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Abstract. This paper examines whether one can learn to play an optimal action while
only knowing part of the true specification of the environment. We choose the monopoly
market as our laboratory, where the monopolist is endowed with an underspecified model
of the market demand, facing model uncertainty. In contrast to the conventional studies
on model uncertainty (e.g., Hansen and Sargent (2007)), the monopolist can observe mar-
ket outcomes and learn about market demand. In contrast to existing learning models,
which typically fix the specification of the monopolist’s model exogenously (e.g., Evans
and Honkapohja (2001)), the monopolist learns to choose a specification of the demand
curve. We formulate the learning dynamics as an algorithm that forecasts the optimal
price based on the data. We assume that the monopolist has a lexicographic preference
over the algorithm’s payoff and complexity cost, seeking an algorithm with a minimum
number of parameters while achieving the maximum payoff (Rubinstein (1986)). Inspired
by PAC learnability (Shalev-Shwartz and Ben-David (2014)), we develop a new notion
of learnability by requiring that the algorithm must produce an accurate forecast with
a reasonable amount of data uniformly over the set of underspecified models. We show
that for the set of demand curves with strictly decreasing uniformly Lipschitz continuous
marginal revenue curve, the optimal algorithm recursively estimates the slope and the
intercept of the linear demand curve, even if the actual demand curve is not linear. The
monopolist chooses a misspecified model to save computational cost while learning the
true optimal decision uniformly over the set of underspecified demand curves.

Keywords. Optimal Sales Mechanism, Underspecified model, Uniform Learnability,
PAC guarantee, Complexity Cost

1. Introduction

A rational decision maker is endowed with a correctly specified model of the state
and the relationship between his action and consequence (Simon (1987)). Yet, it is an
excessively strong assumption that a decision maker is fully aware of all relevant states
and knows the complete specification of the function that maps his strategy to payoffs.
This paper supposes that the decision maker possesses a partial specification of the true
environment, knowing only some but not all properties of the data generating process. In
such cases, we say that the decision maker is endowed with an underspecified model. He
faces model uncertainty (Hansen and Sargent (2007)) as multiple models, including the
true model, could be consistent with the partial specification. Our research objective is
to understand how a decision maker learns to choose a specification to find the optimal
decision under the model uncertainty.
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We choose the monopolistic profit maximization problem (Myerson (1981)) as our lab-
oratory. Our exercise has four features, which together differentiate our research from
the existing studies. First, in contrast to the Bayesian models, the monopolist lacks any
information to form a prior over the set of possible demand curves. The model uncertainty
motivates the robust approach in Hansen and Sargent (2007) and Morris and Bergemann
(2005).

Second, our approach differs from the robust approach to the model uncertainty, which
typically does not provide an opportunity for the decision maker to learn from the data
(Hansen and Sargent (2007) and Morris and Bergemann (2005)).1 In our case, the seller
has an opportunity to observe data to learn about the demand curve. In conventional
learning models, the specification of the model is exogenously fixed, and the algorithm
calculates the unknown parameters. In our exercise, the seller learns the demand curve’s
specification and parameters to learn from the data.

Third, the robust approach focuses on the best response against the worst possible
conjecture, hoping that the strategy can perform “reasonably well” over the admissible set
of demand curves. In our case, the learning algorithm must produce a good approximation
to the true optimal strategy with high confidence uniformly over the set of admissible
demand curves with a reasonable amount of data. If so, we say that the algorithm is
uniformly learnable. Our notion of learnability is closely related to the PAC criterion in
the machine learning literature (Shalev-Shwartz and Ben-David (2014)). Given ϵ > 0 error
bound and 1 − ρ > 0 confidence requirement, we search for a learning algorithm A and
a stopping time T (ϵ, ρ) so that after T (ϵ, ρ) time steps, algorithm A produces a forecast
that is within ϵ neighborhood of the true optimal strategy with probability 1−ρ uniformly
over the set of admissible demand curves. Like the PAC criterion, uniform learnability
disciplines data complexity. The number T (ϵ, ρ) of the time steps should increase at the
rate of a polynomial function of 1/ϵ and the logarithmic rate of 1/ρ.2

Fourth, the monopolist in our exercise bears the computational cost. Absent these
costs, an existing proposal from Cole and Roughgarden (2014) achieves a PAC guarantee
by non-parametrically estimating the demand curve from the buyer’s reported valuation
in the revelation game. In this paper, we consider two sources of computational cost: the
source of data and the complexity of an algorithm. In the revelation game, the buyer’s
private information is freely available to the algorithm. While the direct mechanism is
a widely used mathematical model, an actual trading protocol is rarely the revelation
game. Instead, one has to invert a buyer’s strategy to infer his valuation, which is not a
trivial exercise. We assume it is cheaper to obtain public data than the reported private
information of a buyer. We measure the complexity of an algorithm by the number of
parameters an algorithm has to estimate.3 Following Rubinstein (1986), we assume that
the monopolist has a lexicographic preference over the payoff and the complexity cost. The

1A remarkable exception is a series of papers by Hansen and Sargent (e.g., Hansen and Sargent (2020))
on robust learning models where the authors introduce the possibility of learning while maintaining the
uncertainty aversion.
2We defer a discussion of the precise difference between uniform learnability and PAC to Section 8.
3This type of complexity measure is consistent with the complexity measure for a neural work (cf. Rumel-
hart, McClelland, and the PDP Research Group (1986), Wasserman (1989) and Weisbuch (1990)).
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seller first seeks a uniformly learnable algorithm to maximize the expected profit and then
chooses the simplest learning algorithm among those that achieve the maximum payoff.

We show that a uniformly learnable algorithm must estimate at least two parameters
(Proposition 4.3). We construct an algorithm estimating two parameters that learns uni-
formly the optimal strategy of the monopolist over the set of demand curves with strictly
decreasing uniformly Lipschitz continuous marginal revenue curve. The algorithm recur-
sively estimates a linear demand curve (which can be parameterized by the slope and the
intercept) using price and quantity, learning uniformly the optimal strategy of the mo-
nopolist (Theorem 5.1). Within a “reasonable amount” of time, the monopolistic seller
behaves as if he knows the actual demand curve.

We point out the fundamental difference between articulating (a) “demand is of the
form Q(p) = β0+β1p” where p is the price and (β0, β1) are the paramters to be estimated,
versus (b) “the profit maximizing price and quantity are the same as those induced by the
demand curve Q(p) = β0 + β1p for some (β0, β1).” In the conventional learning model,
we impose the decision maker with misspecified models like (a), assuming cognitive bias
(Fudenberg, Lanzani, and Strack (2021)) or inability to comprehend complex dynamics
(Cho and Kasa (2017)). It is inaccurate to describe the monopolist who chooses (b) as a
decision maker endowed with a misspecified model. Under (b), the monopolist is perfectly
aware of all feasible demand curves. The monopolist is fully capable of estimating the
actual demand curve through a correctly specified model, from which he can calculate the
profit maximizing price.

The monopolist’s goal is to learn about the profit maximizing price and possibly, the
maximum profit, not the demand curve. The choice of the specification of the model for the
demand curve should be a part of the profit maximzing decision of the monopolist. If the
monopolist bears the computational cost, the chosen specification should be the simplest
one among those which guarantee the profit maximizing price with a probability close to
1. The monopolist chooses a misspecified model (such as a linearity of the demand curve).
The point is not that the monopolist is unaware of other possibilities as in most learning
models with misspecification, but that he would not search for a correct specification if
doing so is costly.

While a monopolist could use an algorithm calculating parameters of a correctly speci-
fied model, such as a non-parametric estimation algorithm (as in Cole and Roughgarden
(2014)), the monopolist chooses a simpler model of demand to save computational costs.
In this sense, a misspecified model would be a representation of the procedural rationality
of the seller (Osborne and Rubinstein (1998)).

The rest of the paper is organized as follows. Section 2 reviews the literature, clarifying
our contribution beyond the existing literature. In Section 3, we formally describe the
problem and define the basic concepts, with a summary of the main result. Section 4
describe the research strategy. The construction of the algorithm involves technical steps
that obscure the main feature of the algorithm. Instead, we take a little detour by con-
structing a “weaker” algorithm and shows that the weaker algorithm satisfies a “weaker”
version of PAC guaranteeing property (called the uniform learnability). After analyzing
the weaker algorithm satisfying the uniform learnability, we modify the algorithm to ob-
tain the main result. The weaker notion of convergence is vital for extending our results.
In Section 5, we construct the simplest algorithm among algorithms that uniformly learn
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the optimal strategy. We state the main result, whose proof is in the appendix. Instead of
a formal proof, Section 6 illustrates how the monopolist can efficiently and uniformly learn
the optimal price of a non-linear demand curve through a linear demand curve. Section 7
reports numerical exercises to show that the performance of our algorithm is comparable
to a more elaborate algorithm of Cole and Roughgarden (2014). In Section 8, we first
modify the uniformly learnable algorithm to PAC guarantee the optimal price. We focus
on the case where the monopolist is infinitely patient so that the objective function is
the long run average payoff. In Section 8.2, we extend our result to the case where the
monopolist discounts the future payoff. Section 9 concludes the paper.

2. Literature Review

Our paper differs from three main approaches to investigating the decision problem
with underspecified models. As discussed above, the most prominent approach is that a
decision-maker chooses his actions assuming uncertainty about the environment resolves
in favor of the worst-case (e.g., Hansen and Sargent (2007), Carroll (2015), Carroll (2017),
Du (2018) and Libgober and Mu (2021)). The choice that maximizes the objective under
the worst conjecture will typically differ from the optimal solution against the truth,
sometimes significantly. While data could, in principle, bring the decision-maker closer to
optimality, typically, these models are silent on how the decision-maker might do this. In
contrast, the monopolist in our model seeks to find a true optimal price for an unknown
demand curve by observing data.

In the second approach, the modeler completes the specification of the decision prob-
lem by imposing a (parametric) model, where the decision maker estimates the parameters
using data. While this approach does allow the decision-maker to learn from data, the
specification is fixed exogenously and often excludes the true mapping from actions into
outcomes (e.g., Cho and Kasa (2015), Cho and Kasa (2017), Heidhues, Köszegi, and
Strack (2018), Esponda, Pouzo, and Yamamoto (2021), Frick, Iijima, and Ishii (2021) and
Fudenberg, Lanzani, and Strack (2021)).4 In contrast, the monopolist in our model is
not committed to a particular specification. The monopolist can use the non-parametric
estimation method of the demand curve to avoid the misspecification problem. The mo-
nopolist chooses the linear model with two parameters to minimize the computational
cost, PAC guaranteeing the optimal price. The linear model, which is misspecified, is not
imposed by the modeler but derived from optimization by the monopolist.

This paper follows a third approach initiated by machine learning models5 (e.g., Huang,
Mansour, and Roughgarden (2018), Cole and Roughgarden (2014), Gonczarowski and
Weinberg (2021) and Goncalves and Furtado (2020)). A typical approach in this literature
(Cole and Roughgarden (2014)) assumes that the seller non-parametrically estimates the
demand curve. This approach avoids the underspecification issue, and the seller can

4In the operations research, Besbes and Zeevi (2015) examined the monopoly profit maximization problem,
where the monopolist is endowed with a linear demand curve, estimating the demand curve to choose the
price. Besbes and Zeevi (2015) demonstrated that one could construct an algorithm to let the monopolist
learn the actual optimal price for a class of demand curves satisfying a set of regularity conditions.
5Nisan, Tardos, and Vazirani (2007) report the early applications of the algorithms to game theoretic
models, including the monopoly problem.
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achieve the true optimal curve as the estimator converges to an actual demand curve. The
investigation then focuses on the consistency of the estimator and data complexity.

Following Cole and Roughgarden (2014), we freely borrow the critical concepts devel-
oped in the machine learning literature (e.g., Shalev-Shwartz and Ben-David (2014)). We
depart from Cole and Roughgarden (2014), however, by considering the complexity of the
algorithm and the cost of obtaining data. An essential advantage of the non-parametric
estimation technique is to avoid the misspecification of the demand curve. The down-
side is that the estimation algorithm is complex because the estimator requires a possibly
unbounded number of parameters to represent a highly non-linear demand curve. If the
monopolistic seller incurs the cost of storing the estimator in the memory, he will search
for an algorithm that uses a simpler specification of the demand curve.

3. Description

3.1. Demand. There are N buyers, each of whom is indexed by i ∈ {1, . . . , N} and is
endowed with reservation value vi ∈ [v, v]. Let Fi(vi) be the distribution of valuation of
buyer i. We assume that vi and vj are independent ∀i ̸= j. Given p, buyer i purchases
one unit of the good if p ≤ vi. If the seller charges p, the (normalized) aggregate demand
is

q =
1

N

N∑
i=1

I(vi ≥ p) and Eq = 1− 1

N

N∑
i=1

Fi(p).

