Geer [2000]. Then, we have that

1√
nδ2

∫ δ

bδ2

√
logN(w1+ d

2p , Θ̃n, || · ||L2(PX ,X ))dw .
1

δ

√
dim(Θ̃n)

n
log

1

δ
.

We realize that

δn �

√
dim(Θ̃n) log n

n
.

We note that Θ̃n = H̃n × Ãn. We have that dim(Θ̃n) = 2Jdn = O(Jdn). Plugging this in, we have that

δn �
√
Jdn log n

n
.

Now, we can bound the approximation error infθ∈Θn ||θ∗−θ||L2(PX ,X ). Since the truncation of the sieve space
is a contraction map to the true minimizer, we have that

inf
θ∈Θn

||θ∗ − θ||L2(PX ,X ) ≤ inf
θ∈Θ̃n

||θ∗ − θ||∞ ≤ O(J−pn ),

where the last inequality follows from Timan [2014]. So, we can set Jn = ( n
logn )

1
2p+d . Thus, we have that

||θ̂ − θ∗||L2(PX ,X ) = OP

((
logn
n

) p
2p+d

)
.

D Proofs of Technical Lemmas

D.1 Proof of Lemma 17

We note that the eigenvalues of a 2x2 matrix must satisfy

λ2 − (trA)λ+ detA = 0.

Since trA ≥ 0 and detA ≥ 0, the minimum eigenvalue is given by So,

λmin(A) =
trA−

√
(trA)2 − 4 detA

2
.

Let x = trA and y =
√

(trA)2 − 4 detA. Note that y ≤ x because detA ≥ 0. Then we have that

λmin(A) =
x− y

2
=

x2 − y2

2(x+ y)
≥ x2 − y2

2(x+ x)
=
x2 − y2

4x
=

detA

trA
.

In addition, we have that

λmax(A) =
x+ y

2
≤ x+ x

2
= x = trA.

D.2 Proof of Lemma 18

Since H is Gâteaux differentiable with derivative equal to H ′h,α, we aim to show that, for any h, h̃, α, α̃,

〈H ′h,α(h, α)−H ′
h̃,α̃

(0, 0), (h− h̃, α− α̃)〉 > 0
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to establish strict convexity. Without loss of generality, we assume that (h̃, α̃) = (0, 0). Define the Gâteaux
derivative of F and G in (h, α) to be F ′h,α, G

′
h,α, respectively. Let the Gâteaux derivative of G with respect

to h be G′h. We have that

〈H ′h,α(h, α)−H ′h,α(0, 0), (h, α)〉 = 〈F ′h,α(h, α) +G′h,α(h, α)− F ′h,α(0, 0)−G′h,α(0, 0), (h, α)〉
= 〈F ′h,α(h, α)− F ′h,α(0, 0), (h, α)〉+ 〈G′h(h, α)−G′h(0, 0), h〉.

Note that G does not depend on α, so the Gâteaux derivative is G′α(h, α) = G′α(0, 0) = 0. Since F is jointly
convex in (h, α) and G is strongly convex in h and does not depend on α, both terms above are nonnegative.

If h 6= 0, then we have that

〈H ′h,α(h, α)−H ′h,α(0, 0), (h, α)〉 ≥ 〈G′h(h, α)−G′h(0, 0), h)

≥ µ1||h||2 > 0,

where the last line follows follows from G’s strong convexity in h. If h = 0 and α 6= 0, then we have that

〈H ′h,α(h, α)−H ′h,α(0, 0), (h, α)〉 = 〈H ′h,α(0, α)−H ′h,α(0, 0), (0, α)〉
= 〈F ′h,α(0, α)− F ′h,α(0, 0), (0, α)〉
> 0,

where the last inequality follows due to the strict convexity of F in α. Thus, H is strictly convex in (h, α).

D.3 Proof of Lemma 19

We have that T c1,x(c) = −EPY |X=x
[`′(Y − c)] . In addition, T cc1,x(c) = EPY |X=x

[`′′(Y − c)] . So, T1,x is twice
differentiable in c. In addition, we realize that

EP
[
LΓ

RU,1(h(X), Y )
]

= EPX
[
EPY |X=x

[
LΓ

RU,1(h(X), Y )
]]

= Γ−1EPX [TX,1(h(X))] .

