
OPTIMAL TESTS FOLLOWING SEQUENTIAL EXPERIMENTS

KARUN ADUSUMILLI†

Abstract. Recent years have seen tremendous advances in the theory and ap-

plication of sequential experiments. While these experiments are not always

designed with hypothesis testing in mind, researchers may still be interested in

performing tests after the experiment is completed. The purpose of this pa-

per is to aid in the development of optimal tests for sequential experiments by

analyzing their asymptotic properties. Our key finding is that the asymptotic

power function of any test can be matched by a test in a limit experiment where

a Gaussian process is observed for each treatment, and inference is made for the

drifts of these processes. This result has important implications, including a

powerful sufficiency result: any candidate test only needs to rely on a fixed set

of statistics, regardless of the type of sequential experiment. These statistics

are the number of times each treatment has been sampled by the end of the ex-

periment, along with final value of the score (for parametric models) or efficient

influence function (for non-parametric models) process for each treatment. We

then characterize asymptotically optimal tests under various restrictions such as

unbiasedness, α-spending constraints etc. Finally, we apply our results to three

key classes of sequential experiments: costly sampling, group sequential trials,

and bandit experiments, and show how optimal inference can be conducted in

these scenarios.
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1. Introduction

Recent years have seen tremendous advances in the theory and application of

sequential/adaptive experiments. Such experiments are now used being in a wide

variety of fields, ranging from online advertising (Russo et al., 2017), to dynamic

pricing (Ferreira et al., 2018), drug discovery (Wassmer and Brannath, 2016), pub-

lic health (Athey et al., 2021), and economic interventions (Kasy and Sautmann,

2019). Compared to traditional randomized trials, these experiments allow one

to target and achieve a more efficient balance of welfare, ethical, and economic

considerations. In fact, starting from the Critical Path Initiative in 2006, the FDA

has actively promoted the use of sequential designs in clinical trials for reducing

trial costs and risks for participants (CBER, 2016). For instance, group-sequential

designs, wherein researchers conduct interim analyses at predetermined stages of

the experiment, are now routinely used in clinical trials. If the analysis suggests a

significant positive or negative effect from the treatment, the trial may be stopped

early. Other examples of sequential experiments include bandit experiments (Lat-

timore and Szepesvári, 2020), best-arm identification (Russo and Van Roy, 2016)

and costly sampling (Adusumilli, 2022), among many others.

Although hypothesis testing is not always the primary goal of sequential ex-

periments, one may still desire to conduct a hypothesis test after the experiment

is completed. For example, a pharmaceutical company may conduct an adaptive

trial for drug testing with the explicit goal of maximizing welfare or minimizing

costs, but may nevertheless be required to test the null hypothesis of a zero aver-

age treatment effect for the drug after the trial. Despite the practical importance

of such inferential methods, there are currently few results characterizing optimal

tests, or even identifying which sample statistics to use when conducting tests

after sequential experiments. This paper aims to fill this gap.

To this end, we follow the standard approach in econometrics and statistics

(see, e.g., Van der Vaart, 2000, Chapter 14) of studying the properties of various

candidate tests by characterizing their power against local alternatives, also known

as Pitman alternatives. These are alternatives that converge to the null at the

parametric, i.e., 1/
√
n rate, leading to non-trivial asymptotic power. Here, n is
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typically the sample size, although it can have other interpretations in experiments

which are open-ended, see Section 2 for a discussion. The main finding of this

paper is that the asymptotic power function of any test can be matched by that

of a test in a limit experiment where one observes a Gaussian process for each

treatment, and the aim is to conduct inference on the drifts of the Gaussian

processes.

As a by-product of this equivalence, we show that the power function of any

candidate test (which may employ additional information beyond the sufficient

statistics) can be matched asymptotically by one that only depends on a finite set

of sufficient statistics. In the most general scenario, the sufficient statistics are the

number of times each treatment has been sampled by the end of the experiment,

along with final value of the score (for parametric models) or efficient influence

function (for non-parametric models) process for each treatment. However, even

these statistics can be further reduced under additional assumptions on the sam-

pling and stopping rules. Our results thus show that a substantial dimension

reduction is possible, and only a few statistics are relevant for conducting tests.

Furthermore, we characterize the optimal tests in the limit experiment. We

then show that finite sample analogues of these are asymptotically optimal under

the original sequential experiment. Our results can also be used to compute the

power envelope, i.e., an upper bound on the asymptotic power function of any

test. Although a uniformly most powerful test in the limit experiment may not

always exist, some positive results are obtained for testing linear combinations

under unbiasedness or α-spending restrictions. Alternatively, one may impose less

stringent criteria for optimality, like weighted average power, and we show how to

compute optimal tests under such criteria as well.

We provide two new asymptotic representation theorems (ARTs) for formalizing

the equivalence of tests between the original and limit experiments. The first ap-

plies to ‘stopping-time experiments’, where the sampling rule is fixed beforehand

but the stopping rule (which describes when the experiment is to be terminated)

is fully adaptive (i.e., it can be updated after every new observation). Our second
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ART allows for the sampling rule to be adaptive as well, but we require the sam-

pling and stopping decision to be updated only a finite number of times, after ob-

serving the data in batches. While constraining attention to batched experiments

is undoubtedly a limitation, practical considerations often necessitate conducting

sequential experiments in batches anyway. Also, as shown in Adusumilli (2021),

any fully adaptive experiment can be approximated by a batched experiment with

a sufficiently large number of batches. Our second ART builds on, and extends,

the recent work of Hirano and Porter (2023) on asymptotic representations. We

refer to Sections 1.1 and 5.1 for a detailed comparison.

Importantly, our framework covers both parametric and non-parametric set-

tings. Finally, we apply our results to three important examples of sequential ex-

periments: costly sampling, group sequential trials and bandit experiments, and

suggest new inferential procedures for these experiments that are asymptotically

optimal under different scenarios.

1.1. Related literature. Despite the vast amount of work on the development

of sequential learning algorithms, the literature on inference following the use of

such algorithms is relatively sparse. One approach gaining some popularity in

computer-science is called ‘any-time inference’. Here, one seeks to construct tests

and confidence intervals that are correctly sized no matter how, or when, the

experiment is stopped. We refer to Ramdas et al. (2022) for a survey and to

Grünwald et al. (2020), Howard et al. (2021), Johari et al. (2022) for some recent

contributions. The uniform-in-time size constraint is a stringent requirement, and

this comes at the expense of lower power than could be achieved otherwise. By

contrast, our focus in this paper is on classical notions of testing, where size control

is only achieved when the experimental protocol, i.e., the specific sampling rule

and stopping time, is followed exactly. In essence, this requires the decision maker

to pre-register the experiment and fully commit to the protocol. We believe this

is valid assumption in most applications; adaptive experiments are usually con-

structed with the explicit goal of welfare maximization, so there is little incentive

to deviate from the protocol as long as the preferences of the experimenter and

the end-user of the experiment are aligned (e.g., in the case of online marketplaces
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they would be the same entity). In other situations, pre-registration of the ex-

perimental design is usually mandatory, see, e.g., the FDA guidance on sequential

designs (CBER, 2016).