Define

F (p) =
1

N

N∑
i=1

Fi(p) and ϵ2 = q − (1− F (p)), (3.1)

where Eϵ2 = 0.
We interpret 1−F (p) as the expected quantity of sales and call the (expected) demand

curve. The actual amount q of sales as a random variable, whose expected value is 1−F (p)
if the price is p. If p = 0, q = 1 with probability 1, and F (p) → 1 as p → v. We can treat
F as a distribution function. Let f be the density function of F .

3.2. What the Monopolist Knows. In the beginning, the complete specification F is
not available to the monopolist. Consequently, the specification of the expected profit

p(1− F (p))

is not fully known to the monopolist. Since the monopolist does not have a prior over the
set of feasible distributions over the valuations, the monopolist does not have sufficient
information to write the maximization problem. Instead, the monopolist knows a proper
subset of actual properties of F . We write the set of distributions that satisfy the said
properties as F .

Let us list the properties we are interested in and define the distributions accordingly.

IH The support of F is [p, p] and f(p) > 0 ∀p ∈ [p, p]. ∀F ∈ F , its density function f
is continuous over [p, p] and its hazard rate

f(p)

1− F (p)
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is increasing.

Let F0 be the set of all distributions over the buyer’s valuations satisfying the increasing
hazard rate property. To avoid technical problems, we assume the Lipschitz continuity of
the density function. Define

Fη =
{
F ∈ F0 | ∃η > 0, ∀p, p′ ∈ [p, p],

∣∣f(p)− f(p′)
∣∣ < η|p− p|

}
as the collection of all feasible distributions over the buyer’s valuations. Fη is a compact
convex subset of F0 and is a large subset of F0 if we choose large η > 0. We collect the
useful properties into a lemma without proof.

Lemma 3.1. (1) ∀η > 0, Fη is (sequentially) compact.
(2) ∀η > 0, there exists a compact set K in the interior of R2

+ so that ∀F ∈ Fη,
(b∗(F ), 1− F (b∗(F ))) ∈ K.

(3) ∪η>0Fη is a dense subset of F0.

In the rational benchmark, the monopolist knows the distribution F of the buyer’s
valuations. In our case, the monopolist only knows that the actual distribution is an
element of Fη: F ∈ Fη.

3.3. Specification. Because the notion of a specification is central to our exercise, we
spell out its precise meaning and related concepts according to how we use the terms in
the paper. We aim to clarify the distinction between various approaches that have been
proposed in the literature.

Consider a decision problem represented by an outcome function G : Σ → ∆(Y ), where
Y is a set of outcomes, Σ is the strategy space and ∆(Y ) is the collection of all distributions
over Y . Let G be the set of all outcome functions. In our problem, Σ will be a price the
seller plans on charging possibly in a randomized fashion and Y will be the realization of
the corresponding realized price and quantity.

In the monopolist market, the decision variable of the monopolist is to choose a price
possibly in a randomized fashion, and the outcome is the probability distribution of price
and quantity, which is completely determined by the aggregate demand function. Instead
of G, we regard the demand function as an outcome function for the rest of the paper
to simplify the exposition. Since the expected demand function and the distribution of
the valuation has 1-1 correspondence, we treat the distribution of buyer’s valuation as the
outcome function. For the rest of the paper, we regard G as an aggregate distribution
over the valuations of the buyers.

Definition 3.2. A specification a pair (R,X(R)) where R is a formal statement and
X(R) is the collection of all feasible parameters under R.

In principle, we can include the parametric restriction beyond R in the definition of
specification. We chose not to do so for two reasons. First, the ensuing analysis does
not rely on specific parametric restrictions. The Second reason is the convention. By
specification, we often refer to the functional restriction on the probability distribution
rather than the parametric restrictions. In practice, R describes the functional form of
an outcome function and x ∈ X(R) is the parameter to determine the distribution over
outcomes.
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Define S(R,X(R)) as the collection of all outcome functions satisfying the formal de-
scription and the parmeteric constraint, whose generic element is written as F . Since
we treat the aggregate distribution of valuations as the outcome function, this paper re-
gards F as the aggregate distribution of the valuations of buyers. For each realized value
x ∈ X(R), we call S(R, x) a model, which describes the properties of the outcome function
for a given parameter x. We say a specification is complete if

∣∣S(x)∣∣ = 1 for all x ∈ X.
Otherwise, the specification is incomplete. A complete specification is necessary for the
decision maker to write down the objective function.

We suppose that F∗ represents the collection of all true distributions.

Definition 3.3. A specification (R,X(R)) is correct if ∀F ∈ F∗, ∃x ∈ X(R) such that
F ∈ S(R, x). Otherwise, we say that S is misspecified.

Our notion of specification is more general than the corresponding definition in Esponda
and Pouzo (2014) who focus on the case of |F∗| = 1. If F∗ is assumed to be a singleton,
our notions would coincide with the definition of Esponda and Pouzo (2014). A model
misspecified if true F ∗ = {F∗} ≠ S(R, x) ∀x ∈ X(R). Our definition of specification is
handy in examining the case where |F∗| > 1. Under the robust approach, for example, the
decisionmaker entertains a set of possible functions instead of a single outcome function.
Note that the definition of specification does not preclude the possibility that ∃x ∈ X(R),
S(R, x) = F ∈ F∗.

We can describe a correct model using different formal statements. It is natural to focus
on the most “parsimonious” specification that contains no superfluous restrictions on the
outcome functions.

Definition 3.4. We call a correct specification (R∗, X(R∗) minimal if there is no R̃ ̸= R∗

such that (R∗ ∨ R̃,X(R∗ ∨ R̃) is a correct specification, where ∨ is the logical “or.”

From now on, we mean the minimal correct specification by the correct specification.
We are ready to define underspecification.

Definition 3.5. Let (R∗, X(R∗) be the (minimal) correct specification, and suppose that a
specification (R,X(R)) is given. We say that (R,X(R)) is underspecified, if ∀x ∈ X(R∗),
S(R∗, x) ⊂ S(R,X(R)). We say that (R,X(R)) is strictly underspecified, if the inclusion
is strict.

Misspecification can be an incomplete specification, although we usually choose a mis-
specified model to complete the specifciation to write down the optimization problem.
Under-specification is an incomplete specification, but not misspecification because the
decision maker knows a part of the true specification. By the definition, the underspec-
ification is incomplete specification so that the decision maker cannot write down the
optimization problem, unless one imposes a further restriction on S(R,X(R)).

A robust decision maker is typically endowed with
∣∣S(R, x)

∣∣ > 1 for x ∈ X(R). If ∀F ∈
F∗, ∃x ∈ X such that F ∈ S(R, x), then the decision maker’s model is underspecified, but
not misspecified. To be underspecified, the model must be consistent with a part of the
correct specification.

As we have introduced many closely related concepts, let us examine an example.
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Example 3.6. Suppose that the set of true distributions, F∗, is a singleton that contains
a truncated Gaussian distribution: F∗ = {F ∗}. That is, a single distribution over the
valuations of buyers can be a true distribution. Suppose that R∗ is the statement that
buyers’ true distributions of valuations are truncated Gaussian distributions parameterized
by three numbers: mean, variance of the untruncated Gaussian distribution and the cut-off
point which determines the lower bound of the support of the distribution of the consumer
valuations.6 Thus, X(R∗) = R×R+×R. The specification is minimal, because a truncated
Gaussian distribution can be identified by three parameters, and cannot be identified by
fewer parameters.

Given x∗ = (x∗1, x
∗
2, x

∗
3) ∈ X(R∗), we can identify a unique truncated Gaussian distri-

bution. The specification is complete, because x∗ determines a unique distribution. The
specification is correct, because any distribution is a trauncated Gaussian distribution if
and only if the distribution satisfies R∗ parameterized by three numbers under R∗.

Suppose RI says that the distribution satisfies the increasing hazard rate property with
a finite mean and variance, whose valuation is bounded from below. Let x = (x1, x2, x3) be
the feasible parameter of means, variances and the lower bound of the valuations. Then,
X(RI) = R× R+ × R = X(R∗).

Since S(R∗, X(R∗)) ⊂ S(R,X(R)), S(R,X(R)) is under-specified. ∀x, S(R, x) admits
multiple distributions that share the identical first and second moments, but may have
different higher order moments. Thus, (X,R(X)) is incomplete specification.

Suppose that RU says that the distribution of the valuations is a uniform distribution
over [v, v] where 0 ≤ v < v < ∞. Note that S(RU , X(RU )) ∩ S(R∗, X(R∗)) = ∅. Thus,
(RU , X(RU )) is a mis-specification.

3.4. The Seller’s Decision Problem. We assume that the monopolist sellers learn
the expected profit-maximizing price of the actual distribution F from the data. To
incorporate the learning process by the monopolist, we consider a dynamic version of the
static model, where the long-run monopolist seller faces a sequence of short-run consumers
with IID draws of their valuations.

Time is discrete: t = 1, 2, 3, . . .. In each period, N consumers enters the market, each
of whom is endowed with reservation value vi,t drawn according to distribution function
Fi(·). The monopolist and N consumers play the game Γ in each period.

The details of Γ profoundly influence the statistical procedure that the monopolist uses
to learn about the optimal price. Let us illustrate two examples of per-period game Γ.
Both games are based on the same monopoly market but generate substantially different
data ex post.

Example 3.7. Suppose that ΓCL is the static monopoly market. At the beginning of
period t, the monopolist estimates the expected demand curve Q̂t−1(p) where p is the price,

where Q̂t−1(p) is a strictly decreasing ℓ-th order polynomial function of p with a strictly
decreasing Lipschitz continuous marginal revenue curve whose slope is bounded away from
0. The monopolist choose pt satisfying

ptQ̂t−1(pt) ≥ pQ̂t−1(p) ∀p ≥ 0.

6This is not the only way to identify a truncated Gaussian.
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If pt ≤ vi,t, buyer i purchases one unit of goods, receiving payoff vi,t − pt. If pt < vi,t,
buyer i rejects this offer, receiving 0. Let qt be the actual number of buyers who purchase
the good in period t. All buyers in period t leave the game and never return. Since the
buyer’s valuatio is drawn each period, qt is a random variable. The monopolist’s payoff in
period t is ptqt. Using (pt, qt), the monopolist updates Q̂t−1 to Q̂t according to a statistical
procedure A, for example, by minimizing the forecasting errors of the quantity.

In Example 3.7, the seller observes only the aggregate outcome from the market (qt)
and remembers the price pt he charges. Thus, the outcome at the end of period t is (pt, qt),
which is also the data for statistical procedure A uses.

Example 3.8. Suppose that ΓCR is the revelation game (Cole and Roughgarden (2014))
of the monopoly market game in Example 3.7. The strategy of each buyer in period t is to
report v̂i,t conditioned on true valuation vi,t in period t.

The monopolist uses the following statistical procedure, which we call ACR. At the be-
ginning of period t, the monopolist has the estimated aggregate distribution F̂t−1 of buyers’
valuations. The monopolist randomly sample K(≤ N) elements from {v̂1,t, . . . , v̂N,t} and

construct an empirical distribution F̃t from K sample of reported types. The monopolist
updates the estimated aggregate distribution according to

F̂t(v) = F̂t−1(v) +
1

t

(
F̃t(v)− F̂t−1(v)

)
(3.2)

and choose pt that maximizes the estimated expected profit

pt(1− F̂t(pt)) ≥ p(1− F̂t(p)) ∀p ≥ 0.

If pt ≤ vi,t, buyer i purchases one unit of goods, receiving payoff vi,t−pt. If pt < vi,t, buyer
i rejects the offer, receiving 0. Let qt be the actual number of buyers who purchase the
good in period t. All buyers in period t leave the game and never return. The monopolist’s
payoff in period t is ptqt.

By the nature of the revelation game, the outcome of one period game Γ in Example
3.8 in period t is

(v̂1,t, . . . , v̂N,t, pt, qt).

Statistical procedure ACR uses only K(≤ N) elements from (v̂1,t, . . . , v̂N,t) to update the

estimated aggregate distribution F̂t−1 to F̂t, while ignoring (pt, qt). Thus, data for ACR is

Dt = (v̂i1,t, . . . , v̂iK ,t)

which is a part of the statistical procedure, while the outcome is a primitive of Γ.
We will be intentionally vague about the details of Γ. We admit any monopoly market

trading protocol but require that the monopolist can observe the delivery price and the
quantity at the end of Γ.7

Assumption 3.9. Let (pt, qt) be the profile of the pairs of price and quantity in period
t ≥ 1, where qt is amount of goods sold at price pt. At the end of one period game Γ, the
monopolist observes (pt, qt) possibley along with other variables.

7We focus on the uniform price for simplicity. We can admit Γ where the monopolist can charge discrimi-
natory prices. Then, we require that the monopolist can observe (p1,t, q1,t, . . . , pK,t, qK,t) where qk,t is the
amount of goods sold at price pk,t.
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The examples highlight three components necessary for the monopolist to learn the
optimal price: data, forecast, and the statistical procedure that maps data to forecast.
Let us explain each component one by one.