D.4 Proof of Lemma 20

First, we compute the first derivatives of T3,x(c, d). Second, we compute the second derivatives of T3,x(c, d)
when d > 0. Finally, we show that T3,x can be used to express EP

[
LΓ

RU,3(h(X), α(X), Y )
]
.

Computing derivatives for the d ≤ 0 case is straightforward. When d ≤ 0, we have that

T c3,x(c, d) = −EPY |X [`′(Y − c) | X = x]

T d3,x(c, d) = −1.

Now, we consider the d > 0 case. To compute the derivatives of

T3,x(c, d) = EPY |X [(`(Y − c)− d)I(`(Y − c) > d) | X = x] ,

we first identify when the condition `(Y − c) > d is satisfied. The strong convexity of ` given by Assumption
2 implies that ` is strictly increasing on y > 0 and ` is strictly decreasing on y < 0. We define `−1

1 to be the
inverse of `(y) on y > 0. We define `−1

2 to be the inverse of `(y) on y < 0. By the Inverse Function Theorem,
we have that

(`−1
i )′(z) =

1

`′(`−1
i (z))

i = 1, 2. (87)

We note that `−1
1 (z) > 0, and `(y) strictly increasing on y > 0, so `′(`−1

1 (z)) > 0. By (87), we have that
(`−1

1 )′(z) > 0. This means that `−1
1 is strictly increasing on its domain. By an analogous argument, we have

that (`−1
2 )′(z) < 0 and `−1

2 is strictly decreasing on its domain.

38



Based on the results above, we realize that for d > 0,

{y ∈ R | `(y − c) > d} = {y ∈ R | y − c > `−1
1 (d)} ∪ {y ∈ R | y − c < `−1

2 (d)}.

Thus, we can rewrite T3,x(c, d) for d > 0 as follows

T3,x(c, d) = EY |X=x

[
(`(Y − c)− d)I(Y − c > `−1

1 (d))
]

+ EY |X=x

[
(`(Y − c)− d)I(Y − c < `−1

2 (d))
]
.

Now, we can compute the derivatives of T3,x(c, d) on d > 0 as follows.

T d3,x(c, d) = EPY |X [−1 · I(`(Y − c) > d) | X = x]

= EPY |X=x

[
−1 · I(Y − c > `−1

1 (d))
]

+ EPY |X
[
−1 · I(Y − c < `−1

2 (d)) | X = x
]

= −Pr(Y > c+ `−1
1 (d) | X = x)− Pr(Y < c+ `−1

2 (d) | X = x)

= −1 + PY |X=x(c+ `−1
1 (d)))− PY |X=x(c+ `−1

2 (d)).

Another way to express T d3,x = −Pr(`(Y − c) > d|X = x).
We realize that

lim
d→0+

T d3,x(c, d) = −1 + PY |X=x(−c)− PY |X=x(−c) = −1 = lim
d→0−

T d3,x(c, d),

so T3,x(c, d) is differentiable at d = 0. Also,

T c3,x(c, d) = −EPY |X [`′(Y − c)I(`(Y − c) > d) | X = x]

= −EPY |X
[
`′(Y − c) · I(Y − c > `−1

1 (d))
]
− EY |X=x

[
`′(Y − c) · I(Y − c < `−1

2 (d)) | X = x
]

We realize that
lim
d→0+

T c3,x(c, d) = −EPY |X [`′(Y − c) | X = x] = lim
d→0−

T c3,x(c, d),

so T3,x(c, d) is differentiable with respect to c.
Second, we compute the second derivatives of T3,x(c, d) when d > 0. It is straightforward to see that

T dc3,x(c, d) = pY |X=x(c+ `−1
1 (d))− pY |X=x(c+ `−1

2 (d)).

In addition, we have that

T dd3,x(c, d) = pY |X=x(c+ `−1
1 (d)) · 1

`′(`−1
1 (d))

− pY |X=x(c+ `−1
2 (d)) · 1

`′(`−1
2 (d))

=
∑

i∈{1,2}

pY |X=x(c+ `−1
i (d)) · 1

|`′(`−1
i (d))|

.

The second line follows because `′(`−1
2 (y)) < 0. Finally, we compute T cc3,x(c, d). First, we recall T c3,x(c, d) from

Lemma 20 and simplify it as follows.