There are other recent papers which propose inferential methods under the

‘classical’ hypothesis-testing framework. Zhang et al. (2020) and Hadad et al.

(2021) suggest asymptotically normal tests for some specific classes of sequential

experiments. These tests are based on re-weighing the observations. There are also

a number of methods for group sequential and linear boundary designs commonly

used in clinical trials, see Hall (2013) for a review. However, it is not clear if any

of them are optimal even within their specific use cases.

Finally, in prior and closely related work to our own, Hirano and Porter (2023)

obtain an Asymptotic Representation Theorem (ART) for batched sequential ex-

periments that is different from ours and apply this to testing. The ART of Hirano

and Porter (2023) is a lot more general than our own, e.g., it can be used to deter-

mine optimal conditional tests given outcomes from previous stages. However, this

generality comes at a price as the state variables increase linearly with the number

of batches. Here, we build on and extend these results to show that only a fixed

number of sufficient statistics are needed to match the unconditional asymptotic

power of any test, irrespective of the number of batches (our results also apply

to asymptotic power conditional on stopping times). We also derive a number of

additional results that are new to this literature: First, our ART for stopping-

time experiments applies to fully adaptive experiments (this result is not based

on Hirano and Porter, 2023; rather, it makes use of a representation theorem for

stopping times due to Le Cam, 1979). Second, our analysis covers non-parametric

models, which is important for applications. Third, we characterize the properties

of optimal tests in a number of different scenarios, e.g., for testing linear combi-

nations of parameters, or under unbiased and α-spending requirements. This is

useful as UMP tests do not generally exist otherwise.

As noted earlier, this paper employs the local asymptotic power criterion to

rank tests. This criterion naturally leads to ‘diffusion asymptotics’, where the

limit experiment consists of Gaussian diffusions. Diffusion asymptotics were first

introduced by Wager and Xu (2021) and Fan and Glynn (2021) to study the
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properties of a class of sequential algorithms. In previous work (Adusumilli, 2021),

this author demonstrated some asymptotic equivalence results for comparing the

Bayes and minimax risk of bandit experiments. Here, we apply the techniques

devised in those papers to study inference.

1.2. Examples. Before describing our procedures, it can be instructive to con-

sider some examples of sequential experiments.

1.2.1. Costly sampling. Consider a sequential experiment in which sampling is

costly, and the aim is to select the best of two possible treatments. Previous work

by this author (Adusumilli, 2022) showed that the minimax optimal strategy in

this setting involves a fixed sampling rule (the Neyman allocation) and stopping

when the average difference in treatment outcomes multiplied by the number of ob-

servations exceeds a specific threshold. In fact, the stopping rule here has the same

form as the SPRT procedure of Wald (1947), even though the latter is motivated

by very different considerations. SPRT is itself a special case of ‘fully sequential

linear boundary designs’, as discussed, e.g., in Whitehead (1997). Typically these

procedures recommend sampling the two treatments in equal proportions instead

of the Neyman allocation. In Section 6, we show that for ‘horizontal fully sequen-

tial boundary designs’ with any fixed sampling rule (including, but not restricted

to, the Neyman allocation), the most powerful unbiased test for treatment effects

depends only on the stopping time and rejects when it is below a specific threshold.

1.2.2. Group sequential trials. In many applications, it is not feasible to employ

continuous-time monitoring designs that update the decision rule after each obser-

vation. Instead, one may wish to stop the experiment only at a limited number of

pre-specified times. Such designs are known as group-sequential trials, see Wass-

mer and Brannath (2016) for a textbook treatment. Recently, these experiments

have become very popular for conducting clinical trials; they have been used,

e.g., to test the efficacy of Coronavirus vaccines (Zaks, 2020). While a number

of methods have been proposed for inference following these experiments, as re-

viewed, e.g., in Hall (2013), it is not clear which, if any, are optimal. In Section 6,

we derive optimal non-parametric tests and confidence intervals for such designs

under an α-spending size criterion (see, Section 2.4).
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1.2.3. Bandit experiments. In the previous two examples, the decision maker could

choose when to end the experiment, but the sampling strategy was fixed before-

hand. In many experiments however, the sampling rule can also be modified based

on the information revealed from past data. Bandit experiments are a canonical

example of these. Previously, Hirano and Porter (2023) derived asymptotic power

envelopes for any test following batched parametric bandit experiments. In this

paper, we refine the results of Hirano and Porter (2023) further by showing that

only a finite number of sufficient statistics are needed for testing, irrespective of

the number of batches. Our results apply to non-parametric models as well.

2. Optimal tests in experiments involving stopping times

In this section we study the asymptotic properties of tests for parametric stopping-

time experiments, i.e., sequential experiments that involve a pre-determined stop-

ping time.

2.1. Setup and assumptions. Consider a decision-maker (DM) who wishes to

conduct an experiment involving some outcome variable Y . Before starting the

experiment, the DM registers a stopping time, τ̂ , that describes the eventual

sample size in multiples of n observations (see below for the interpretation of

n). The choice of τ̂ may involve a balancing a number of considerations such as

costs, ethics, welfare etc. Here, we abstract away from these issues and take τ̂ as

given. In the course of the experiment, the DM observes a sequence of outcomes

Y1, Y2, . . . . The experiment ends in accordance with τ̂ , which we assume to be

adapted to the filtration generated by the outcome observations. Let Pθ denote

a parametric model for the outcomes. Our interest in this section is in testing

H0 : θ = Θ0 vs H1 : θ ∈ Θ1 where Θ0∩Θ1 = ∅. Let θ0 ∈ Θ0 denote some reference

parameter in the null set.

There are two notions of asymptotics one could employ in this setting, and

consequently, two different interpretations of n. In many settings, e.g., group se-

quential trials, there is a limit on the maximum number of observations that can

be collected; this limit is pre-specified and we take it to be n. Consequently, in

these experiments, τ̂ ∈ [0, 1]. Alternatively, we may have open-ended experiments

where the stopping time is determined by balancing the benefit of experimentation
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with the cost for sampling each additional unit of observation. In this case, we

employ small-cost asymptotics and n then indexes the rate at which the sampling

costs go to 0 (alternatively, we can relate n to the population size in the imple-

mentation phase following the experiment, see Adusumilli, 2022). The results in

this section apply to both asymptotic regimes.

Let ϕn ∈ [0, 1] denote a candidate test. It is required to be measurable with

respect to σ{Y1, . . . , Ybnτc}. Now, it is fairly straightforward to construct tests that

have power 1 against any fixed alternative as n → ∞. Consequently, to obtain a

more fine-grained characterization of tests, we consider their performance against

local perturbations of the form {θ0 + h/
√
n;h ∈ Rd}. Denote Ph := Pθ0+h/

√
n and

let E(a)
h [·] denote its corresponding expectation. Also, let ν denote a dominating

measure for {Pθ : θ ∈ R}, and set pθ := dPθ/dν. We impose the following

regularity conditions on the family Pθ, and the stopping time τ̂ :

Assumption 1. The class {Pθ : θ ∈ Rd} is differentiable in quadratic mean

around θ0, i.e., there exists a score function ψ(·) such that for each h ∈ Rd,∫ [√
pθ0+h −

√
pθ0 −

1
2h
ᵀψ
√
pθ0

]2
dν = o(|h|2). (2.1)

Assumption 2. There exists T <∞ independent of n such that τ̂ ≤ T .