3.5. Data. The outcome Ot specifies what a player can observe and is exogenously deter-
mined by the one-period game Γ. Let Ot = (O1, . . . , Ot−1) be the history at the beginning
of period t. Define O as the collection of all histories, whose generic element is Ot for
some t ≥ 1.

By the data, we mean a subset of the outcome that the statistical procedure uses as
input of an algorithm. Let Dt be the data in period t, which is a “sub-vector” of an
outcome Ot in period t. The decision-maker can choose to ignore some elements in the
outcome as in Example 3.8. While outcome Ot is determined by Γ, the algorithm spells
out what elements of an outcome can be a data.

Let dimDt be the number of components in Dt, which cannot be larger than the number
of the observed outcomes in Ot in period t. In Example 3.7, dimDt = 2 and in Example
3.8, dimDt = K and. If the collection and the process of data incur the cost, the configu-
ration of data is a part of the strategic choice of the monopolist in designing a statistical
procedure. Define Dt = (D1, . . . , Dt−1) and D as the collection of all feasible Dt ∀t ≥ 1.

3.6. Forecast. The outcome of the statistical procedure is a forecast, which is a model
for the distribution of the valuations of the buyers. The range of the statistical procedure
is Fη. If the forecast of the distribution is outside of Fη, the decision maker knows the
forecast is wrong and has little reason to follow the recommendation of the forecast.

Because the forecast entails a set of parameters to be estimated, the specification of
forecast is often driven by the convenience of estimation. While we can be completely
general about the range of an algorithm, we opt for a parametric family of specifications
which are widely used in practice but also sufficiently general to approximate a large class
of functions.

Let Rℓ be the statement that

(1)

F (p) = 1−

 ℓ∑
i=0

βip
i

 (3.3)

if 0 < F (p) < 1. The support of F is [p, p].

(2) F ′(p) = f(p) > 0 whenever 0 < F (p) < 1 and Liptschitz continuous with parame-
ter η > 0.

(3) F satisfies the increasing hazard rate property.

so that the expected demand curve

Q(p) =
ℓ∑

i=0

βip
i

is a strictly decreasing smooth function with strictly decreasing marginal revenue curve
whose slope is uniformly bounded away from 0. Define X(Rℓ) as the set of all admissible
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ℓ+ 1 coefficients (βi)
ℓ
i=0. Define

Rf =

∞∨
i=0

Rℓ

and X(Rf ) as the set of all feasible coefficients. We assume that the set of admissible
forecasts is S(Rf , X(Rf )) that the collection of all distribution functions that has the
functional form of (3.3) for some ℓ ≥ 0.

Under our definition of misspecification, we can say that A is correctly specified if ∃ℓ
such that F∗ ⊂ S(Rℓ, X(Rℓ)) and otherwise, misspecified. The decision maker may want
to choose S(Rℓ, X(Rℓ)) with a reasonable size of ℓ to simplify the estimation process.
Since the decision maker does not know the true models F∗, choosing a simpler model
increases the chance of choosing a misspecified model of a demand curve. Since F∗ is not
known to the monopolist, it would be excessive to expect the monopolist to find ℓ so that
F∗ ⊂ S(Rℓ, X(Rℓ)). A natural question is whether the monopolist has to choose a very
large ℓ in order to behave as if he learns the correct demand curve. Our ensuing analysis
shows otherwise.

3.7. Algorithm. An algorithm (a.k.a., statistical procedure) is a mapping from the his-
tory of outcomes into a forecast

A : O → S(Rf , X(Rf ))

where O is the set of all histories of outcomes. A can use only a subset of Ot as data
Dt. Even if a history of outcomes differ, the sequence of data used by A can be identical,
leading to the same forecast.

To maintain some algorithmic simplicity, we focus on recursive algorithms.

A1: Recursive algorithm A is a recursive algorithm if ∃Ψ such that[
A(Ot+1)
Ωt+1

]
= Ψ

(
A(Ot), Dt,Ωt

)
where Ot+1 is obtained by concatenating Ot to Ot and Ωt is any state variable in period
t used by the algorithm, but not a part of the forecast. We require that the internal
state variable Ωt should be updated according to the fixed function Ψ based on what the
algorithm can observe.

The goal of the monopolist is to maximize expected profit by choosing an optimal price.
Let

φ = (φp, φq) : Fη → ∆(R+)×∆(R+)

be the recommendation by the algorithm to choose a (randomized) price φp(Ot) condi-
tioned on Ot, based on the expected sales of φq(Ot). Thus, the recommendation predicts
the expected profit would be Eφp(Ot)φq(Ot). We allow a randomized price, because the
algorithm may need to generate data to learn more about the demand curve. Assum-
ing the obedient monopolist, we interpret φp(A(Ot)) as the actual price charged by the
monopolist in period t, who expects the amount of sales to be φq(A(Ot)).

By an algorithm, we mean statistical procedure A along with the formal description
of Dt ⊂ Ot. Whenever the meaning is clear from the context, we simple refers to A as
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an algorithm along with the data struture Dt ⊂ Ot and the recommendation function
φ = (φp, φ1).

3.8. Complexity Measure. Since A is a recursive algorithm, the input in period t is
(A(Ot), Dt,Ωt). Define

dim(A(Ot), Dt,Ωt) = dim(A(Ot)) + dim(Dt) + dim(Ωt)

as the number of variables the algorithm needs in period t. Since the demand curve
forecast is a polynomial, ∀t ≥ 1, ∀Ot, ∃ℓ and (βi)

ℓ
i=0 such that

A(Ot) = 1−
ℓ∑

i=1

βip
i.

Thus, dim(A(Ot)) = ℓ + 1. Our measure of complexity focuses on the size of memory
necessary for the operation of the algorithm in each period t.

Example 3.10. In Example 3.8, algorithm ACR collects K reports of the reported reser-
vation values from buyers in period t, then dim(Dt) = K. ACR(Ot) is the empirical

distribution F̂t, which can be highly non-linear. To represent F̂t(v) as a collection of pa-

rameters, we need to remember virtually all realized value of F̂t(v̂) for each reported value
v̂ up to t − 1 round. In Example 3.7, A(Ot−1) is an estimated linear demand curve.
Then, dim(A(Ot−1)) = 2. Since the seller updates the estimated demand using (pt, qt),
dim(Dt) = 2.

In some algorithms dimDt or dimA(Ot) can change over time.

Example 3.11. We can implement algorithm ACR in Example 3.8 as a batch process as
in Cole and Roughgarden (2014). Instead of updating the empirical distribution in each
period in response to K new observations, we can calculate the empirical distribution at
the end of terminal round T . Let us call the batch mode algorithm Ao

CR. In each period
t ≤ T − 1, the algorithm takes the K number of reported valuations of the buyers. For
t ≤ T − 1, dim(Dt) = K and dim(Ao

CR(Ot)) = 0 since the algorithm produces no forecast.
In period T , the algorithm calculates the empirical distribution using KT observations of
valuations. But, dim(DT ) = KT because the algorithm requires reading all existing data
to produce Ao

CR(OT ).

In Example 3.7, dimDt = 2 and dimA(Ot) = 2 remain constant until the algorithm
produces the final forecast in period T .

Example 3.12. Suppose that the monopolist estimates a linear demand

q = β0 + β1p

through the least square estimation algorithm ALSE, which recursively estimate (β0, β1)
according to [

β0,t
β1,t

]
=

[
β0,t−1

β1,t−1

]
+

1

t
C−1
t−1

[
1
pt

] (
qt − β0,t−1 − β1,t−1pt

)
and

Ct = Ct−1 +
1

t

([
1 pt
pt p2t

]
− Ct−1

)
.
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The algorithm forecasts the demand curve as q = β0,t+β1,tp which requires two parameters,
using (qt, pt) in each period as in put. Thus, dim(ALSE(Ot−1)) = 2 and dimDt = 2. But,
the algorithm has to keep track of Ct = (cij,t)i,j∈{1,2}, which is a symmetric matrix where
c11,t = 1 ∀t ≥ 1. To keep the record of Ct, the algorithm has to remember c12,t and c22,t.
Thus, dim(Ωt) = 2. Thus, dim(ALSE(Ot−1), Dt,Ωt) = 6.

Definition 3.13. The complexity of A up to time T is

compT (A) = max
1≤t≤T

dim(A(Ot−1), Dt,Ωt)

and if the algorithm operates indefinitely,

comp(A) = sup
t≥1

dim(A(Ot), Dt,Ωt).

3.9. Algorithm Game. The algorithm game is a normal form game between the mo-
nopolist and the nature.8 The monopolist’s strategy space is A that the set of algorithms
satisfying A1 (along with recommendation function φ and the choice of Dt ⊂ Ot as a part
of the algorithm). The nature’s strategy space is F∗, which we assume is a subset of Fη.
After (A, F ) ∈ A×F∗ is selected, the continuation game is played between the algorithm
and the sequence of short run consumers.

Conditioned on (A, F ) ∈ A×F∗, the algorithm generates recursively pt and

qt = 1− F (pt) + ϵ2,t

amount of goods is sold, where ϵ2,t is defined according to (3.1) ∀t ≥ 1. Let (pt, qt) be
the stochastic process of the pair of price and quantity realized according to (A, F ). The
payoff of the monopolist is the expected long run average payoff.

U(A, F ) = lim
T→∞

1

T
E

T∑
t=1

[
ptqt | F ∈ F∗] (3.4)

We need not write down the payoff function of the nature, because the only move of the
nature is to choose F ∈ F∗.

The natural optimization problem of the monopolist would be to choose

A ∈ argmax
A∈A

U(A, F )

for given F ∈ F∗. Because the performance of an algorithm is evaluated against the
actual distribution of valuation, however, the monopolist cannot observe at the time when
he selects an algorithm. Moreover, the monopolist does not know F∗, and does not
have a prior over F∗. The assessment of an algorithm is evaluated by ex-post expected
payoff after the true demand curve is revealed to the monopolist. The expected profit
maximization problem of the monopolist is not well defined, because the monopolist’s
model is underspecified, and therefore, incompletely specified.

If one follows the robust approach, we would assume the monopolist optimizes against
the “evil” nature whose goal is to minimize the monopolist’s payoff:

max
A∈A

min
F∈Fη

U(A, F ).

8We suppress the decision problem of the buyer, assuming that the buyer uses a dominant strategy to
purchase a good if vi,t ≥ p.
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Instead, the monopolist is searching for a dominant solution of the game:

A ∈
⋂

Π∈∆(Fη)

argmax
A∈A

∫
F
U(A, F )dΠ(F ). (3.5)

where ∆(Fη) is the probability distribution over Fη. Since Fη is underspecified, F∗ ⊂ Fη.
Thus, A induces the best response against the true distribution in the long run.

We assume that the monopolist incurs the complexity cost. The monopolist has lexico-
graphic preference over the long run average profit and the complexity cost.

Definition 3.14. A∗ ∈ A is an optimal algorithm if

A∗ ∈
⋂

Π∈∆(Fη)

argmax
A∈A

∫
F
U(A, F )dΠ(F )

and

comp(A∗) ≤ comp(A) ∀A ∈
⋂

Π∈∆(Fη)

argmax
A∈A

∫
F
U(A, F )dΠ(F ).

3.10. Useful Results. To make the profit maximization problem meaningful, the mo-
nopolistic seller must know ex ante that an algorithm can find the optimal price of any
demand curve uniformly over Fη. For F ∈ Fη, define (b∗(F ), q∗(F )) as

b∗(F ) = argmax
p

p(1− F (p))

Thanks to the increasing hazard rate property, the optimization problem admits a unique
solution b∗(F ).

It is not straightforward to verify whether a given algorithm is a dominant strategy in A,
because of the complexity of A. We exploit the PAC guaranteeing property developed in
the computer science literature (Shalev-Shwartz and Ben-David (2014)) to find an optimal
algorithm.

Definition 3.15. A PAC guarantees Fη if ∀µ > 0, ∀λ ∈ (0, 1) and T (µ, λ) such that

P
(∣∣φ(A(Ot))− (b∗(F ), 1− F (b∗(F )))

∣∣ ≥ µ
)
≤ λ ∀t ≥ T (µ, λ) (3.6)

where T (µ, λ) ∼ O
(
− log λ

µp

)
for some p > 0.

If A PAC guarnatees b∗ over Fη, A learns b∗(F ) uniformly over Fη. Since F∗ ⊂ Fη,
A forecast the best response for every F ∈ Fη accurately with high confidence. Because
µ > 0 and λ ∈ (0, 1) is arbitrary, we can show that A is a dominant strategy of A. For
later reference, we state the observation without a proof.

Proposition 3.16. If A PAC guarantees Fη, then A is a dominant strategy in A.

Following Cole and Roughgarden (2014), one can prove that algorithm ACR in Example
3.8 PAC guarantees Fη if Γ is the revelation game version of the monopoly market.