T c3,x(c, d) = −EPY |X [`′(Y − c)I(`(Y − c) > d) | X = x]

= −EPY |X
[
`′(Y − c)I(Y > `−1

1 (d) + c) | X = x
]
− EPY |X

[
`′(Y − c)I(Y < `−1

2 (d) + c) | X = x
]

= −
∫ ∞
`−1
1 (d)+c

`′(y − c)pY |X=x(y)dy −
∫ `−1

2 (d)+c

−∞
`′(y − c)pY |X=x(y)dy

= −
∫ ∞
`−1
1 (d)

`′(y)pY |X=x(y + c)dy −
∫ `−1

2 (d)

−∞
`′(y)pY |X=x(y + c)dy.

Now, we compute T cc3,x(c, d) by differentiating with respect to c and applying integration by parts.

T cc3,x(c, d) = −
∫ ∞
`−1
1 (d)

`′(y)p′Y |X=x(y + c)dy −
∫ `−1

2 (d)

−∞
`′(y)p′Y |X=x(y + c)dy
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= −
(
`′(y)pY |X=x(y + c)

∣∣∣∞
`−1
1 (d)

−
∫ ∞
`−1
1 (d)

pY |X=x(y + c)`′′(y)dy
)

−
(
`′(y)pY |X=x(y + c)

∣∣∣`−1
2 (d)

−∞
−
∫ `−1

2 (d)

−∞
pY |X=x(y + c)`′′(y)dy

)
= `′(`−1

1 (d))pY |X=x(`−1
1 (d) + c) +

∫ ∞
`−1
1 (d)

pY |X=x(y + c)`′′(y)dy

− `′(`−1
2 (d))pY |X=x(`−1

2 (d) + c) +

∫ `−1
2 (d)

−∞
pY |X=x(y + c)`′′(y)dy

= `′(`−1
1 (d))pY |X=x(`−1

1 (d) + c) +

∫ ∞
c+`−1

1 (d)

pY |X=x(y)`′′(y − c)dy

− `′(`−1
2 (d))pY |X=x(`−1

2 (d) + c) +

∫ c+`−1
2 (d)

−∞
pY |X=x(y)`′′(y − c)dy

=
∑

i∈{1,2}

|`′(`−1
i (d))| · pY |X=x(`−1

i (d) + c) + EPY |X [`′′(Y − c)I(`(Y − c) > d) | X = x] .

Thus, when d > 0, T3,x(c, d) is twice differentiable in (c, d).
Lastly, we find that

EP
[
LΓ

RU,3(h(X), α(X), Y )
]

= (Γ− Γ−1) · EP [(`(Y − h(X))− α(X))+]

= (Γ− Γ−1) · EPX
[
EPY |X [`(Y − h(X))− α(X))+ | X]

]
= (Γ− Γ−1) · EPX

[{
EPY |X [(`(Y − h(X))− α(X))I(`(Y − h(X)) > α(X))] α(X) > 0

EPY |X [(`(Y − h(X))− α(X))] α(X) ≤ 0

]
= (Γ− Γ−1)EPX [T3,X(h(X), α(X))] .

D.5 Proof of Lemma 21

Now, define a symmetric 2× 2 matrix Ax(c, d) where

Ax,11(c, d) = T cc3,x(c, d)− EY |X=x [`′′(Y − c)I(`(Y − c) > d)] + CL,l · Pr(`(Y − c) > d | X = x)

Ax,22(c, d) = T dd3,x(c, d)

Ax,12(c, d) = T dc3,x(c, d),

where F is the distribution over `(Y − c) where Y follows PY |X=x. Under Assumption 2, we have that ` is
C`,l-strongly convex, so

EY |X=x [`′′(Y − c)I(`(Y − c) > d)]− CL,l · Pr(`(Y − c) > d|X = x) ≥ 0.

Thus, we have that

∇2T3,x(c, d)−Ax(c, d) =

[
EY |X=x [(`′′(Y − c)− CL,l)I(`(Y − c) > d)] 0

0 0

]
=

[
EY |X=x [(`′′(Y − c)I(`(Y − c) > d)]− CL,lPr(`(Y − c) > d | X = x) 0

0 0

]
� 0.
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So,
∇2T3,x(c, d) � Ax(c, d). (88)

We can also define a symmetric 2× 2 matrix Bx(c, d) where

Bx,11(c, d) = T cc3,x(c, d) + EY |X=x [`′′(Y − c)I(`(Y − c) ≤ d)]

Bx,22(c, d) = T dd3,x(c, d)

Bx,12(c, d) = T dc3,x(c, d).