Both assumptions are fairly innocuous. As noted previously, in many examples

we already have τ ≤ 1.

Let Pnt,h denote the joint probability measure over the iid sequence of out-

comes Y1, . . . , Ynt and take Ent,h[·] to be its corresponding expectation. Define the

(standardized) score process xn(t) as

xn(t) = I−1/2
√
n

bntc∑
i=1

ψ(Yi),

where I := E0[ψ(Yi)ψ(Yi)ᵀ] is the information matrix. It is well known, see e.g.,

Van der Vaart (2000, Chapter 7), that quadratic mean differentiability implies

EnT,0[ψ(Yi)] = 0 and that I exists. Then, by a functional central limit theorem,

xn(·) d−−−→
PnT,0

x(·); x(·) ∼ W (·). (2.2)
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Here, and in what follows, W (·) denotes the standard d-dimensional Brownian

motion. Assumption 1 also implies the important property of Sequential Local

Asymptotic Normality (SLAN; Adusumilli, 2021): for any given h ∈ Rd,

bntc∑
i=1

ln
dpθ0+h/

√
n

dpθ0
= hᵀI1/2xn(t)− t

2h
ᵀIh+ oPnT,0(1), uniformly over t ≤ T. (2.3)

The above states that the likelihood ratio admits a quadratic approximation uni-

formly over all t.

2.2. Asymptotic representation theorem. In what follows, take U to be a

Uniform[0, 1] random variable that is independent of the process x(·), and define

Ft := σ{x(s), U ; s ≤ t} to be the filtration generated by U and the stochastic

process x(·) until time t.

Consider a limit experiment where one observes U and a Gaussian diffusion

x(t) := I1/2ht + W (t) with some unknown h, and constructs a test statistic ϕ

based on knowledge only of (i) an Ft-adapted stopping time τ that is the limiting

version of τ̂ (in a sense made precise below); and (ii) the stopped process x(τ). Let

Ph denote the induced probability over the sample paths of x(·) given h, and Eh[·]

its corresponding expectation. The following theorem relates the original testing

problem to the one in such a limit experiment:

Theorem 1. Suppose Assumptions 1 and 2 hold. Let ϕn be some test function

defined on the sample space Y1, . . . , Ynτ̂ , and βn(h), its power against PnT,h. Then,

for every sequence {nj}, there is a further sub-sequence {njm} such that:

(i) (Le Cam, 1979) There exists an Ft-adapted stopping time τ for which (τ̂ , xn(τ̂)) d−−−→
PnT,0

(τ, x(τ)) on this sub-sequence.

(ii) There exists a test ϕ in the limit experiment depending only on τ, x(τ) such

that βnjm (h) → β(h) for every h ∈ Rd, where β(h) := Eh[ϕ(τ, x(τ))] is the power

of ϕ in the limit experiment.

The first part of Theorem 1 is essentially due to Le Cam (1979).

To the best of our knowledge, the second part of Theorem 1 is new. Previously,

Le Cam (1979) showed that for {Pθ} in the exponential family of distributions,

ln dPnτ̂ .,h
dPnτ̂ ,0

(ynτ̂ ) d−−−→
PnT,0

hᵀI1/2x(τ)− τ

2h
ᵀIh.
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Here, we extend the above to general families of distributions satisfying Assump-

tion 1. We then derive an asymptotic representation theorem for ϕn as a conse-

quence of this result.

Note that in the second part of Theorem 1, τ is taken as given (this mirrors

how τ̂ is taken as given in the context of the original experiment). It is chosen

so that the first part of the theorem is satisfied. In order to derive optimal tests,

one would need to know the joint distribution of τ, x(τ). Unfortunately, the first

part of Theorem 1 does not provide a characterization of τ ; it only asserts that

such a stopping time must exist. Fortunately, in practice, most stopping times are

functions, τ̂ = τ(xn(·)), of the score process, e.g., the optimal stopping time under

costly sampling is given by τ̂ = inf{t : |xn(t)| ≥ γ}. Indeed, previous work by

this author (Adusumilli, 2022) and others has shown that if the stopping time is

to be chosen according some notion of Bayes or minimax risk, then it is sufficient

to restrict attention to stopping times that depend only on xn(·). In such cases,

the continuous mapping theorem allows us to determine τ as τ = τ(x(·)).

2.3. Characterization of optimal tests in the limit experiment.

2.3.1. Testing a parameter vector. The simplest hypothesis testing problem in the

limit experiment concerns testing H0 : h = 0 vs H1 : h = h1. By the Neyman-

Pearson lemma, the uniformly most powerful (UMP) test is

ϕ∗h1 = I
{
hᵀ1I

1/2x(τ)− τ

2h
ᵀ
1Ih1 ≥ γh1

}
,

where γh1 ∈ R is chosen by the size requirement. Let β∗(h1) denote the power

function of ϕ∗h1 . Then, by Theorem 1, β∗(·) is an upper bound on the limiting

power function of any test of H0 : θ = θ0.

2.3.2. Testing linear combinations. We now consider tests of linear combinations

of h, i.e., H0 : aᵀh = 0, in the limit experiment. In this case, a further dimension

reduction is possible if the stopping time is also dependent on a reduced set of

statistics.

Define σ2 := aᵀI−1a, x̃(t) := σ−1aᵀI−1/2x(t), let U1 denote a Uniform[0, 1]

random variable independent of x̃(·), and take F̃t to be the filtration generated by

σ{U1, x̃(s) : s ≤ t}. Note that x̃(·) ∼ W (·) under the null; hence, it is pivotal.
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Proposition 1. Suppose that the stopping time τ in Theorem 1 is F̃t-adapted.

Then, the UMP test of H0 : aᵀh = 0 vs H1 : aᵀh = c in the limit experiment is

ϕ∗c(τ, x̃(τ)) = I
{
cx̃(τ)− c2

2στ ≥ γc

}
.

In addition, suppose Assumptions 1 and 2 hold, let β∗(c) denote the power of ϕ∗c
for a given c, and βn(h) the power of some test, ϕn, of H0 : aᵀθ = 0 in the original

experiment against local alternatives θ ≡ θ0 + h/
√
n . Then, for each h ∈ Rd ,

limn→∞ βn(h) ≤ β∗(aᵀh).

The above result suggests that x̃(τ) and τ are sufficient statistics for the optimal

test. An important caveat, however, is that the class of stopping times are further

constrained to only depend on x̃(t) in the limit. In practice, this would happen

if the stopping time τ̂ in the original experiment is a function only of ˆ̃xn(·) :=

σ−1aᵀI−1/2xn(·). Fortunately, this is the case in a number of examples.

It is straightforward to show that the same power envelope, β∗(·), also applies

to tests of the composite hypothesis H0 : aᵀθ ≤ 0.

2.3.3. Unbiased tests. A test is said to be unbiased if its power is greater than size

under all alternatives. The following result describes a useful property of unbiased

tests in the limit experiment:

Proposition 2. Any unbiased test of H0 : h = 0 vs H1 : h 6= 0 in the limit

experiment must satisfy E0[x(τ)ϕ(τ, x(τ))] = 0.