Theorem 3.17. Suppose that Γ is the revelation game of the monopoly problem. ACR

PAC guarantees Fη, and therefore a dominant strategy in A.

Proof. See Cole and Roughgarden (2014). □
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We have yet to show whether a dominant strategy exists if Γ is not the revelation game
as in Example 3.7. Also, if a dominant strategy exists, we ask whether a simpler algorithm
can PAC gurantee b∗ over Fη.

As a first step to find an optimal algorithm, we show that the forecast of A must be
sufficiently elaborate to PAC guarantee Fη. Recall that F ∈ S(Rℓ, X(Rℓ)) implies that
F is ℓ-th order polynomial. If ℓ = 0, ∀F ∈ S(R0, X(R0)) is a denerate distribution
concentrated at v ∈ [p, p], which induces the aggregate expected demand curve where
p > v, the expected demand is 0, and p ≤ v, the expected demand is 1. Note that
F ∈ F ∈ S(R0, X(R0)) is parameterized by a single number.

Proposition 3.18. If A : O → S(R0, X(R0)), A is not a dominant strategy in A.

Proof. See Appendix A. □

To be a dominant strategy in A, the range of a dominant strategy algorithm must be at
least S(R1, X(R1)). The complexity of a forecast must be at least 2. Since the algorithm
essentially forecasts the demand curve, the minimal data is the pair of price and quanity
and the complexity of input data must be at least 2. If we can construct a recursive
algorithm with forecast complexity of 2 and data complexity of 2 that can PAC gurantees
Fη, we have an optimal algorithm in A.

Let us summarize the main result of the paper.

Theorem 3.19. We can construct a recursive algorithm

A : O → S(R1, X(R1))

that PAC guarantees Fη, where dim(A(Ot)) = dim(Dt) = 2 ∀t ≥ 1 and comp(A) = 4.

4. Detour

The construction of the optimal algorithm involves technical steps, which tend to ob-
scure the central ideas of the algorithm. Instead of directly constructing the optimal
algorithm in Theorem 3.19, we take a detour by constructing an algorithm which satisfies
weaker criteria of optimality and PAC learnability. The weaker notion is based on the
performance of the algorithm over a finite number of periods. We need to weaken the
criterion for optimality in order to accommodate the finite number of observations which
are not sufficient to average out all stochastic components in the forecast. The detour has
several important benefits.

First, the weaker notions of dominance and PAC learnability allow us to examine some
algorithms such as Ao

CR in Example 3.11, whose complexity is ∞ if the algorithm has to
run indefinitely. The weaker notion of PAC learnability is defined for an algorithm that
terminates in a finite number of rounds, producing the final forecast, which the monopolist
uses for the continuation game.9 We can compare Ao

CR to a weaker version of the optimal
algorithm in Theorem 3.19 to highlight the substantive difference of our algorithm over
the classic benchmark of Ao

CR.
Second, we need to relax the criterion of best response by allowing the response to be

close to the best response, and define the weaker notion of dominance accordingly. We

9A typical machine learning algorithm (e.g., Schapire and Freund (2012) goes through a finite number of
rounds of training, and terminates with a final forecast.
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show that the weaker notion of dominance is equivalent to the weaker notion of PAC
guaranteeing property. The weaker notion of dominance is useful for extending to the case
where the monopolist discounts the future payoff.

Third, the algorithm constructed to meet the weaker notion of PAC learnability is easier
to construct than the optimal algorithm in Theorem 3.19. The algorithm generates more
robust numerical results, which greatly helps to compare the numerical performance of
our algorithm to our benchmark algorithm Ao

CR.
To define a weaker notion of a dominant strategy in A, let us imagine a monopolist who

can run algorithm A for a finite number of rounds, say T , to learn the optimal price and
the maximized profit. At the end of period T , the algorithm produces the final forecast
(φp(OT ), φq(OT )), which the monopolist uses for the continuation game.10 Thus, the long
run average payoff is

U(A, F, T ) = Eφp(OT )(1− F (φp(OT ))).

Define for a small ϵ > 0, and F ∈ F∗,

BRϵ(F, T ) =
{
A | U(A, F, T ) ≥ b∗(F )(1− b∗(F ))

}
as the set of ϵ best responses against F if the algorithm can run for T rounds. Define the
set of ϵ dominant strategies as ⋃

T≥1

⋂
F∈Fη

BRϵ(F, T )

and its element is called an ϵ dominant strategy. If A is an ϵ dominant strategy, then ∃T
such that A generates ϵ best response by T rounds for all F ∈ Fη. The substance of the
definition is that the termination time and the amount of deviation from the best response
are uniform over Fη.

We define the uniform learnability as a weaker version of PAC guarantee. PAC guarantee
requires that the recommendation of the algorithm must converge to the actual optimal
price and expected quantity uniformly in probability. Instead, we only require the uniform
convergence in expectation.

Definition 4.1. A is uniformly learnable of Fη if ∀λ ∈ (0, 1), ∃A and T (λ) such that

E
(∣∣∣φ(A(DT (µ,λ)))− (b∗(F ), 1− F (b∗(F )))

∣∣∣) ≤ λ (4.7)

where T (λ) ∼ O (− log λ).

Given the accuracy bound µ and the confidence bound 1− λ, the uniform learnability
requires us to construct an algorithm A and stopping time T (µ, λ) such that the algorithm
produces a forecast by period T (µ, λ) satisfying accuracy and confidence bounds.

It is straightforward to show that any uniformly learnable A is an ϵ dominant solution.
Let us state the observation without proof for later reference.

Proposition 4.2. ∀ϵ > 0, A is an ϵ dominant strategy if and only if ∀λ ∈ (0, 1), ∃A and
T (λ) such that

E
(∣∣∣φ(A(DT (µ,λ)))− (b∗(F ), 1− F (b∗(F )))

∣∣∣) ≤ λ

10Following the terminology of the computer science, we can call T as the training period, and
(φp(Ot), φq(Ot)) as the final hypothesis.
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Proof. See Appendix B □

Note that we drop the data complexity from the weak learnability in establishing the
equivalence condition with the ϵ dominance. The data complexity dictates the rate at
which the expected profit recommended by the algorithm converges to the actual max-
imized profit. Because the monopolist is infinitely patient, he is not concerned of the
rate.

Following the same logic as in Proposition 4.3, we can establish the same lower bound.

Proposition 4.3. If A : O → S(R0, X(R0)), A is not an ϵ dominant strategy in A for
any sufficiently small ϵ > 0.

5. Construction

We now construct a recursive algorithm

Aa : O → S(R1, X(R1))

with dim(A(Ot−1)) = dim(Dt) = 2 ∀t ≥ 1, where a > 0 is the parameter selected to meet
the accuracy and confidence bound (µ, λ). We show that for a sufficiently small a > 0,
the constructed algorithm Aa is uniformly learnable of Fη.

5.1. Linear Recursive Algorithm. Our algorithm uses price and quantity as data.
Dt = (qt, pt) is the pair of quantity qt and the price pt charged in period t. Recall that qt
is a random variable with Eqt = 1− F (pt). We can write

qt = 1− F (pt) + ϵ2,t.

Eϵ2,t = 0 and Eϵ22,t < ∞ uniformly, but the actual size of the second moment can depend
on pt and F ∈ F .

Let
Ot = (O1, . . . , Ot−1)

be the history at the beginning of period t. The monopolist assumes that the aggregate
demand is a linear function:

q = β0 + β1p

and estimates (β0, β1) according to the least square estimation over Ot. Let H be the set
of all linear demand functions, parameterized by (β0, β1).

Since F ∈ Fη, the optimal solution b∗(F ) must generate a positive profit. Thanks to the
uniform bound η, there exists a compact set K in the interior of R2

+ such that b∗(F ) ∈ K
∀F ∈ Fη. Thus, (β0, β1) must be such that the optimal price and the expected quantity
under the linear demand curve parameterized by (β0, β1) must be contained in K.

Recall that if (β0, β1) can support b∗(F ) for some F ∈ Fη,

1− F (b∗(F )) =
β0
2

and b∗(F ) = − β0
2β1

or equivalently,

β0 = 2(1− F (b∗(F )) and β1 = −1− F (b∗(F ))

b∗(F )
.

Since (1 − F (b∗(F )), b∗(F )) ∈ K, there exists a compact set B ⊂ (0,∞) × (−∞, 0) such
that (β0, β1) ∈ B if the linear demand can support a true optimal price. If (β0, β1) ̸∈ B,
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then the monopolist can conclude that the estimated demand is wrong, based on what the
monopolist knows.

Let HB ⊂ H be the collection of the linear demand, which induces the market outcome
in K. The seller knows that the market demand curve is in HB. Since F typically
contains non-linear demand curves, HB is a misspecified model. Nevertheless, the number
of parameters the seller has to keep track of is minimal.

Since the seller does not know (β0, β1), the seller recursively estimates the parameters
using the least square estimation method while choosing the pricing rule based on the
estimated linear demand curve. Let (β0,t−1, β1,t−1) be the least square estimator at the
end of period t− 1. Given the estimated demand curve

q = β0,t−1 + β1,t−1p,

the monopolist calculates the optimal price

bt = − β0,t−1

2β1,t−1

but incurs an implementation error ϵ1,t so that the actual price in period t is

pt = − β0,t−1

2β1,t−1
+ ϵ1,t

where ϵ1,t is i.i.d. with Eϵ1,t = 0 and Eϵ21,t = σ2
1. We interpret ϵ1,t as the implementation

error or the small experimentation by the monopolist seller. We choose ϵ1,t from a small
interval [−ϵ, ϵ] according to a fixed distribution, say the uniform distribution. We control
the size of ϵ > 0 to achieve the desired level of accuracy of the algorithm.

The monopolist forecasts that the sales quantity will be

β0,t−1 + β1,t−1

[
− β0,t−1

2β1,t−1
+ ϵ1,t

]
=

β0,t−1

2
+ β1,t−1ϵ1,t

but the actual quantity in period t is

qt = 1− F

(
− β0,t−1

2β1,t−1
+ ϵ1,t

)
+ ϵ2,t.

The forecasting error is

ϕ(βt−1, ϵt) = 1− F

(
− β0,t−1

2β1,t−1
+ ϵ1,t

)
+ ϵ2,t −

β0,t−1

2
− β1,t−1ϵ1,t

where βt−1 = (β0,t−1, β1,t−1) and ϵt = (ϵ1,t, ϵ2,t).
Since the quantity must be in the closed interval [0, 1], we first take care of the cases

of “corner solution” before moving to “interior solution.” If actual quantity qt is at the
boundary, we directly update (β0,t−1, β1,t−1).

Fix a > 0 (which will be a parameter of the constructed algorithm.) If qt = 0, then the
algorithm concludes that the forecast price was too high and adjusts accordingly:

β0,t = β1,t − a and β1,t = β1,t−1
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so that

bt+1 = − β0,t
2β1,t

= − β0,t−1

2β1,t−1
+

a

2β1,t−1
= bt +

a

2β1,t−1
< bt,

where small a > 0 is a parameter of the algorithm that will be determined to satisfy the
precision and the confidence requirements. Similarly, if qt = 1,

β0,t = β1,t + a and β1,t = β1,t−1

so that
bt+1 = bt −

a

2β1,t−1
> bt.

If 0 < qt < 1, then[
β0,t
β1,t

]
=

[
β0,t−1

β1,t−1

]
+ aR−1

t−1

[
1

− β0,t−1

2β1,t−1
+ ϵ1,t

]
ϕ(βt−1, ϵt) (5.8)

where

Rt−1 =

 1 − β0,t−1

2β1,t−1

− β0,t−1

2β1,t−1

(
− β0,t−1

2β1,t−1

)2
+ σ2

1


and a > 0 is a parameter we choose to meet the accuracy and confidence requirement of
the algorithm. Since the monopolist designs the size of the experiments, the variance σ2

1

of ϵ1,t is a known parameter.11

We need to impose a bound to (β0,t, β1,t) to keep the estimator within a compact set.
Let B be a compact convex set that contains B in the interior of B so that the Hausdorff
distance between B and B is positive. If (β0,t, β1,t) ̸∈ B, then the seller can conclude that
the estimator is out of the line and needs to adjust the estimator by pushing it back to
B.12

We modify the baseline updating scheme to construct the formal updating scheme for
(β0,tβ1,t). [

β0,t
β1,t

]
=

[
β0,t−1

β1,t−1

]
+ aR−1

t−1

[
1

− β0,t−1

2β1,t−1
+ ϵ1,t

]
ϕ(βt−1, ϵt) (5.9)

if the right hand side is in B. Otherwise, (β0,t, β1,t) = (β0, β1) ∈ B for some fixed (β0, β1)
in the interior of B. To simplify notation, we write

φt−1 ≡ φ(βt−1, ϵt) = R−1
t−1

[
1

− β0,t−1

2β1,t−1
+ ϵ1,t

]
ϕ(βt−1, ϵt). (5.10)

Treating the estimated demand curve

q = β0,t−1 + β1,t−1p

11The covariance matrix Rt−1 is known to the seller because the seller knows the mean and the variance of
the price in period t. Therefore, the algorithm has to keep track of 2 estimators: β0,t, β1,t. The algorithm
differs from the recursive least square estimation algorithm, where the independent variable’s mean and
variance (i.e., price) are unknown to the seller and must be estimated. The recursive least square estimation
algorithm has to keep track of 4 estimators: β0,t, β1,t along with the mean and the variance of the prices.
12This mapping is known as the projection facility in the literature of the stochastic approximation (Kush-
ner and Yin (1997)).
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as the actual demand curve, the seller sets the price

pt = − β0,t−1

2β1,t−1
+ ϵ1,t

where ϵ1,t is an i.i.d. white noise uniformly distributed over [−ϵ, ϵ] for a fixed ϵ > 0 so
that Eϵ1,t = and Eϵ21,t = σ2

1. Given pt, the quantity in period t

qt = 1− F (pt) + ϵ2,t

is realized. Using (qt, pt), the seller updates (β0,t−1, β1,t−1) to (β0,t, β1,t). The translating
function maps the estimated linear demand curve into the mean forecast price and quantity− β0,t−1

2β1,t−1
, 1− F

(
− β0,t−1

2β1,t−1

) .