Under Assumption 2, we have that ` is strongly convex, so

EY |X=x [`′′(Y − c)I(`(Y − c) ≤ d)] ≥ C`,l · Pr(`(Y − c) ≤ d|X = x) ≥ 0.

Thus, we have that

Bx(c, d)−∇2T3,x(c, d) =

[
EY |X=x [`′′(Y − c)I(`(Y − c) ≤ d)] 0

0 0

]
� 0.

So,
∇2T3,x(c, d) � Bx(c, d). (89)

Combining (88) and (89) yields the desired result.

D.6 Proof of Lemma 22

Let L(h, α) = EP
[
LΓ

RU(h(X), α(X), Y )
]
. First, we verify Gâteaux differentiability with respect to α. We

show that the directional derivative of L(h, α) with respect to α in the direction φ exists for all φ ∈ L2(PX ,X ).
We note that the directional derivative with respect to α in the direction φ is given by

L′α(h, α;φ) = lim
θ→0+

L(h, α+ θφ)− L(h, α)

θ
.

We simplify the numerator as follows

L(h, α+ θφ)− L(h, α)

= EP
[
LΓ

RU,2((α+ θφ)(X))
]

+ EP
[
LΓ

RU,3(h(X), (α+ θφ)(X), Y )
]

− EP
[
LΓ

RU,2(α(X))
]
− EP

[
LΓ

RU,3(h(X), α(X), Y )
]

= θ(1− Γ−1) · EPX [φ(X)] + (Γ− Γ−1) · EPX [T3,X(h(X), (α+ θφ)(X))− T3,X(h(X), α(X))] .

The first line follows because only the second and third term of the RU loss depend on α. The second line
follows by Lemma 20. We analyze the second term on the right side of the above equation. We note that by
Lemma 20, the map T3,x(c, d) is differentiable with respect to c, d. So,

lim
θ→0+

T3,x(h(x), α(x) + θφ(x))− T3,x(h(x), α(x))

θ
= T d3,x(h(x), α(x))φ(x).

Therefore, we have that

L′α(h, α;φ) = lim
θ→0+

(1− Γ−1) · θEPX [φ(X)]

θ

+ lim
θ→0+

(Γ− Γ−1) · EPX [T3,X(h(X), α(x) + θφ(X))− T3,X(h(X), α(X))]

θ

= (1− Γ−1) · EPX [φ(X)] + (Γ− Γ−1) · EPX
[
T d3,X(h(X), α(X))φ(X)

]
= EPX

[
((1− Γ−1) + (Γ− Γ−1) · T d3,X(h(X), α(X)) · φ(X)

]
.
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Since the directional derivative of L(h, α) with respect to α and in the direction φ exists for all φ ∈ A, then
L(h, α) is Gâteaux differentiable in α.

We use a similar technique to verify Gâteaux differentiability with respect to h. We show that the
directional derivative of L(h, α) with respect to h in the direction ψ exists for ψ ∈ H. We recall that the
directional derivative of L(h, α) with respect to h in the direction ψ is given by

L′h(h, α;ψ) = lim
θ→0+

L(h+ θψ, α)− L(h, α)

θ
. (90)

We simplify the directional derivative in (90) as follows.

L′h(h, α;ψ) = lim
θ→0+

L(h+ θψ, α)− L(h, α)

θ

=
EP
[
LΓ

RU,1((h+ θψ)(X), Y )− LΓ
RU,1(h(X), Y )

]
θ

+ lim
θ→0+

EP
[
LΓ

RU,3((h+ θψ)(X), α(X), Y )− LΓ
RU,3(h(X), α(X), Y )

]
θ

= lim
θ→0+

Γ−1 · EPX [T1,X(h(X) + θψ(X))− T1,X(h(X))]

θ

+ lim
θ→0+

(Γ− Γ−1) · EPX [T3,X(h(X) + θψ(X), α(X))− T3,X(h(X), α(X))]

θ

= EPX
[
(Γ−1 · T c1,X(h(X)) + (Γ− Γ−1) · T c3,X(h(X), α(X)) · ψ(X)

]
.