See Section 6.1 for an application of the above result.

2.3.4. Weighted average power. Suppose we specify a weight function, w(·), over

alternatives h 6= 0. Then, the test of H0 : h = 0 in the limit experiment that

maximizes weighted average power is given by

ϕ∗w(τ, x(τ)) = I
{∫

eh
ᵀI1/2x(τ)− τ2h

ᵀIhdw(h) ≥ γ
}
.

The value of γ is determined by the size requirement.

2.4. Alpha-spending criterion. In this section, we study inference under a

stronger version of the size constraint, inspired by the α-spending approach in
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group sequential trials (Gordon Lan and DeMets, 1983). Suppose that the stop-

ping time is discrete, taking only the values t = 1, 2, . . . , T . Then, instead of an

overall size constraint of the form EnT,0[ϕn] ≤ α, we may specify a ‘spending-

vector’ α := (α1, . . . , αT ) satisfying ∑T
t=1 αt = α, and require

EnT,0[I{τ̂ = t}ϕn] ≤ αt ∀ t. (2.4)

In what follows, we call a test, ϕn, satisfying (2.4) a level-α test (with a boldface

α). Intuitively, if each t corresponds to a different stage of the experiment, the α-

spending constraint prescribes the maximum amount of Type-I error that may be

expended at stage t. As a practical matter, it enables us to characterize a UMP

or UMP unbiased test in settings where such tests do not otherwise exist. We

also envision the criterion as a useful conceptual device: even if we are ultimately

interested in a standard level-α test, we can obtain this by optimizing a chosen

power criterion (average power, etc.) over the spending vectors α := (α1, . . . , αK)

satisfying ∑k αk ≤ α.

A particularly interesting example of an α-spending vector is (αPnT,0(τ̂ =

1), . . . , αPnT,0(τ̂ = k)); this corresponds to the requirement that EnT,0 [ϕn| τ̂ = t] ≤

α for all t, i.e., the test be conditionally level-α given any realization of the stopping

time. This may have some intuitive appeal, though it does disregard any informa-

tion provided by the stopping time for discriminating between the hypotheses.

Under the α-spending constraint, a test that maximizes expected power also

maximizes expected power conditional on each realization of stopping time. This

is a simple consequence of the law of iterated expectations. Consequently, we focus

on conditional power in this section. Our main result here is a generalization of

Theorem 1 to α-spending restrictions. The limit experiment is the same as in

Section 2.2.

Theorem 2. Suppose Assumptions 1, 2 hold, and the stopping times are discrete,

taking only the values 1, 2, . . . , T . Let ϕn be some level-α test defined on the sample

space Y1, . . . , Ynτ̂ , and βn(h|t), its conditional power against PnT,h given τ̂ = t.

Then, there exists a level-α test, ϕ(·), in the limit experiment depending only on

τ, x(τ) such that, for every h ∈ Rd and t ∈ {1, 2, . . . , T} for which P0(τ = t) 6= 0,
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βn(h|t) converges to β(h|t) on subsequences, where β(h|t) := Eh[ϕ(τ, x(τ))|τ = t]

is the conditional power of ϕ(·) in the limit experiment.

It may be possible to extend the above result to continuous stopping times using

Le Cam’s discretization device, though we do not take this up here.

2.4.1. Power envelope. By the Neyman-Pearson lemma, the uniformly most pow-

erful level-α (UMP-α) test of H0 : h = 0 vs H1 : h = h1 in the limit experiment

is given by

ϕ∗h1(t, x(t)) =


1 if P0(τ = t) ≤ αt

I
{
hᵀ1I

1/2x(t) ≥ γ(t)
}

if P0(τ = t) > αt

.

Here, γ(t) ∈ R is chosen by the α-spending requirement that E0[ϕ∗h1(τ, x(τ))|τ =

t] ≤ αt/P0(τ = t) for each t. If we take β∗(h1|t) to be the power function of ϕ∗h1(·),

Theorem 2 implies β∗(·|t) is an upper bound on the limiting conditional power

function of any level-α test of H0 : θ = θ0.

2.4.2. Testing linear combinations. A stronger result is possible for tests of linear

combinations of θ. Recall the definitions of x̃(t) and F̃t from Section 2.3.2. If

the limiting stopping time is F̃t -adapted, we have, as in Proposition 1, that the

sufficient statistics are only x̃(τ), τ , and the UMP-α test of H0 : aᵀh = 0 vs

H1 : aᵀh = c (> 0) in the limit experiment is

ϕ̆∗(t, x̃(t)) =


1 if P0(τ = t) ≤ αt

I {cx̃(t) ≥ γc(t)} ≡ I {x̃(t) ≥ γ̃(t)} if P0(τ = t) > αt

.

Here, γ̃(t) is chosen such that E0[ϕ̆∗(τ, x̃(τ))|τ = t] = αt/P0(τ = t). Clearly, γ̃(t)

it is independent of c for c > 0. Since ϕ̆∗(·) is thereby also independent of c for

c > 0, we conclude that it is UMP-α for testing the composite one-sided alternative

H0 : aᵀh = 0 vs H1 : aᵀh > 0. Thus, a UMP-α test exists in this scenario even as a

UMP test doesn’t. What is more, by Theorem 2, the conditional power function,

β̆∗(c|t), of ϕ̆∗(·) is an asymptotic upper bound on the conditional power of any

level-α test, ϕn, of H0 : aᵀθ = 0 vs H1 : aᵀθ > 0 in the original experiment against

local alternatives θ ≡ θ0 + h/
√
n satisfying aᵀθ = c/

√
n.
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2.4.3. Conditionally unbiased tests. We call a test conditionally unbiased if it is

unbiased conditional on any possible realization of the stopping time. In analogy

with Proposition 2, a necessary condition for ϕ(·) being conditionally unbiased in

the limit experiment is that

E0 [x(τ) (ϕ(τ, x(τ))− α) |τ = t] = 0 ∀ t. (2.5)

Then, by a similar argument as in Lehmann and Romano (2005, Section 4.2), the

UMP conditionally unbiased (level-α) test of H0 : aᵀh = 0 vs H1 : aᵀh 6= 0 in the

limit experiment can be shown to be

ϕ̄∗(t, x̃(t)) =


1 if P0(τ = t) ≤ αt

I {x̃(t) /∈ [γL(t), γU(t)]} if P0(τ = t) > αt

.

The quantities γL(t), γU(t) are chosen to satisfy both (2.4) and (2.5). In practice,

this requires simulating the distribution of x̃(τ) given τ = t. Also, γL(·) = −γU(·)

if the distribution of x̃(τ) given τ = t is symmetric around 0 under the null.

2.5. On the choice of θ0 and employing a drifting null. Earlier in this

section, we took θ0 ∈ Θ0 to be some reference parameter in the null set. However,

such a choice may result in the limiting stopping time, τ , collapsing to 0. Consider,

for example, the case of costly sampling (Example 1 in Section 1.2). In this

experiment, the stopping time, τ̂ , is itself chosen around a reference parameter

θ0 (typically chosen so that the effect of interest is 0 at θ0). But suppose we are

interested in testing H0 : θ = θ̄0, for some θ̄0 6= θ0. Under this null, τ̂ converges

to 0 in probability as θ̄0 is a fixed distance away from θ0. This issue with the

stopping time arises because the null hypothesis and the stopping time are not

centered around the same reference parameter.