Let Aa be the recursive algorithm with constant gain parameter a > 0 ∀t ≥ 1. ∀a ≥ 0,
algorithm Aa produces βt following history Ot, where

Ot = ((q1, p1), . . . , (qt−1, pt−1))

is the sequence of aggregate market outcomes up to period t−1. The constructed algorithm
is recursive: Aa(Ot) = βt is the output of the algorithm based on Dt and Aa(Ot−1). The
input complexity

dim(Aa(Ot−1)) = 2 and dim(Dt−1) = 2 ∀t ≥ 1,

so that compT (Aa) = 4 ∀T ≥ 1. We will choose a > 0 to satisfy the accuracy and
confidence requirement.

To emphasize that the optimal price b∗ is a function of the underlying (aggregate)
distribution F , we sometimes write b∗(F ) instead of b∗. Let β∗(F ) be the pair of estimators
that induce the optimal price for F :

b∗(F ) = − β∗
0(F )

2β∗
1(F )

and q∗(F ) = 1− F (b∗(F )).

Theorem 5.1. ∀µ > 0, ∀λ > 0, ∃T (µ, λ) and ∃a > 0 such that

P
(∣∣∣∣φ(Aa(OT (µ,λ))

)
− (b∗(F ), q∗(F ))

∣∣∣∣ > 4µ

)
≤ λ ∀F ∈ Fη

where T (µ, λ) ∼ O
(
− log λ

µp

)
for some p > 0.

Proof. See Appendix C. □

6. Heuristics

In this section, we provide a heuristic explanation about how to prove Theorem 5.1,
delegating formal details to the Appendix. An important implication of the increasing
hazard rate property is that the optimal price b∗(F ) associated with F is unique and
completely determined by the first order condition

1− F (b∗(F ))

f(b∗(F ))
− b∗(F ) = 0. (6.11)
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For fix τ > 0, define

T (a, τ) =

⌈
τ

a

⌉
.

Following the control theory literature (Kushner and Yin (1997)), we interpret τ as the
(clock) time, and a > 0 as the time interval between two adjacent observations of (qt, pt)
and (qt−1, pt−1). Thus, T (a, τ) is the number of time steps that can be “squeezed” into
τ > 0 (clock) time, where we think of a as representing the length of a period. We are
interested in the dynamics of βt over small τ > 0 when the monopolist can observe data
very frequently:

βt+T (a,τ) − βt

τ
with βt = β0, whose property can be inferred by taking limits:13

lim
τ→0

lim
a→0

βt+T (a,τ) − βt

τ
.

Using the recursive nature of the algorithm, we can write

βt+T (a,τ) − βt =
τ

T (a, τ)

T (a,τ)∑
k=1

φt+k

which implies

βt+T (a,τ) − βt

τ

=
1

T (a, τ)

T (a,τ)∑
k=1

φt+k

=

 1

T (a, τ)

T (a,τ)∑
k=1

Et+k−1φt+k

+

 1

T (a, τ)

T (a,τ)∑
k=1

φt+k − Et+k−1φt+k

 (6.12)

where φt+k is defined in (5.10). Our proof will analyze this expression in detail. Define

ξt+k = ϕt+k − Et+k−1φt+k (6.13)

which is a martingale difference.

6.1. Tracking the Mean. Let us examine the first term in (6.12) as a → 0 for a small

fixed τ > 0. βt+T (a,τ) − βt is an average of {ϕt+k}
T (a,τ)
k=1 . We can approximate

lim
a→0

βt+T (a,τ) − βt

τ
≃ E

[
φt | βt = β

]
or more concisely as

ḃ = E
[
φt | βt = β

]
.

To derive the formula of the right hand side, let us fix (β0,t, β1,t) = (β0, β1) ≡ β and
calculate the expected value of the estimator in the “next period” if the monopolist chooses

13Under the conditions we have imposed, a limit exists (cf. Kushner and Yin (1997)).
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the estimator to minimize the forecasting error. Given (β0, β1), the next period’s quantity
q′ and price p′ are

(q′, p′) =

{(
b+ ϵ, 1− F (b+ ϵ)

)
with probability 0.5(

b− ϵ, 1− F (b− ϵ)
)

with probability 0.5.

where

b = − β0
2β1

. (6.14)

To fit the observed data best, the monopolist chooses the new coefficients (β′
0, β

′
1) passing

through
(
b+ ϵ, 1− F (b+ ϵ)

)
and

(
b− ϵ, 1− F (b− ϵ)

)
. A simple calculation shows

β′
0 = 1− F (b) + bf(b)

β′
1 = −f(b)

modulo linear approximation error at the order of ϵ2. Results from stochastic approxima-
tion theory14 shows that the asymptotic properties of the mean of (β0,t, β1,t) are dictated
by the dynamic properties of the associated ordinary differential equation (ODE)

β̇0 = β′
0 − β0 = 1− F (b) + bf(b)− β0 (6.15)

β̇1 = β′
1 − β1 = −f(b)− β1.

Since (6.14) holds in every period, we take the time derivative on both sides of the equality
to have

ḃ = − 1

2β1

(
β̇1 + 2bβ̇0

)
.

After substituting β̇1 and β̇0 by (6.15), we have

ḃ = −f(b)

2β1

[
1− F (b)

f(b)
− b

]
. (6.16)

Since the demand curve 1−F (p) is strictly decreasing, β1 < 0. Thus, −f(b)
2β1

> 0. The term

inside the bracket has a unique solution b∗(F ), the profit-maximizing price for (actual)
distribution F . By the increasing hazard rate property, the term in the bracket is strictly
decreasing for b, which makes b∗(F ) a stable stationary solution of (6.16). The stochastic
approximation implies that the least square learning algorithm weakly converges to b∗(F )
(Kushner and Yin (1997)).

So far, we have only shown the convergence “pointwise” for F , allowing the number of
data needed to achieve the desired level of accuracy can depend on F . We need to do

additional work to show the uniform convergence over Fη. Since 1−F (b∗(F ))
f(b∗(F )) − b∗(F ) = 0,

1− F (b)

f(b)
− b =

1− F (b)

f(b)
− b−

(
1− F (b∗(F ))

f(b∗(F ))
− b∗(F )

)
.

With the increasing hazard rate property,

1− F (b)

f(b)
− b−

(
1− F (b∗(F ))

f(b∗(F ))
− b∗(F )

)
≤ −(b− b∗(F )).

14See Kushner and Yin (1997) for details.
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We can show that ∃c > 0 such that15

ḃ = ˙(b− b∗(F )) ≤ −c(b− b∗(F )) < 0

if b > b∗(F ). Similarly, if b < b∗(F ), then

ḃ ≥ −c(b− b∗(F )) > 0

for any F ∈ Fη.
Since b∗(F ) ≤ [p, p] ∀F ∈ Fη, the initial condition of the ordinary differential equation

can be selected from a compact set. Since the distance |b− b∗(F ))| vanishes uniformly at
the order of e−cτ , it takes O(− logµ) amount of time for b to enter the µ neighborhood
of b∗(F ). This observation proves that the amount of data to approximate the optimal
price is uniform over Fη. We can also show that the number of data to achieve µ accuracy
increases at the polynomial rate of 1/µ.

6.2. Calculating the Confidence Bound. To calculate the confidence bound, we need
to examine the distribution of

1

T (a, τ)

T (a,τ)∑
k=1

ξt+k

where ξt+k is defined as (6.13). By the law of large numbers, we know the average converges
to 0. To satisfy the confidence requirement, we need to find ρ > 0 such that

P

∣∣∣∣∣∣ 1

T (a, τ)

T (a,τ)∑
k=1

ξt+k

∣∣∣∣∣∣ > µ

 ≤ e−ρT (a,τ)

holds uniformly for F ∈ Fη. This part of the exercise is to calculate the tail portion of
the probability distribution of ξt+k. For a fixed F , the existence of ρ > 0 can be proved
by the large deviation properties (Dembo and Zeitouni (1998)) of a recursive algorithm
(Dupuis and Kushner (1989)). Our exercise is more challenging because we are searching
for ρ > 0 uniformly over the set of feasible distributions.

The algorithm of Cole and Roughgarden (2014) uses the buyers’ valuation, which is
drawn independently from the same distribution. In that case, we could invoke the large
deviation property of the IID sample average, such as Chernoff’s bound, to prove that the
tail probability vanishes at the exponential rate uniformly over Fη.

In our case, the algorithm uses (qt, pt) which is not IID (not even martingale), because
of pt = bt+ ϵ1,t and bt is responding to the realized sequence of data. The data generating
process is endogenous, making the stochastic process (qt, pt) non-stationary. As a result,
ξt+k is not IID but a martingale difference. We need to invoke the Azuma-Hoeffding-
Bennett inequality (Dembo and Zeitouni (1998)) to calculate the uniform exponential
rate for all feasible distributions of buyer’s valuation, which proves that our algorithm is
efficient (Shalev-Shwartz and Ben-David (2014)).

15If we assume that infp f(p) > 0 uniformly, the proof is straightforward. Without this assumption, we
need some additional work (Lemma C.1).
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7. Numerical Experiments

While our algorithm Aa has the same asymptotic properties as the algorithm Ao
CR

(Cole and Roughgarden (2014)), we need to rely on the numerical analysis to compare
the performance of the algorithm with a finite number of data. It is possible to write the
algorithm of Cole and Roughgarden (2014) in a recursive form. Yet, their algorithm is
best implemented in an off-line form because a recursive formulation of the algorithm of
Cole and Roughgarden (2014) requires storing the empirical distribution of the valuation
after the t period, which almost always requires remembering t data points.

Instead of Fη, we generate the set of feasible distributions over the buyer’s valuations
from a truncated Gaussian distribution at the mean, where the Gaussian distribution has
a mean of 10. By changing the standard deviation of the Gaussian distribution, we can
generate different distributions of the valuations, each of which satisfies the increasing
hazard rate property and other regularity properties of Fη. We select 5000 standard
deviations, ranging from 11 to 16, with an increment of 0.001. For each distribution of
valuations, we calculate the actual optimal price. As the standard deviation becomes
larger, so does the actual optimal price. We assume that there are 100 buyers whose
reservation values are drawn from the same distribution F . The realized amount of delivery
at a price p is a random variable with a mean of 1− F (p).

For each distribution, we run our algorithm Aa with a = 0.0001 and ϵ = 0.75 (the size
of price perturbation) for T = 300, 000 rounds. At the end of T rounds, we calculate
the forecast price and compare it to the optimal price b∗(F ) of the actual distribution to
calculate the forecasting error for each F . We generate the distribution of forecasting error
over the set of feasible distribution functions.16 For a small a > 0, the distribution of the
forecasting error has a mean 0 with a small variance. We found the mean is 0.0081, and
the variance is 0.0027. Because of the linear approximation of a non-linear demand curve,
the linear approximation error contributes to the forecasting error, which vanishes as we
reduce the size of price perturbation ϵ > 0. We plot the distribution of forecasting error
as a blue bar in a histogram in Figures 1 and 2 in blue bars. The horizontal axis shows
the forecasting error at T . The heights of each part represent the number of distributions
whose forecasting error is within the 0.01 neighborhood of each grid.