The first line follows because only the first and third terms of the RU loss depend on h. The second line
follows because of Lemma 19 and Lemma 20. The third line follows from the differentiability of T1,x, T3,x,
which is given by Lemmas 19 and 20. Since the directional derivative of L(h, α) with respect to h and in
the direction ψ exists for all ψ ∈ L2(PX ,X ), and the directional derivative can be expressed as a continuous
linear function (given the inner product on L2(PX ,X )), then L(h, α) is Gâteaux differentiable in h.

We can compute second derivatives of L(h, α) on C by applying Lemma 19 and Lemma 20. Note that
T3,x is twice-differentiable when d > 0. For (h, α) ∈ C, we have that α(x) ≥ 0. We note that the restriction
of C to the coordinate that corresponds to h is L2(PX ,X ). Let A′ be the resitrction of C to the coordinate
that corresponds to α. In the following result, we consider ψ1, ψ2 ∈ L2(PX ,X ) and φ1, φ2 ∈ A′. We find
that

L′′hh(h, α;ψ1, ψ2) = L′′1,hh(h, α;ψ1, ψ2) + L′′3,hh(h, α;ψ1, ψ2)

= Γ−1EPX
[
T cc1,X(h(X))ψ1(X)ψ2(X)

]
+ (Γ− Γ−1)EPX

[
T cc3,X(h(X), α(X))ψ1(X)ψ2(X)

]
.

L′′hα(h, α;ψ1, φ1) = L′′3,hα(h, α;ψ1, φ1)

= (Γ− Γ−1)EPX
[
T cd3,X(h(X), α(X))ψ1(X)φ1(X)

]
.

L′′αα(h, α;φ1, φ2) = L′′3,αα(h, α;φ1, φ2)

= (Γ− Γ−1)EPX
[
T dd3,X(h(X), α(X))φ1(X)φ2(X)

]
.

D.7 Proof of Lemma 23

Define L1(h, α) = EP
[
LΓ

RU,1(h(X), Y )
]
. From Lemma 22, we have that L1(h, α) is twice Gâteaux differen-

tiable in h with

L′′1,h(h, α;ψ,ψ) = Γ−1EPX
[
T cc1,X(h(X)) · (ψ(X))2

]
.

≥ Γ−1 · CL,l||ψ||2L2(X ,PX)

for ψ ∈ L2(PX ,X ). The last line follows from Assumption 2, where we assume that ` is strongly convex.
Thus, we have that EP

[
LΓ

RU,1(h(X), Y )
]

is Γ−1 · CL,l-strongly convex in h.
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D.8 Proof of Lemma 24

Let L3(h, α) = EP
[
LΓ

RU,3(h(X), α(X), Y )
]
. By Lemma 22, we have that EP

[
LΓ

RU,3(h(X), α(X), Y )
]

is
Gâteaux differentiable in α with

L′3,α(h, α;φ) = (Γ− Γ−1) · EX
[
T d3,X(h(X), α(X)) · φ(X)

]
.

We aim to verify the strict convexity of α 7→ EP
[
LΓ

RU,3(h(X), α(X), Y )
]

via Lemma 24. So, we must
show that for α1, α2 ∈ A that differ on a set of positive measure, we have that

EPX
[
(T d3,X(h(X), α1(X))− T d3,X(h(X), α2(X)) · (α1(X)− α2(X))

]
> 0.

From Lemma 20, we have that

T d3,x(h(x), α(x)) =

{
td3,x(h(x), α(x)) α(x) > 0

−1 α(x) ≤ 0
,

where
td3,x(h(x), α(x)) = −1 + PY |X=x(h(x) + `−1

1 (α(x)))− PY |X=x(h(x) + `−1
2 (α(x))).

By the definition of `−1
1 , `−1

2 from Lemma 20, we have that

`−1
1 (α(x)) > `−1

2 (α(x)).