One way to still provide inference in such settings is to set the reference parame-

ter to θ0, but employ a drifting null H0 : h = h0/
√
n, where h0 is taken to be fixed

over n, and is calibrated as
√
n(θ̄ − θ0). The null, H0, thus changes with n, but

for the observed sample size we are still testing θ = θ̄0. It is then straightforward

to show that Theorems 1 and 2 continue to apply in this setting; asymptotically,

the inference problem is equivalent to testing that the drift of x(·) is I1/2h0 in the
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limit experiment. The asymptotic approximation is expected to be more accurate

the closer θ̄0 is to θ0; but for distant values of θ̄0, we caution that local asymptotics

may not provide a good approximation.

2.6. Attaining the bound. So far we have described upper bounds on the as-

ymptotic power functions of tests. Now, given a UMP test, ϕ∗(τ, x(τ)), in the limit

experiment, we can construct a finite sample version of this, ϕ∗n := ϕ∗(τ̂ , xn(τ̂)),

by replacing τ, x(τ) with τ̂ , xn(τ̂). Since xn(τ̂) depends on the information matrix,

I, one would need to either calibrate it to I(θ0) (if θ0 is known), or replace it with

a consistent estimate. We discuss variance estimators in Appendix B.1.

The test, ϕ∗n, would then be asymptotically optimal, in the sense of attain-

ing the power envelope, under mild assumptions. In particular, we only require

that ϕ∗(·, ·) satisfy the conditions for an extended continuous mapping theorem.

Together with (2.3) and the first part of Theorem 1, this implies ϕ∗(τ̂ , xn(τ̂))∑bnτ̂c
i=1 ln dpθ0+h/

√
n

dpθ0
(Yi)

 d−−−→
PnT,0

 ϕ∗(τ, x(τ))

hᵀI1/2x(τ)− τ
2h
ᵀIh

 ,
for any h ∈ Rd. Then, a similar argument as in the proof of Theorem 1 shows

that the local power of ϕ∗n converges to that of ϕ∗ in the limit experiment.

3. Testing in non-parametric settings

We now turn to the setting where the distribution of outcomes is non-parametric.

Let P denote a candidate class of probability measures for the outcome Y , with

bounded variance, and dominated by some measure ν. We are interested in con-

ducting inference on some regular functional, µ := µ(P ), of the unknown data

distribution P ∈ P . We assume for simplicity that µ is scalar. Let P0 ∈ P

denote some reference probability distribution on the boundary of the null hy-

pothesis so that µ(P0) = 0. Following Van der Vaart (2000, Section 25.6), we

consider the power of tests against smooth one-dimensional sub-models of the

form {Ps,h : s ≤ η} for some η > 0, where h(·) is a measurable function satisfying

∫ dP 1/2
s,h − dP

1/2
0

s
− 1

2hdP
1/2
0

2

dν → 0 as s→ 0. (3.1)
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By Van der Vaart (2000), (3.1) implies
∫
hdP0 = 0 and

∫
h2dP0 < ∞. The set

of all such candidate h is termed the tangent space T (P0). This is a subset of

the Hilbert space L2(P0), endowed with the inner product 〈f, g〉 = EP0 [fg] and

norm ‖f‖ = EP0 [f 2]1/2. For any h ∈ T (P0), let PnT,h denote the joint probability

measure over Y1, . . . , YnT , when each Yi is an iid draw from P1/
√
n,h. Also, take

EnT,h[·] to be its corresponding expectation. An important implication of (3.1) is

the SLAN property that for all h ∈ T (P0),

bntc∑
i=1

ln
dP1/

√
n,h

dP0
(Yi) = 1√

n

bntc∑
i=1

h(Yi)−
t

2 ‖h‖
2 + oPnT,0(1), uniformly over t. (3.2)

See Adusumilli (2021, Lemma 2) for the proof.

Let ψ ∈ T (P0) denote the efficient influence function corresponding to estima-

tion of µ, in the sense that for any h ∈ T (P0),

µ(Ps,h)− µ(P0)
s

− 〈ψ, h〉 = o(s). (3.3)

Denote σ2 = EP0 [ψ2]. The analogue of the score process in the non-parametric

setting is the efficient influence function process

xn(t) := σ−1
√
n

bntc∑
i=1

ψ(Yi).

At a high level, the theory for inference in non-parametric settings is closely

related to that for testing linear combinations in parametric models (see, Section

2.3). It is not entirely surprising, then, that the assumptions described below are

similar to those used in Proposition 1:

Assumption 3. (i) The sub-models {Ps,h;h ∈ T (P0)} satisfy (3.1). Furthermore,

they admit an efficient influence function, ψ, such that (3.3) holds.

(ii) The stopping time τ̂ is a continuous function of xn(·) in the sense that τ̂ =

τ(xn(·)), where τ(·) satisfies the conditions for an extended continuous mapping

theorem (Van Der Vaart and Wellner, 1996, Theorem 1.11.1).

Assumption 3(i) is a mild regularity condition that is common in non-parametric

analysis. Assumption 3(ii), which is substantive, states that the stopping times

depend only on the efficient influence function process. This is indeed the case for
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the examples considered in Section 6. More generally, however, it may be that τ̂

depends on other statistics beyond xn(·). In such situations, the set of asymptoti-

cally sufficient statistics should be expanded to include these additional ones. We

remark that an extension of our results to these situations is straightforward, see

Section 5.3 for an illustration.

We call a test, ϕn, of H0 : µ = 0 asymptotically level-α if

sup
{h∈T (P0):〈ψ,h〉=0}

lim sup
n

∫
ϕndPnT,h ≤ α.

Our first result in this section is a power envelope for asymptotically level-α tests.

Consider a limit experiment where one observes a stopping time τ , which is the

weak limit of τ̂ , and a Gaussian process x(·) ∼ σ−1µ·+W (·), whereW (·) denotes 1-

dimensional Brownian motion. By Assumption 3(ii), τ is adapted to the filtration

generated by the sample paths of x(·). For any µ ∈ R, let Eµ[·] denote the induced

distribution over the sample paths of x(·) between [0, T ]. Also, define

ϕ∗µ(τ, x(τ)) := I
{
µx(τ)− µ2

2στ ≥ γ

}
, (3.4)

with γ being determined by the requirement E0[ϕ∗µ] = α, and set β∗(µ) := Eµ[ϕ∗µ].

Proposition 3. Suppose Assumption 3 holds. Let βn(h) the power of some asymp-

totically level-α test, ϕn, of H0 : µ = 0 against local alternatives Pδ/√n,h. Then,

for every h ∈ T (P0) and µ := δ 〈ψ, h〉, lim supn→∞ βn(h) ≤ β∗ (µ).

A similar result holds for unbiased tests. Following Choi et al. (1996), we say

that a test ϕn of H0 : µ = 0 vs H1 : µ 6= 0 is asymptotically unbiased if

sup
{h∈T (P0):〈ψ,h〉=0}

lim sup
n

∫
ϕndPnT,h ≤ α, and

inf
{h∈T (P0):〈ψ,h〉6=0}

lim inf
n

∫
ϕndPnT,h ≥ α.