We calculate the optimal price forecast from Cole and Roughgarden (2014) by drawing
K numbers of valuations each period for T rounds to calculate the empirical distribution
(thus, KT samples of valuations) and the optimal price from the empirical distribution.
We calculate the forecast error and plot the distribution in Figure 1 and 2 in orange color.
In Figure 1, K = 2 so that Ao

CR uses the same number of data as Aa in T rounds. In
Figure 2, K = 10 so that Ao

CR uses five times as many data as Aa.
Table 1 reports means and variances from the numerical exercises. Because the non-

parametric estimation method in Cole and Roughgarden (2014) does not incur any linear
approximation error, the mean of the forecasting error is closer to 0. Interestingly, the
variance of forecasting errors is larger for the same number of data as Aa, which takes two
data points (price and quantity) in each period. If Cole and Roughgarden (2014) allows

16The distribution can be approximated as a Gaussian distribution which is a solution of the Ornstein-
Ullenbeck equation (cf.Kushner and Yin (1997)).
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Per Period
Ao

CR
Mean Variance

2 −0.0039 0.0102
4 −0.0002 0.0064
6 −0.0018 0.0048
8 0.0001 0.0041
10 0.0003 0.0035

Table 1: The first column reports the number of valuations the algorithm of Cole and Roughgarden [2014]
takes per period. For Ao

CR, we draw a different number of samples, which changes the mean and the
variance of the forecasting errors. The true profit-maximizing price is roughly ranging from 10 to 20.

the algorithm to receive ten valuation reports (which is five times as much as data Aa

uses), the variance becomes comparable to the variance of the forecasting error of Aa.
Figure 1 reports the distribution of the forecasting errors of Aa in blue and Ao

CR in
orange when Ao

CR takes two valuation reports per period. Note that the distribution of
forecasting errors of CR is spread out more than CL. Figure 2 reports the distribution of
forecasting errors when CR takes ten reported values in each period. As Table 1 indicates,
the two distributions of the forecasting errors become closer.

Figure 1: Blue bars represent the density of forecasting errors of our algorithm Aa, and orange ones
represent the distribution of errors of the algorithm of Cole and Roughgarden [2014]. If the algorithm of
Cole and Roughgarden [2014] takes 2 reports per period, the variance is 3.5 times as large as that of Aa.

The performance of our algorithm Aa is comparable to that of Cole and Roughgarden
(2014). We can reduce the linear approximation error by lowering the price perturbation,
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Figure 2: If the algorithm of Cole and Roughgarden [2014] takes 10 reports per period, the variance is
comparable to that of Aa. The distributions of the forecasting errors almost overlap with each other.

choosing a smaller ϵ > 0. We can reduce the forecasting error variance by decreasing the
gain a > 0. On the other hand, Cole and Roughgarden (2014) can reduce the variance of
the forecasting error simply by collecting more data about the valuations.

8. Extension

8.1. PAC Guarantee. We can modify Aa to satisfy the PAC guaranteeing property
(3.6) to establish Theorem 3.19. We modify the algorithm so that the optimal solution
calculated from A(Ot) converges to the true optimal solution in probability. Recall (5.9)
where we choose parameter at = a > 0. Instead of a positive constant gain function a > 0,
we can choose a = 1

tω where 0 < ω < 1 so that at is decreasing as t increases. We need

to choose the initial value of the gain function as 1
tω1
. We choose ω < 1 to satisfy the

requirement for the data complexity. Let A 1
tω

be the modified algorithm often called a

decreasing gain algorithm.
Let us state Theorem 3.19 more formally.

Theorem 8.1. ∀µ > 0, ∀ρ > 0, we can construct algorithm A
1
tω with initial value of the

gain function set as 1/tω1 such that ∃T (µ, ρ) > 0 such that ∀t ≥ T (µ, ρ),

P
(∣∣∣∣φ(A 1

tω
(Ot)

)
− (b∗(F ), 1− F (b∗(F )))

∣∣∣∣ > 4µ

)
≤ ρ ∀F ∈ Fη

and T (µ, ρ) = O

(
log 1

ρ

) 1
1−ω

µκ

 for some κ ∈ (0,∞).
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Proof. See Appendix D. □

The proof of Theorem 8.1 follows the same reasoning as the proof of Theorem 5.1 despite
additional complications and technical steps to deal with the decreasing gain at = 1/tω.

8.2. Discounting. We have assume that the monopolist is infinitely patient. A direct
consquence of not discounting the future payoff is that the monopolist does not consider
how quickly the recommendation of the algorithm converges to the actual maximum profit.
A natural question is whether the main result can be extended to the case with discounting.
Instead of U(A, F ) defined in (3.4), suppose that the monopolist’s payoff function is

Uδ(A, F ) = E(1− δ)
∞∑
t=1

φp(A(Ot))(1− F (φp(A(Ot))))δ
t−1

for some δ ∈ (0, 1). We can define ϵ dominance with respect to Uδ(A, F ).

Definition 8.2. A is an ϵ dominant algorithm if ∀ϵ > 0, ∃δ ∈ (0, 1) such that ∀δ ∈ (δ, 1),
∀F ∈ Fη,

Uδ(A, F ) ≥ b∗(F )(1− F (b∗(F )))− ϵ (8.17)

We can characterize PAC guaranteeing property in terms of ϵ dominance in the algo-
rithm game.

Proposition 8.3. Suppose that the monopolist discounts the future payoff. A uniformly
learns Fη if and only if A is an ϵ dominant algorithm in A.

Proof. See Appendix E. □

Aa constructed in Theorem 5.1 is uniformly learnable. Thus, Aa is an ϵ dominant
algorithm if the monopolist discounts the future payoff but is sufficiently patient.

9. Concluding Remarks

Through a sequence of linear demand curves, the seller can still learn how to choose
the optimal price at an exponential rate, even though they may be grossly misspecified
in terms of the demand curves that they consider. Thus, within a polynomial time, the
monopolistic seller behaves as if he knows the actual demand curve. Even though a
non-parametric estimation of the demand curve is feasible, as in Cole and Roughgarden
(2014), the monopolist chooses to use a simple yet misspecified model of the demand curve
to choose his price to save the computational cost.

In the monopolistic market, the buyer’s decision problem is simple. The truthful revela-
tion of his valuation is a dominant strategy, and the myopic decision to buy is an optimal
choice. Even though the monopolist faces strategic buyers, the monopolist’s decision prob-
lem is reduced to a single person optimization problem. An important extension of our
exercise is to examine the duopoly market, where two firms complete through closely re-
lated products, say substitutes. The decision problem of each duopolist interacts with
each other. The choice of the model of the other firm’s behavior is determined as an
equilibrium outcome.
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Appendix A. Proof of Proposition 4.3

To satisfy the optimality, the expected profit from the forecast must be equal to the actual optimal
price and quantity: ∀F ∈ Fη,

lim
t→∞

Eφp(Ot)φq(Ot) = b∗(F )(1− b∗(F )).

∀F ∈ S(R0, X(R0)), the valuation of buyers is concentrated at a single value v ∈ [p, p]. Thus, the best

response must be (v, 1). The quantity associated with the optimal price of F ∈ Fη is not 1. Consider F
whose support is [p, p]. If the demand is 1, the price must be p, generating the lowest possible profit for
the monopolist. For such a distribution, A does not prescribe the best reponse.

Appendix B. Proof of Proposition 4.2

Suppose that A is an ϵ dominant strategy. To show that A is uniformly learnable, fix λ > 0. We then
choose ϵ = λ. Since A is an ϵ dominant strategy ∃T so that

Eφp(A(OT ))(1− F (φp(A(OT )))) ≥ b∗(F )(1− b∗(F ))− ϵ ∀F ∈ Fη.

Thus,

E
(∣∣∣φ(A(DT (µ,λ)))− (b∗(F ), 1− F (b∗(F )))

∣∣∣) ≤ ϵ = λ ∀F ∈ Fη

as desired.
To show the converse, suppose that A is uniformly learnable. To show that A is an ϵ dominant strategy,

fix ϵ > 0. Since A is uniformly learnable, ∃T such that

E
(∣∣∣φ(A(DT (µ,λ)))− (b∗(F ), 1− F (b∗(F )))

∣∣∣) ≤ ϵ ∀F ∈ Fη.

Thus,
Eφp(A(OT ))(1− F (φp(A(OT )))) ≥ b∗(F )(1− b∗(F ))− ϵ ∀F ∈ Fη

as desired.

Appendix C. Proof of Theorem 5.1

The projection facility is only used to ensure the tightness of the set of the sample paths. It does not
alter the asymptotic properties such as the stability and the large deviation properties of the algorithm
(Dupuis and Kushner (1989)). Thanks to the projection facility, we can assume that (β0,t, β1,t) is contained
in a compact convex set. For the remainder of the paper, we suppress the projection facility to simplify
the exposition when we examine the asymptotic properties of the algorithm.

C.1. Preliminaries. Fix τ > 0 and consider an interval [0, τ) of real-time. Fix small a > 0, and divide
the interval into subintervals of size a, with a possible exception of the last subinterval. Define

T (a) =

⌈
τ

a

⌉
be the number of the subintervals (treating the last subintervals as the full size subinterval) in [0, τ),
where a is the gain coefficient of the updating term in the recursive formula. Recall that ϵ2,t is distributed
uniformly over [−ϵ, ϵ] where ϵ > 0. We will choose τ, a, ϵ to meet the algorithm’s accuracy and confidence
requirement, which in turn determines T (a).

For a fixed F ∈ Fη, we are interested in

βT (a) − β∗(F ).

For t ≥ 1, we can write the recursive formula as

βt = βt−1 + aφ(βt−1, pt, ϵt)

since the updating term is determined by the old estimate βt−1, the price in period t and the realized
quantity, where the last two variables are subject to two shocks (ϵ1,t, ϵ2,t). Let

φ(βt−1, pt, ϵt) = Et−1φ(βt−1, pt, ϵt) + ξt
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where ξt is the martingale difference. Since βt ∈ B which is compact, ξt is uniformly bounded: ∃ξ > 0
such that

|ξt| ≤ ξ.

Define

bt−1(βt−1) = Et−1φ(βt−1, pt, ϵt).

As shown in (C.21), the functional form of bt−1 is not affected by t − 1 and is a Lipschitz continuous

function of βt−1. To simplify notation, we write b(βt−1) in place of bt−1(βt−1), dropping the time subscript

from bt−1. We can write the recursive formula as

βt = βt−1 + a
[
b(βt−1) + ξt

]
.

Given β0, β1, . . . , βT (a), define a continuous time process obtained by the linear interpolation: ∀s ∈ [a(t−
1), at),

βa(s) =
(s− a(t− 1))βt + (at− s)βt−1

a
.

Define

β(s) = lim
a→0

βa(s)

pointwise. The existence of the limit point is guaranteed by the fact that βt is contained in a compact set
and b is a Lipschitz continuous function.

Define β∗(F ) = (β∗
0 (F ), β∗

1 (F )) as the intercept and the slope of a linear demand curve that generates
the optimal price b∗(F ) and the expected quantity 1− F (b∗(F )), that solves

1− F (b∗(F )) =
β∗
0 (F )

2
and f(b∗(F )) = −β∗

1 (F ).

We can write

βT (a) − β∗(F ) = β0 + a

T (a)∑
t=1

b(βt−1) + a

T (a)∑
t=1

ξt − β∗(F )

= β0 +

∫ τ

0

b(β(s))ds− β∗(F ) (C.18)

+a

T (a)∑
t=1

b(βt−1)−
∫ τ

0

b(β(s))ds (C.19)

+a

T (a)∑
t=1

ξt (C.20)

We examine (D.27), (D.28) and (D.29) one by one.

C.2. Convergence and Stability. We can write

β(τ) = β(0) +

∫ τ

0

b(β(s))ds

where β(0) = β0, which is often written as

β̇ = b(β).

To simplify notation, we write

bt = − β0,t−1

2β1,t−1
∀t ≥ 1

and b(τ) as the continuous process constructed from bt via linear interpolation ∀τ ≥ 0. If the meaning
is clear from the context, we drop τ to write b instead of b(τ). The same convention applies to all other
variables such as β0,t and β1,t.

We examine the properties of the ordinary differential equation (ODE):

β̇ = R−1E

[
1

−bt + ϵ1,t

]
ϕ(βt−1, ϵ1,t)
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where

R =

[
1 bt
bt b2t + σ2

1

]
and

ϕ(βt−1, ϵt) = 1− F (bt + ϵ1,t) + ϵ2,t − β0,t−1 − β1,t−1bt − β1,t−1ϵ1,t.

Since ϵ1,t has small support, and F is differentiable, it is more convenient to write

F (bt + ϵ1,t) = F (bt) + f (bt) ϵ1,t + O(ϵ2).

We are interested in the column vector

E

[
1

bt + ϵ1,t

]
ϕ(βt−1, ϵt).

The first component is

1− F (bt)− β0,t−1 − β1,t−1bt + O(ϵ2).

The second component is [
−f

(
β0,t−1

2β1,t−1

)
− β1,t−1

]
σ2
1 + O(ϵ3).