Under Assumption 3, we have that PY |X=x is strictly increasing, so

PY |X=x(h(x) + `−1
1 (α(x)))− PY |X=x(h(x) + `−1

2 (α(x))) > 0,

which implies that
td3,x(h(x), α(x)) > −1. (91)

Under Assumption 2, `−1
1 is strictly increasing and `−1

2 is strictly decreasing. We realize that if α1(x) > α2(x),
then

PY |X=x(h(x) + `−1
1 (α1(x))) > PY |X=x(h(x) + `−1

1 (α2(x)))

PY |X=x(h(x) + `−1
2 (α1(x))) < PY |X=x(h(x) + `−1

2 (α2(x))),

so
td3,x(h(x), α1(x)) > td3,x(h(x), α2(x)). (92)

Let D = {x ∈ X | α1(x) 6= α2(x)}. Now, we compute

EPX
[
(T d3,X(h(X), α1(X))− T d3,X(h(X), α2(X)) · (α1(X)− α2(X))

]
(93a)

= EPX
[
(T d3,X(h(X), α1(X))− T d3,X(h(X), α2(X)) · (α1(X)− α2(X))I(D)

]
(93b)

= EPX
[
((td3,X(h(X), α1(X))− td3,X(h(X), α2(X))) · (α1(X)− α2(X)) · I(Sα1,0 ∩ Sα2,0 ∩D)

]
(93c)

+ EPX
[
(td3,X(h(X), α1(X)) + 1)(α1(X)− α2(X)) · I(Sα1,0 ∩ Scα2,0 ∩D)

]
(93d)

+ EPX
[
(−1− td3,X(h(X), α2(X)))(α1(X)− α2(X)) · I(Scα1,0 ∩ Sα2,0 ∩D)

]
. (93e)

The first line holds because (T d3,x(h(x), α1(x))− T d3,x(h(x), α2(x)) · (α1(x)− α2(x)) = 0 on Dc. The decom-

position into (93c), (93d), (93e) holds because T d3,x(h(x), α1(x))− T d3,x(h(x), α2(x) = 0 when α1(x) ≤ 0 and
α2(x) ≤ 0.

Since we have that α1, α2 ∈ A and D has positive measure, we can show that P (Scα1,0∩S
c
α2,0∩D) < P (D).

We consider two cases 1) Sα1,0∩D has positive measure and 2) Sα1,0∩D = ∅. Suppose Sα1,0∩D has positive
measure, then clearly

P (Scα1,0 ∩ S
c
α2,0 ∩D) ≤ P (Scα1

∩D) < P (D).
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If Sα1,0 ∩D empty, this means that α1(x) ≤ 0 for all x ∈ D. At the same time, we have that for all α ∈ A,
α(x) ≥ 0 for every x ∈ X . So, we must have that α1 = 0 on D. We must have that α2(x) > 0 on D, because
α1, α2 must differ on D and α2(x) ≥ 0 for all x ∈ X . So, this means that Sα2,0 ∩D has positive measure, so

P (Scα1,0 ∩ S
c
α2,0 ∩D) ≤ P (Scα2,0 ∩D) < P (D).

So, at least at least one of the sets Sα1,0∩Sα2,0∩D, Sα1,0∩Scα2,0∩D, Scα1,0∩Sα2,0∩D has positive measure.

Suppose Sα1,0 ∩ Sα2,0 ∩ D has positive measure. WLOG, if α1(x) > α2(x), then T d3,x(h(x), α1(x) −
T d3,x(h(x), α2(x)) > 0. In addition, if α1(x) < α2(x), then T d3,x(h(x), α1(x) − T d3,x(h(x), α2(x)) < 0. Then
(93c) must be positive. We can use a similar argument to verify that (93d) will be positive if Sα1,0∩Scα2,0∩D
has positive measure and (93e) will be positive if Scα1,0 ∩Sα2,0 has positive measure. Thus, we conclude that

EPX
[
(T d3,X(h(X), α1(X))− T d3,X(h(X), α2(X)) · (α1(X)− α2(X))

]
> 0

so α 7→ EP
[
LΓ

RU,3(h(X), α(X), Y )
]

is strictly convex on A.

D.9 Proof of Lemma 25

Let h∗ ∈ L2(QX ,X ) be the solution to (47). Let the function h̃ be minimizer of (48) at every x. Since h̃
solves (48) for every x ∈ supp(QX),

sup
Q∈SΓ(P,QX)

EQY |X
[
L(h̃(X), Y ) | X = x

]
≤ sup
Q∈SΓ(P,QX)

EQY |X [L(h∗(X), Y ) | X = x] .