The next result states that the local power of such a test is bounded by that of a

best unbiased in the limit experiment, assuming one exists.

Proposition 4. Suppose Assumption 3 holds and there exists a best unbiased

test, ϕ̃∗, in the limit experiment with power function β̄∗(µ). Let βn(h) denote the

power of some asymptotically unbiased test, ϕn, of H0 : µ = 0 vs H1 : µ 6= 0
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over local alternatives Pδ/√n,h. Then, for every h ∈ T (P0) and µ := δ 〈ψ, h〉,

lim supn→∞ βn(h) ≤ β̃∗ (µ).

The proof is analogous to that of Proposition 3, and is therefore omitted. Also,

both propositions can be extended to α-spending constraints but we omit formal

statements for brevity.

By similar reasoning as in Section 2.6 (using parametric sub-models), it follows

that we can attain the power bounds β∗(·), β̃∗(·) by employing plug-in versions of

the corresponding UMP tests. This process simply involves replacing τ, x(τ) with

τ̂ , xn(τ̂). The statistic xn(τ̂) depends on the variance, σ, so we must substitute it

with a consistent estimate. We discuss various estimators for σ in Appendix B.1.

4. Non-parametric two-sample tests

In many sequential experiments it is common to test two treatments simulta-

neously. We may then be interested in conducting inference on the difference

between some regular functionals of the two treatments. A salient example of this

is inference on the expected treatment effect.

To make matters precise, let a ∈ {0, 1} denote the two treatments, with P (a)

being the corresponding outcome distribution. Suppose that at each period, the

experimenter samples treatment 1 at some fixed proportion π. It is without loss of

generality to suppose that the outcomes from the two treatments are independent

as we can only ever observe the effect of a single treatment. We are interested

in conducting inference on the difference, µ(P (1)) − µ(P (0)), where µ(·) is some

regular functional of the data distribution. As before, we take µ to be scalar.

Let P (1)
0 , P

(0)
0 denote some reference probability distributions on the bound-

ary of the null hypothesis so that µ(P (1)
0 ) − µ(P (0)

0 ) = 0. Following Van der

Vaart (2000, Section 25.6), we consider the power of tests against smooth one-

dimensional sub-models of the form
{(
P

(1)
s,h1 , P

(0)
s,h0

)
: s ≤ η

}
for some η > 0, where

ha(·) is a measurable function satisfying

∫ 
√
dP

(a)
s,ha
−
√
dP

(a)
0

s
− 1

2ha
√
dP

(a)
0


2

dν → 0 as s→ 0. (4.1)
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As before, the set of all possible ha satisfying
∫
hadP

(a)
0 = 0 and

∫
h2
adP

(a)
0 <∞

forms a tangent space T (P (a)
0 ). This is a subset of the Hilbert space L2(P (a)

0 ),

endowed with the inner product 〈f, g〉a = E
P

(a)
0

[fg] and norm ‖f‖a = E
P

(a)
0

[f 2]1/2.

Let ψa ∈ T (P (a)
0 ) denote the efficient influence function satisfying

µ(P (a)
s,ha

)− µ(P (a)
0 )

s
− 〈ψa, ha〉a = o(s) (4.2)

for any ha ∈ T (P (a)
0 ). Denote σ2

a = E
P

(a)
0

[ψ2
a]. The sufficient statistic here is the

differenced efficient influence function process

xn(t) := 1
σ

 1
π
√
n

bnπtc∑
i=1

ψ1(Y (1)
i )− 1

(1− π)
√
n

bn(1−π)tc∑
i=1

ψ0(Y (0)
i )

 , (4.3)

where σ2 :=
(
σ2

1
π

+ σ2
0

1−π

)
. Note that the number of observations from each treat-

ment at time t is bnπtc , bn(1− π)tc. The assumptions below are analogous to

Assumption 3:

Assumption 4. (i) The sub-models {P (a)
s,ha

;ha ∈ T (P (a)
0 )} satisfy (4.1). Further-

more, they admit an efficient influence function, ψa, such that (4.2) holds.

(ii) The stopping time τ̂ is a continuous function of xn(·) in the sense that τ̂ =

τ(xn(·)), where τ(·) satisfies the conditions for an extended continuous mapping

theorem (Van Der Vaart and Wellner, 1996, Theorem 1.11.1).

Set µa := µ(P (a)). A test, ϕn, of H0 : µ1 − µ0 = 0 is asymptotically level-α if

sup
{h:〈ψ1,h1〉1−〈ψ0,h0〉0=0}

lim sup
n

∫
ϕndPnT,h ≤ α. (4.4)

Similarly, a test, ϕn, of H0 : µ1 − µ0 = 0 vs H1 : µ1 − µ0 6= 0 is asymptotically

unbiased if

sup
{h:〈ψ1,h1〉1−〈ψ0,h0〉0=0}

lim sup
n

∫
ϕndPnT,h ≤ α, and

inf
{h:〈ψ1,h1〉1−〈ψ0,h0〉0 6=0}

lim inf
n

∫
ϕndPnT,h ≥ α. (4.5)

Consider the limit experiment where one observes x(·) ∼ σ−1(µ1 − µ0) · +W (·)

and a Ft ≡ σ{x(s); s ≤ t} adapted stopping time τ that is the weak limit of

τ̂ . Then, setting µ := µ1 − µ0, define the power functions β∗(·), β̃∗(·) as in the

19



previous section. The following results provide upper bounds on asymptotically

level-α and asymptotically unbiased tests.

Proposition 5. Suppose Assumption 4 holds. Let βn(h) the power of some asymp-

totically level-α test, ϕn, of H0 : µ1 − µ0 = 0 against local alternatives P (1)
δ1/
√
n,h1
×

P
(0)
δ0/
√
n,h0

. Then, for every h ∈ T (P (1)
0 )×T (P (0)

0 ) and µ := δ1 〈ψ1, h1〉1−δ0 〈ψ0, h0〉0,

lim supn→∞ βn(h) ≤ β∗ (µ).

Proposition 6. Suppose Assumption 4 holds and there exists a best unbiased test

ϕ̃∗ in the limit experiment. Let βn(h) the power of some asymptotically unbiased

test, ϕn, of H0 : µ1−µ0 = 0 vs H1 : µ1−µ0 6= 0 against local alternatives P (1)
δ1/
√
n,h1
×

P
(0)
δ0/
√
n,h0

. Then, for every h ∈ T (P (1)
0 )×T (P (0)

0 ) and µ := δ1 〈ψ1, h1〉1−δ0 〈ψ0, h0〉0,

lim supn→∞ βn(h) ≤ β̃∗ (µ).

We prove Proposition 5 in Appendix A. The proof of Proposition 6 is similar

and therefore omitted. Both Propositions 5 and 6 can be extended to α-spending

constraints. We omit the formal statements for brevity.

5. Optimal tests in batched experiments

We now analyze sequential experiments with multiple treatments and where the

sampling rule, i.e., the number of units allocated to each treatment, also changes

over the course of the experiment. Since our results here draw on Hirano and

Porter (2023), we restrict attention to batched experiments, where the sampling

strategy is only allowed to be changed at some fixed, discrete set of times.