We can write

β̇ = R−1

[
1− F (b)− β0 − β1b+ O(ϵ2)

b
[
1− F (b)− β0 − β1b

]
−
[
f (b) + β1

]
σ2
1 + O(ϵ3)

]
. (C.21)

At the stationary point b∗(F ) where the right hand side of ODE vanishes,

1− F
(
b∗(F )

)
=

β0

2
− O(ϵ2)

f
(
b∗(F )

)
= −β1 +

O(ϵ3)

O(ϵ2)
.

Thus,
1− F

(
b∗(F )

)
f
(
b∗(F )

) = b∗(F ) + O(ϵ). (C.22)

To simplify notation, let us ignore O term and treat b∗(F ) as the solution of

1− F
(
b∗(F )

)
f
(
b∗(F )

) = b∗(F ).

The uniqueness of the solution is implied by the increasing hazard rate property of F . Since ∀F ∈ F , f is
Lipschitz continuous

|f(x)− f(x′)| ≤ η|x− x′|,
|O(x)| ≤ η|x|. By reducing the size of the support of ϵ1,t, we can achieve the desired level of accuracy
uniformly.

Let us proceed with the calculation after suppressing O terms. Note that

R−1 =
1

σ2
1

[
b2 + σ2

1 −b
−b 1

]
We write ODE of β = (β0, β1) without linear approximation error O as[

β̇0

β̇1

]
=

[
(1− F (b)− β0 − β1b) + b(f(b) + β1)

−(f(b) + β1)

]
.

By definition of b

β0 + 2β1b = 0

at every moment of time. Thus,

β̇0 + 2β̇1b+ 2β1ḃ = 0.
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After substituting β̇0 and β̇1, we have

ḃ = −f(b)

2β1

[
1− F (b)

f(b)
− b

]
≡ R(b) (C.23)

modulo linear approximation errors O(ϵ).

Lemma C.1. ∃c > 0 such that

R(b) ≥ −c(b− b∗(F )) b ≤ b∗(F )

and
R(b) ≤ −c(b− b∗(F )) b ≥ b∗(F ).

Proof. We constructed the projection facility so that β1 < 0 and β0 > 0 and moreover,

sup
F∈Fη

β1 < 0.

If infF∈Fη f(b) > 0, then the proof is trivial. Since we only assume that F ∈ Fη, we need more work.
Consider an iso-(expected) profit curve in the space of (q, p)

Π = pq.

Its slope is

− dq

dp

∣∣∣∣
Π

=
1− F (p)

p
.

If b = b∗(F ), then the slope of the iso-profit curve must be equal to the slope of the demand curve f(p) at
p = b∗(F ):

1− F (b∗(F ))

b∗(F )
= f(b∗(F )).

Since b∗(F ) ∈ [v, v], the slope of an iso-profit curve at the optimal price must be uniformly bounded:

∃M,M > 0 such that

M ≤ f(b∗(F )) =
1− F (b∗(F ))

b∗(F )
≤ M.

Since F ∈ Fη is uniformly Lipschitz continuous, for a sufficiently small ϵ > 0,

f(b∗(F )− ϵ) ≥ M − ηϵ >
M

2
and similarly,

f(b∗(F ) + ϵ) ≤ −M + ηϵ < −M

2
.

We prove that the right hand side of the ODE

ḃ = −f(b)

β1

(
1− F (b)

f(b)
− b

)
is strictly bounded away from 0 over b < b∗(F )− ϵ and b > b∗(F ) + ϵ.

If f(b) = 0, the increasing hazard rate property implies that f(b′) = 0 ∀b′ < b, and in particular
f(v) = 0. Since f(b∗(F )) > 0, b < b∗(F ). By the construction of the algorithm along the boundary,

ḃ = − 1
2β1

> 0 uniformly, because supF∈Fη β1 < 0.

Suppose f(b) > 0 and b ≤ b∗(F )− ϵ. We know that R(b) defined in (D.30) is strictly decreasing because

of the increasing hazard rate property. We also know that R(b∗(F )− ϵ) ≥ M
2
. Thus,

R(b) ≥ R(b∗(F )− ϵ) ≥ M

2
> 0.

Similarly, if b ≥ b∗(F ) + ϵ,

R(b) ≤ R(b∗(F ) + ϵ) ≤ −M

2
< 0.

The increasing hazard rate property implies that if b > b∗(F ),

1− F (b)

f(b)
− b =

1− F (b)

f(b)
− b−

(
1− F (b∗(F ))

f(b∗(F ))
− b∗(F )

)
< −(b− b∗(F ))
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and if b < b∗(F ),

1− F (b)

f(b)
− b > −(b− b∗(F )).

Thus,

|R(b)− R(b∗(F ))| ≥ M

2
|b− b∗(F )|

over b ∈ [b∗(F )− ϵ, b∗(F ) + ϵ]. Since b ∈ [v, v], ∃c > 0 such that

R(b)− R(b∗(F )) = R(b) ≥ −c(b− b∗(F )) b ≤ b∗(F )

and

R(b)− R(b∗(F )) = R(b) ≤ −c(b− b∗(F )) b ≥ b∗(F ).

□

For any initial value b(0) ∈ [v, v],∣∣b(τ)− b∗(F )
∣∣ ≤ e−cτ

∣∣b(0)− b∗(F )
∣∣ ≤ e−cτ (v − v).

Let τ(µ) be the first time when ∣∣b(τ)− b∗(F )
∣∣ ≤ µ.

(1− F (b∗(F )), b∗(F )) ∈ K ∀F ∈ F and K is a compact subset in the interior of R2
+. Thus,

τ(µ) = sup
(β0(0),β1(0))∈B

τ(µ) < ∞.

and

τ(µ) ∼ − logµ

as µ → 0. Let us choose τ = τ(µ).

C.3. Riemann Residual. Let us consider (D.28)

R(a, F ) = a

T (a)∑
t=1

b(βt−1)−
∫ τ

0

b(β(s))ds

which is the Riemann residual. Since f is uniformly Lipschitz over F , b(β) is uniformly Lipschitz: ∃η′ > 0
such that ∣∣∣b(β)− b(β′)

∣∣∣ ≤ η′|β − β′| ∀F ∈ F .

For each subinterval of size a, the difference between the discrete value and the integration is at most η′a2

2
.

Thus,

R(a, F ) ≤ η′a2

2

τ(µ)

a
=

η′aτ(µ)

2
.

Note that the right hand side is independent of F . Thus, ∀µ > 0, define

a =
2µ

τ(µ)η′ (C.24)

so that ∀a ≤ a, ∀F ∈ F ,

R(a, F ) ≤ µ. (C.25)

Thus,

a = O

(
− µ

logµ

)
which implies

τ(µ)

a
= O

(
(logµ)2

µ

)
.
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C.4. Lower Bound of Confidence. Next, we examine (D.29). Consider ξt
ξ
, which is a martingale

difference with ∣∣∣∣ξtξ
∣∣∣∣ ≤ 1 and E

(
ξt
ξ

)2

≤ 1.

Since ξt
ξ

satisfies the large deviation property, ∀µ′ > 0, ∃ρ(µ′, F ) > 0 (called the rate function) such that

P


∣∣∣∣∣∣ 1T

T∑
t=1

ξt
ξ

∣∣∣∣∣∣ > µ′

 ≤ e−ρ(µ′,F )T .

We need a uniform rate function ρ(µ′, F ) > 0 over F . By Azuma-Hoeffding-Bennett inequality (Corollary
2.4.7 in Dembo and Zeitouni (1998)), we have ∀µ′ ∈ (0, 1/2),

P


∣∣∣∣∣∣ 1T

T∑
t=1

ξt
ξ

∣∣∣∣∣∣ > µ′

 ≤ e−2TH(µ′+ 1
2
| 1
2 )

where

H(p | p0) = p log
p

p0
+ (1− p) log

1− p

1− p0
(C.26)

for p, p0 ∈ (0, 1). Let

T (a, µ) =

⌈
τ(µ)

a

⌉
.

Then,

P


∣∣∣∣∣∣a

T (a,µ)∑
t=1

ξt

∣∣∣∣∣∣ < τ(µ)ξµ′

 ≤ e−2TH(µ′+ 1
2
| 1
2 ).

Let

µ′ =
µ

τ(µ)ξ
.

After substitution, we have

P


∣∣∣∣∣∣ 1

T (a, µ)

T (a,µ)∑
t=1

ξt

∣∣∣∣∣∣ > µ

 ≤ e−2T (a,µ)H(µ′+ 1
2
| 1
2 ).

Since τ(µ) = O(− logµ),
µ

τ(µ)ξ
= O(µ)

and therefore, T (a, µ) increases at the polynomial speed as µ → 0. Let

ρ = 2H

(
µ′ +

1

2
| 1
2

)
> 0.

C.5. Combine the Pieces. Fix µ > 0. Recall that we assume that ϵ1,t is distributed over [−ϵ, ϵ]. We first
choose ϵ > 0 so that the stationary solution (C.22) of ODE is within µ neighborhood of β∗(F ) ∀F ∈ F .

Since ∀f ∈ F
|f(p)− f(p′)| ≤ η|p− p′|.

The Taylor residual is bounded by ηϵ for small ϵ > 0:

|O(ϵ3)| ≤ |O(ϵ2)| ≤ ηϵ2 ∀t ≥ 1.

Note that the last term is independent of F ∈ F . Choose ϵ > 0 sufficiently small so that∣∣βs − β∗(F )
∣∣ < µ ∀F ∈ F

where βs solves (C.22). We chose τ(µ) so that

|β(τ(µ))− βs| < µ.
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Given µ > 0, we chose a1 > 0 in (C.24) so that the Riemann residual R(a, F ) satisfies (C.25).
By the construction, ∀a ∈ (0, a1),

P


∣∣∣∣∣∣ 1

T (a, τ)

T (a,τ)∑
t=1

ξt

∣∣∣∣∣∣ > µ

 < e−T (a,τ)ρ.

Combining these results, we have ∀a ∈ (0, a1),

P
(∣∣βT (a,τ) − β∗(F )

∣∣ ≥ 4µ
)
≤ e−T (a,τ)ρ

where T (a, τ) increases linearly with respect to 1/a and at the polynomial speed with respect to 1/µ.
So far, we have proved a result which is slightly weaker than Theorem 5.1. Let us summarize what we

have at this point.

Proposition C.2. ∀µ > 0, ∃τ(µ) > 0, ρ > 0 and a > 0 such that ∀a ∈ (0, a), if T = ⌈ τ(µ)
a

⌉ ∀a ∈ (0, a),

P
(∣∣∣φ (Aa(OT (a,µ))

)
− (b∗(F ), q∗(F ))

∣∣∣ > 4µ

)
≤ e−ρT (a,µ) ∀F ∈ Fη

and τ(µ) ∼ − logµ for small µ > 0 and a = O
(
− µ

log µ

)
.

C.6. Final Step. For fixed λ > 0 less than 1, we can choose a > 0 sufficiently small so that

e−
ρτ(µ)

a = λ

and therefore,
τ(µ)

a
= − log λ

ρ
.

Since

T (a, µ) =

⌈
τ(µ)

a

⌉
=

⌈
− log λ

ρ

⌉
,

T (a, µ) increases at the logarithmic speed with respect to 1/λ. An important observation is that the
estimator’s accuracy depends only on τ(µ), and the approximation error vanishes at the linear rate of
a → 0. Thus, the minimum number of the time steps to satisfy the accuracy requirement increases at the
rate of − log µ

a
. Proposition C.2 implies that Aa uniformly learns Fη.

Appendix D. Proof of Theorem 8.1

To make the paper self-contained, we present the proof, although we are essentially replicating the proof
of Theorem 5.1.

D.1. Preliminaries. Following Kushner and Yin (1997), we construct the (fictious) time from the gain
function at =

1
tω

. Since ω ∈ (0, 1),
∑∞

t=1 at = ∞. Thus, ∀τ > 0, there is a unique K such that

K = inf{T |
T∑

t=1

at ≥ τ}.

Define a mapping

m : R+ → {1, 2, 3, . . .}
where

m(τ) = K

defined above. We refer to R+ as the fictitious time or simple, the time, and {1, 2, 3, . . .} as the number
of periods or rounds. Given a discrete process {βt}, define a continuous time process β(τ) for τ ≥ 0
through the linear interpolation of the sample path of the discrete time process {βt}. The next step is to
construct the left shift process, obtained from β(t) by re-setting the time clock to 0 at each integer time
K: ∀K ∈ {1, 2, . . .} and τ > 0,

βK(τ) = β(K + τ).
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We have a sequence of {βK} continuous sample paths. Define

β̄(τ) = lim
K→∞

βK
τ (τ)

pointwise by taking a convergent subsequence of {βK}. The existence of a convergent subsequence is
implied by the set of assumptions we imposed on βt as in Kushner and Yin (1997).

For a fixed F ∈ Fη, we are interested in

lim
K→∞

βm(K+τ) − β∗(F ) ∀τ ≥ 0.

The convergence result follows from the stochastic approximation results (Kushner and Yin (1997)). In
addition, we need to prove that the convergence is uniform ove Fη.