Given any marginal distribution QX , we can marginalize over X to see that

EQX

[
sup

QY |X :Q∈SΓ(P )

EQY |X
[
L(h̃(X), Y ) | X

]]
≤ EQX

[
sup

QY |X :Q∈SΓ(P )

EQY |X [L(h∗(X), Y ) | X = x]

]
.

Based on our definition of SΓ(P,QX), we note that for any h ∈ L2(QX ,X )

sup
Q∈SΓ(P,QX)

EQ [L(h(X), Y )] = EQX

[
sup

QY |X :Q∈SΓ(P,QX)

EQY |X [L(h(X), Y ) | X]

]
.

Thus, we have that

sup
Q∈SΓ(P,QX)

EQ
[
L(h̃(X), Y )

]
≤ sup
Q∈SΓ(P,QX)

EQ [L(h∗(X), Y )] .

Finally, by definition of h∗ we must also have that

sup
Q∈SΓ(P,QX)

EQ [L(h∗(X), Y )] ≤ sup
Q∈SΓ(P,QX)

EQ
[
L(h̃(X), Y )

]
.

These last two inequalities yield the desired equivalence.

D.10 Proof of Lemma 28

Recall that we defined the sieve with truncation Θm and sieve without truncation Θ̃m. In addition, define
π̃m : Θ→ Θ̃J to be the projection of a function θ ∈ Θ onto Θ̃J .

By Lemma 2, the truncation is a contraction map to the true minimizer, so

||πm(θ∗)− θ∗||L2(PX ,X ) ≤ ||π̃m(θ∗)− θ∗||L2(PX ,X ).

Now, we verify the conditions of Lemma 15 to show that the right side of the above inequality converges to
zero as m→∞. First, we note that Θ̃ is a Hilbert space (with the L2(PX ,X ) norm). Second, we note that

π̃m(θ∗) =

m∑
i=1

〈θ∗, φi〉φi,

where {φi} is an infinite-dimensional basis for Θ. Since π̃m(θ∗) is a partial sum of the Fourier-Bessel series,
we have that π̃m(θ∗)→ θ∗. This implies that ||πm(θ∗)− θ∗||L2(PX ,X ), as well.
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D.11 Proof of Lemma 31

First, by the Mean Value Theorem, we have that for any z ∈ R,

|`′(z)| = |`′(z)− `′(0)| ≤ |`′′(z̃)| · |z|,

where z̃ is between z and 0. By Assumption 4, |`′′(z̃)| ≤ CL,u, so

|`′(z)| ≤ CL,u · |z|. (94)

Again, by the Mean Value Theorem, we have that for any h ∈ Λpc(X ) and x ∈ X ,

|L(h(x), y)− L(h∗(x), y)| = |`(y − h(x))− `(y − h∗(x))|
= |`′(y − (λ(x) · h(x) + (1− λ(x)) · h∗(x)))| · |h(x)− h∗(x)| λ(x) ∈ [0, 1].

We can define L̄(x, y) = |`′(y − (λ(x) · h(x) + (1 − λ(x)) · h∗(x)))|. Now, we aim to verify that there exists
some 0 < M <∞ such that

sup
x∈X

EPY |X
[
L̄(X,Y )2 | X = x

]
< M.

We apply (94).

EPY |X
[
L̄(x, Y )2 | X = x

]
= EPY |X

[
(`′(Y − (λ(x) · h(x) + (1− λ(x) · h∗(x)) · h∗(x))))2 | X = x

]
= EPY |X

[
(`′(Y − (λ(x) · h(x) + (1− λ(x)) · h∗(x))) · h∗(x))2 | X = x

]
= EPY |X

[
C2
L,u · ((Y − (λ(x) · h(x) + (1− λ(x)) · h∗(x))) · h∗(x))2 | X = x

]
. EPY |X

[
Y 2 | X = x

]
+ h(x)2 + h∗(x)2

. sup
x∈X

EPY |X
[
Y 2 | X = x

]
+ c2

<∞.

The last two lines follow from Assumption 5 and 6. Assumption 5 gives that h, h∗ ∈ Λpc(x), so |h(x)| ≤ c and
|h∗(x)| ≤ c.Assumption 6 gives that supx∈X EPY |X

[
Y 2 | X = x

]
is finite. Thus, supx∈X EPY |X

[
L̄(X,Y )2 | X = x

]
<

∞.
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