Suppose there areK treatments under consideration. We takeK = 2 to simplify

the notation, but all our results extend to any fixed K. The outcomes, Y (a), under

treatment a ∈ {0, 1} are distributed according to some parametric model {P (a)
θ(a)}.

Here θ(a) ∈ Rd is some unknown parameter vector; we assume for simplicity that

the dimension of θ(1), θ(0) is the same, but none of our results actually require

this. It is without loss of generality to suppose that the outcomes from each

treatment are independent conditional on θ(1), θ(0), as we only ever observe one of

the two potential outcomes for any given observation. In the batch setting, the DM

divides the observations into batches of size n, and registers a sampling rule {π̂(a)
j }j

that prescribes the fraction of observations allocated to treatment a in batch j
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based on information from the previous batches 1, . . . , j − 1. The experiment

ends after J batches. It is possible to set π(a)
j = 0 for some or all treatments

(e.g., the experiment may be stopped early); we only require ∑a π̂
(a)
j ≤ 1 for each

j. We develop asymptotic representation theorems for tests of H0 : θ = Θ0 vs

H1 : θ ∈ Θ1, where θ := (θ(1), θ(0)). Let (θ(1)
0 , θ

(0)
0 ) ∈ Θ0 denote some reference

parameter in the null set.

Take q̂(a)
j to be the proportion of observations allocated to treatment a up-to

batch j, as a fraction of n. Let Y (a)
j denote the j-th observation of treatment a in

the experiment. Any candidate test, δ(·), is required to be

σ
{(
Y

(0)
1 , . . . , Y

(0)
nq

(0)
J

)
,
(
Y

(1)
1 , . . . , Y

(1)
nq

(1)
J

)}
measurable. As in the previous sections, we measure the performance of tests

against local perturbations of the form {θ(a)
0 + ha/

√
n;ha ∈ Rd}. Let ν denote a

dominating measure for {P (a)
θ : θ ∈ Rd, a ∈ {0, 1}}, and set p(a)

θ := dP
(a)
θ /dν. We

require {P (a)
θ } to be quadratically mean differentiable (qmd):

Assumption 5. The class {P (a)
θ : θ ∈ Rd} is qmd around θ(a)

0 for each a ∈ {0, 1},

i.e., there exists a score function ψa(·) such that for each ha ∈ Rd,∫ [√
p

(a)
θ
(a)
0 +ha

−
√
p

(a)
θ
(a)
0
− 1

2h
ᵀ
aψa

√
p
θ
(a)
0

]2
dν = o(|ha|2).

Furthermore, the information matrix Ia := E0[ψaψᵀa] is invertible for a ∈ {0, 1}.

Define z(a)
j,n(π̂j) as the standardized score process from each batch, where

z
(a)
j,n(t) := I−1/2

a√
n

bntc∑
i=1

ψa(Y (a)
i,j )

for each t ∈ [0, 1]. Let Y (a)
i,j denote the i-th outcome observation from arm a in

batch j. At each batch j, one can imagine that there is a potential set of outcomes,

{y(1)
j ,y(0)

j } with y(a)
j := {Y (a)

i,j }ni=1, that could be sampled from both arms, but

only a sub-collection, {Y (a)
i,j ; i = 1, . . . , nπ̂(a)

j }, of these are actually sampled. Let

h := (h1, h0), take Pn,h to be the joint probability measure over

{y(1)
1 ,y(0)

1 , . . . ,y(1)
J ,y(0)

J }
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when each Y (a)
i,j ∼ P

θ
(a)
0 +ha/

√
n
, and take En,h[·] to be its corresponding expectation.

Then, by a standard functional central limit theorem,

z
(a)
j,n(t) d−−→

Pn,0
z(t); z(·) ∼ W

(a)
j (·), (5.1)

where {W (a)
j }j,a are independent d-dimensional Brownian motions.

5.1. Asymptotic representation theorem. Consider a limit experiment where

h := (h1, h0) is unknown, and for each batch j, one observes the stopped process

z
(a)
j (π(a)

j ), where

z
(a)
j (t) := I1/2

a hat+W
(a)
j (t), (5.2)

and {W (a)
j ; j = 1, . . . , J ; a = 0, 1} are independent Brownian motions. Each π(a)

j

is required to satisfy ∑a π
(a)
j ≤ 1 and also to be

σ
{

(z(1)
1 , z

(0)
1 , U1), . . . , (z(1)

j−1, z
(0)
j−1, Uj−1)

}
measurable, where Uj ∼ Uniform[0, 1] is exogenous to all the past values

{
z

(a)
j′ , Uj′ : j′ < j

}
.

Let ϕ denote a test statistic for H0 : h = 0 that depends only on: (i) qa = ∑
j π

(a)
j ,

i.e., the number of times each arm was pulled; and (ii) xa = ∑
j z

(a)
j (π(a)

j ), i.e., the

sum of outcomes from each arm. Let Ph denote the joint probability measure over

{z(a)
j (·); a ∈ {0, 1}, j ∈ {1, . . . , J}} when each z(a)

j (·) is distributed as in (5.2), and

take Eh[·] to be its corresponding expectation.

The following theorem shows that the power function of any test ϕn in the orig-

inal testing problem can be matched by one such test, ϕ, in the limit experiment.

Theorem 3. Suppose Assumption 5 holds. Let ϕn be some test function in the

original batched experiment, and βn(h), its power against Pn,h. Then, for every

sequence {nj}, there is a further sub-sequence {njm} such that:

(i) (Hirano and Porter, 2023) There exists a batched policy function π = {π(a)
j }j

and processes {z(a)
j (·)}j,a defined on the limit experiment for which

((
π̂

(1)
1 , π̂

(0)
1 , z

(1)
1,n(π̂(1)

1 ), z(0)
1,n(π̂(0)

1 )
)
, . . . ,

(
π̂

(1)
J , π̂

(0)
J , z

(1)
J,n(π̂(1)

J ), z(0)
J,n(π̂(0)

J )
))

d−−→
Pn,0

((
π

(1)
1 , π

(0)
1 , z

(1)
1 (π(1)

1 ), z(0)
1 (π(0)

1 )
)
, . . . ,

(
π

(1)
J , π

(0)
J , z

(1)
J (π(1)

J ), z(0)
J (π(0)

J )
))
.
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(ii) There exists a test ϕ in the limit experiment depending only on q1, q0, x1, x0

such that βnjm (h) → β(h) for every h ∈ Rd × Rd, where β(h) := Eh[ϕ] is the

power of ϕ in the limit experiment.

The first part of Theorem 3 is due to Hirano and Porter (2023); we only mod-

ify the terminology slightly. Note that the results of Hirano and Porter (2023)

already imply that any ϕn can be asymptotically matched by a test ϕ in the limit

experiment that is σ
{

(z(1)
1 , z

(0)
1 , U1), . . . , (z(1)

J , z
(0)
J , UJ)

}
measurable. The novel re-

sult here is the second part of Theorem 3, which shows that a further dimension

reduction is possible. A naive application of Hirano and Porter (2023) would re-

quire sufficient statistics that grow linearly with the number of batches, leading

to a vector of dimension 2dJ + 1 (the uniform random variables U1, . . . , UJ can

be subsumed into a single U ∼ Uniform[0, 1]). Here, we show that one only need

condition on q1, q0, x1, x0, which are of a fixed dimension 2d + 2 (or 2d + 1 if we

impose q(1) + q(0) = J). This is a substantial reduction in dimension.