For t ≥ 1, we can write the recursive formula as

βt = βt−1 + atφ(βt−1, pt, ϵt)

since the updating term is determined by the old estimate βt−1, the price in period t and the realized
quantity, where the last two variables are subject to two shocks (ϵ1,t, ϵ2,t). Let

φ(βt−1, pt, ϵt) = Et−1φ(βt−1, pt, ϵt) + ξt

where ξt is the martingale difference. Since βt ∈ B which is compact, ξt is uniformly bounded: ∃ξ > 0
such that

|ξt| ≤ ξ.

Define

bt−1(βt−1) = Et−1φ(βt−1, pt, ϵt).

As shown in (C.21), the functional form of bt−1 is not affected by t − 1 and is a Lipschitz continuous

function of βt−1. To simplify notation, we write b(βt−1) in place of bt−1(βt−1), dropping the time subscript

from bt−1. We can write the recursive formula as

βt = βt−1 + at

[
b(βt−1) + ξt

]
.

Define β∗(F ) = (β∗
0 (F ), β∗

1 (F )) as the intercept and the slope of a linear demand curve that generates
the optimal price b∗(F ) and the expected quantity 1− F (b∗(F )), that solves

1− F (b∗(F )) =
β∗
0 (F )

2
and f(b∗(F )) = −β∗

1 (F ).

The unique existence of β∗(F ) is guaranteed by the Lipschitz continuity and the increasing hazard rate
property.

We can write

βm(K+τ) − β∗(F ) = βK(0) +

m(K+τ)∑
t=tK

atb(βt−1) +

m(K+τ)∑
t=tK

atξt − β∗(F )

= βK(0) +

∫ τ

0

b(β(s))ds− β∗(F ) (D.27)

+

m(K+τ)∑
t=tK

atb(βt−1)−
∫ τ

0

b(β(s))ds (D.28)

+

m(K+τ)∑
t=tK

atξt (D.29)

We examine (D.27), (D.28) and (D.29) one by one.
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D.2. Convergence and Stability. Following Kushner and Yin (1997), we can write

β̄(τ) = β̄(0) +

∫ τ

0

b(β̄(s))ds

which is often written as
˙̄β = b(β).

To simplify notation, we write

bt = − β0,t−1

2β1,t−1
∀t ≥ 1

and b(τ) as the continuous process constructed from bt via linear interpolation ∀τ ≥ 0. If the meaning
is clear from the context, we drop τ to write b instead of b(τ). The same convention applies to all other
variables such as β0,t and β1,t.

We examine the properties of the ordinary differential equation (ODE):

˙̄β = R−1E

[
1

−bt + ϵ1,t

]
ϕ(βt−1, ϵ1,t)

where

R =

[
1 bt
bt b2t + σ2

1

]
and

ϕ(βt−1, ϵt) = 1− F (bt + ϵ1,t) + ϵ2,t − β0,t−1 − β1,t−1bt − β1,t−1ϵ1,t.

By following the same argument as in Section D.1,

β0 + 2β1b = 0

at every moment of time. Thus,
˙̄β0 + 2 ˙̄β1b+ 2β̄1ḃ = 0.

After substituting ˙̄β0 and ˙̄β1, we have

ḃ = −f(b)

2β1

[
1− F (b)

f(b)
− b

]
≡ R(b) (D.30)

modulo linear approximation errors O(ϵ).
Following the convergence theorem in Kushner and Yin (1997), we conclude that bt converges to b∗(F )

in probability: ∀µ > 0, ∀λ > 0, ∃T (µ, λ, F ) such that

P
(
|bt − b∗(F )| ≥ µ

)
≤ λ ∀t ≥ T (µ, λ, F ).

To show the uniform convergence over F ∈ Fη, we have to that the number of periods to achieve the
desired level of accuracy is uniform over F , and that the desired confidence level can be achieved at the
exponential speed uniformly over F .

Invoking Lemma C.1, we can show that for any initial value b(0) ∈ [v, v],∣∣b(τ)− b∗(F )
∣∣ ≤ e−cτ

∣∣b(0)− b∗(F )
∣∣ ≤ e−cτ (v − v).

Let τ(µ) be the first time when ∣∣b(τ)− b∗(F )
∣∣ ≤ µ.

(1− F (b∗(F )), b∗(F )) ∈ K ∀F ∈ F and K is a compact subset in the interior of R2
+. Thus,

τ(µ) = sup
(β0(0),β1(0))∈B

τ(µ) < ∞ (D.31)

and
τ(µ) ∼ − logµ (D.32)

as µ → 0. Let us choose τ = τ(µ).
By the definition,

m(K+τ)∑
t=tK

1

tω
≃ τ.



LEARNING UNDERSPECIFIED MODELS 37

We use ≃ instead of =, because of the truncation error, which vanishes as K → ∞.
We need to calculate how m(K + τ) changes with respect to τ for a large K. Thus, for a large K,

m(K + τ) is approximated by x solving

τ =

∫ x

tK

1

sω
ds

which implies

x =
[
(1− ω)τ + t1−ω

K

] 1
1−ω

= O(τ
1

1−ω , tK) = m(K + τ).

Similar calculation shows that tK = O(K
1

1−w ). Thus,

m(K + τ) = O
(
τ

1
1−ω ,K

1
1−w

)
. (D.33)

As µ → 0, the amount of data to meet the accuracy requirement increases at the rate of (− logµ)
1

1−ω

which slower than the polynomial rate of m.

D.3. Riemann Residual. Fix µ > 0 and τ = τ̄(µ) defined in (D.31). Let us consider (D.28)

R(tK , τ, F ) =

m(K+τ)∑
t=tK

atb(βt−1)−
∫ τ

0

b(β(s))ds

which is the Riemann residual. Since f is uniformly Lipschitz over F , b(β) is uniformly Lipschitz: ∃η′ > 0
such that ∣∣∣b(β)− b(β′)

∣∣∣ ≤ η′|β − β′| ∀F ∈ F .

For each subinterval of size at ≤ 1/tωK , the difference between the discrete value and the integration is at

most η′

2t2
K
. Thus,

R(tK , τ, F ) ≤ η′

2t2ωK
τ(µ)tωK =

η′τ(µ)

2tωK
.

Note that the right hand side is independent of F . Thus, ∀µ > 0, define

1

tωK
=

2µ

τ(µ)η′ (D.34)

∀F ∈ F ,

R(tK , τ, F ) ≤ µ. (D.35)

Thus,

1

tK
= O

[− µ

logµ

] 1
ω


or equivalently,

tK = O

[ 1
µ
log

1

µ

] 1
ω

 .

combined with (D.33), we conclude that m(K + τ(µ))− tK increases at the polynomial rate of 1
µ
.

D.4. Lower Bound of Confidence. Next, we examine (D.29). Let at =
1
tω

where 0 < ω < 1. Fix K so
that tK satisfies (D.34). Then, choose τ(µ) according to (D.31). We need to show that ∃h > 0 such that
∀T ≥ m(K + τ(µ))

P


∣∣∣∣∣∣

T∑
t=tK

atξt

∣∣∣∣∣∣ ≥ µ

 ≤ e−(T−tK)h.

We first prove following inequality, for all at ∈ [0, 1] and λ ≥ 0:
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Lemma D.1. (
eλ + e−λ

2

)at

≥ eλat + e−λat

2
(D.36)

Proof. Taking log of both sides, we have it suffices to show:

at log

(
eλ + e−λ

2

)
≥ log(eλat + e−λat)− log(2).

We note that the inequality holds with equality at at = 0 and at = 1. The left hand side is linear in at,
whereas the second derivative of the right hand is non-negative. Therefore, at any at ∈ [0, 1], we have the
right hand side of the inequality (which is convex) is lower than the left hand side of the inequality (which
is linear), proving the lemma. □

We follow the proof of Corollary 2.4.7 from (Dembo and Zeitouni 1998).17 We have

E[eλ
∑T

t=1 atξt/ξ] ≤
T∏

t=1

e−atλ + eatλ

2
≤

(
eλ + e−λ

2

)∑T
t=1 at

(D.37)

Following the proof of Corollary 2.4.7 from from (Dembo and Zeitouni 1998), we have

P

 1∑T
t=1 at

∣∣∣∣∣∣
T∑

t=1

atξt/ξ

∣∣∣∣∣∣ ≥ µ

 ≤ e−λµ
∑T

t=1 atE[eλ
∑T

t=1 atξt/ξ] ≤ e−λµ
∑T

t=1 at

(
eλ + e−λ

2

)∑T
t=1 at

.

The first inequality follows from the exponential Chebyshev inequality. The second inequality follows from
(D.37).

Again following (Dembo and Zeitouni 1998), choose µ < 1 and set λ = 1
2
log
(

1+µ
1−µ

)
. A tedious

calculation shows

P

 1∑T
t=1 at

∣∣∣∣∣∣
T∑

t=1

atξt/ξ

∣∣∣∣∣∣ ≥ µ

 ≤ e−(
∑T

t=1 at)H( 1+µ
2

| 1
2
). (D.38)

where H is the relative entropy of the binomial distribution defined in (C.26). Set h = H
(

1+µ
2

| 1
2

)
. Recall

that at =
1
tω

, so that
∑T

t=1
1
tω

. We can bound this sum via an integral, to obtain

T∑
t=tK

1

tω
≥ 1

tωK
+

∫ T

tK

1

τω
dτ >

T 1−ω − t1−ω
K

1− ω
.

Therefore, replacing
∑T

t=tK
at with

T1−ω−t1−ω
K

1−ω
makes the right hand side of (D.38) larger. Putting this

together, we finally obtain

P

 1∑T
t=1 at

∣∣∣∣∣∣
T∑

t=K

atξt

∣∣∣∣∣∣ ≥ ξµ

 ≤ e
−
(

T1−ω−tωK
1−ω

)
H( 1+µ

2
| 1
2
)

.

Suppose that 1− ρ is the lower bound of the admissible confidence level. To satify the confidence require-
ment, the right hand side must satisfy

e
−
(

T1−ω−tωK
1−ω

)
H( 1+µ

2
| 1
2
)

≤ ρ.

In particular, the inequality must hold for T = m(K + τ(µ)), from which

T = O
(
(− log ρ)

1
1−ω

)
17Replace λ with atλ to establish (2.4.8). Doing so (and setting v = 1), and applying the previous
inequality.
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follows.

Appendix E. Proof of Proposition 8.3

Suppose that A is uniformly learnable. To show that A is an ϵ dominant strategy, fix ϵ > 0. We have
to show ∃δ ∈ (0, 1) such that ∀δ ∈ (δ, 1), (8.17) holds. Choose λ = ϵ

2
< ϵ. Since A is uniformly learnable,

∃T such that

E
∣∣φp(A(OT ))(1− F (φp(A(OT ))))− b∗(F )(1− b∗(F ))

∣∣ ≤ λ ∀F ∈ Fη. (E.39)

Thus,

Uδ(A, F ) ≥ (1− δT ) · 0 + δT
(
b∗(F )(1− b∗(F ))− λ

)
.

Note that supF∈Fη b∗(F )(1− b∗(F )) < ∞. Since λ = ϵ
2
< ϵ, we can choose δ < 1 sufficiently close to 1 so

that
δT
(
b∗(F )(1− b∗(F ))− λ

)
≥ b∗(F )(1− b∗(F ))− ϵ ∀F ∈ Fη.

Thus, ∀δ ∈ (δ, 1),

Uδ(A, F ) ≥ b∗(F )(1− b∗(F ))− ϵ ∀F ∈ Fη

as desired.
Suppose that A is an ϵ dominant strategy. Since A is an ϵ dominant strategy, ∀ϵ > 0, δ such that

∀δ ∈ (δ, 1),

Uδ(A, F ) ≥ b∗(F )(1− b∗(F ))− ϵ ∀F ∈ Fη.

Suppose that A is not uniformly learnable. Then, ∃λ > 0, ∀T , ∃F ∈ Fη such that

E
∣∣φp(A(OT ))(1− F (φp(A(OT ))))− b∗(F )(1− b∗(F ))

∣∣ > λ.

or equivalently,
Eφp(A(OT ))(1− F (φp(A(OT )))) < b∗(F )(1− b∗(F ))− λ. (E.40)

Since the algorithm stops at T and the monopolists uses φp(A(OT )) for the continuation game,

Uδ(A, F ) ≤ (1− δT )U + δT
(
b∗(F )(1− b∗(F ))− λ

)
where

U = sup
F∈Fη

b∗(F )(1− b∗(F )) < ∞.

Given λ > 0, fix T and F satisfying (E.40). We choose ϵ = λ
2
and let δ ↑ 1 to satisfy

Uδ(A, F ) ≤ (1− δT )U + δT
(
b∗(F )(1− b∗(F ))− λ

)
≤ b∗(F )(1− b∗(F ))− ϵ

which contradicts the hypothesis that A is an ϵ dominant strategy.
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