5.1.1. An alternative representation of the limit experiment. From the distribution

of z(a)
j (·) given in (5.2), it is easy to verify that

z
(a)
j (π(a)

j ) ∼ I1/2
a haπ

(a)
j +W

(a)
j (π(a)

j ).

Combined with the definition qa = ∑
j π

(a)
j and the fact {W (a)

j ; j = 1, . . . , J ; a =

0, 1} are independent Brownian motions, we obtain

xa =
∑
j

z
(a)
j (π(a)

j ) ∼ I1/2
a haqa +Wa(qa), (5.3)

where W1(·).W0(·) are standard d-dimensional Brownian motions that are again

independent of each other. In view of the above, we can alternatively think of the

limit experiment as observing {qa}a along with {xa}a, with the latter distributed

as in (5.3). The advantage of this formulation is that it is independent of the

number of batches. It therefore provides suggestive evidence that the asymptotic

representation in Theorem 3 would remain valid under continuous experimentation

(however, our proof only applies to a finite number of batches).
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5.2. Characterization of optimal tests in the limit experiment. It is gener-

ally unrealistic in batched sequential experiments for the sampling rule to depend

on fewer statistics than q1, q0, x1, x0. Consequently, we do not have sharp results

for testing linear combinations as in Proposition 1. We do, however, have ana-

logues to the other results in Section 2.3.

5.2.1. Power envelope. Consider testing H0 : h = 0 vs H1 : h = h1 in the limit

experiment. By the Neyman-Pearson lemma, and the Girsanov theorem applied

on (5.3), the optimal test is given by

ϕ∗h1 = I

 ∑
a∈{0,1}

(
hᵀaI

1/2
a xa −

qa
2 h

ᵀ
aIaha

)
≥ γh1

 , (5.4)

where γh1 is chosen such that E0[ϕ∗h1 ] = α. Take β∗(h1) to be the power function

of ϕ∗h1 against H1 : h = h1. Theorem 3 shows that β∗(·) is an asymptotic power

envelope for any test of H0 : θ = θ0 in the original experiment.

5.2.2. Unbiased tests. Suppose ϕ(q1, q0, x1, x0) is an unbiased test of H0 : h = 0

vs H1 : h 6= 0 in the limit experiment. Then, in analogy with Proposition 2, it

needs to satisfy the following property:

Proposition 7. Any unbiased test of H0 : h = 0 vs H1 : h 6= 0 in the limit

experiment must satisfy E0[xaϕ(q1, q0, x1, x0)] = 0 where xa ∼ Wa(qa) under P0.

5.2.3. Weighted average power. Let w(·) denote a weight function over alternatives

h 6= 0. Then, the uniquely optimal test of H0 : h = 0 that maximizes weighted

average power over w(·) is given by

ϕ∗w = I


∫

exp

 ∑
a∈{0,1}

(
hᵀaI

1/2
a xa −

qa
2 h

ᵀ
aIaha

) dw(h) ≥ γ

 .
The value of γ is chosen to satisfy E0[ϕ∗w] = α. In practice, it can be computed

by simulation.

5.3. Non-parametric tests. For the non-parametric setting, we make use of

the same notation as in Section 4. We are interested in conducting inference on

some regular vector of functionals,
(
µ(P (1)), µ(P (0))

)
, of the outcome distributions

P (1), P (0) for the two treatments. To simplify matters, we take µa := µ(P (a)) to be
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scalar. The definition of asymptotically level-α and unbiased tests is unchanged

from (4.4) and (4.5).

Let ψa, σa be defined as in Section 4. Set

z
(a)
j,n := 1

σa
√
n

bntc∑
i=1

ψa(Y (a)
i,j ),

and take sn(·) = {xn,1(·), xn,0(·), qn,1(·), qn,0(·)} to be the vector of state variables,

where

xn,a(k) :=
k∑
j=1

z
(a)
n,j(π̂

(a)
j ), and qn,a(k) :=

k∑
j=1

π̂
(a)
j .

Assumption 6. (i) The sub-models {P (a)
s,ha

;ha ∈ T (P (a)
0 )} satisfy (4.1). Further-

more, they admit an efficient influence function, ψa, such that (4.2) holds.

(ii) The sampling rule π̂j+1 in batch j is a continuous function of sn(j) in the

sense that π̂j+1 = πj+1(sn(j)), where πj+1(·) satisfies the conditions for an extended

continuous mapping theorem (Van Der Vaart and Wellner, 1996, Theorem 1.11.1)

for each j = 0, . . . , K − 1.

Assumption 6(i) is standard. Assumption 6(ii) implies that the sampling rule

depends on a vector of four state variables. This is in contrast to the single suffi-

cient statistic used in Section 4. We impose Assumption 6(ii) as it is more realistic;

many commonly used algorithms, e.g., Thompson sampling, depend on all four

statistics. The assumption still imposes a dimension reduction as it requires the

sampling rule to be independent of the data conditional on knowing sn(·). In prac-

tice, any Bayes or minimax optimal algorithm would only depend on sn(·) anyway,

as noted in Adusumilli (2021). In fact, we are not aware of any commonly used

algorithm that requires more statistics beyond these four.

The reliance of the sampling rule on the vector sn(·) implies that the optimal

test should also depend on the full vector, and cannot be reduced further. The

relevant limit experiment is the one described in Section 5.1.1, with µa replacing

ha. Also, let

ϕµ̄1,µ̄0 = I

 ∑
a∈{0,1}

(
µ̄a
σa
xa −

qa
2σ2

a

µ̄2
a

)
≥ γµ̄1,µ̄0
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denote the Neyman-Pearson test ofH0 : (µ1, µ0) = (0, 0) vsH1 : (µ1, µ0) = (µ̄1, µ̄0)

in the limit experiment, with γµ̄1,µ̄0 determined by the size requirement. Take

β(µ̄1, µ̄0) to be its corresponding power.

Proposition 8. Suppose Assumption 6 holds. Let βn(h) the power of some

asymptotically level-α test, ϕn, of H0 : (µ1, µ0) = (0, 0) against local alternatives

P
(1)
δ1/
√
n,h1
×P (0)

δ0/
√
n,h0

. Then, for every h ∈ T (P (1)
0 )×T (P (0)

0 ) and µa := δa 〈ψa, ha〉a
for a ∈ {0, 1}, lim supn→∞ βn(h) ≤ β∗ (µ1, µ0).

Proposition 8 describes the power envelope for testing that the parameter vector

takes on a given value. Suppose, however, that one is only interested in providing

inference for single component of that vector, say µ1. Then µ0 is a nuisance

parameter under the null, and one would need to employ the usual strategies for

getting rid of the dependence on µ0, e.g., through conditional inference or minimax

tests. We leave the discussion of these possibilities for future research.

6. Applications

6.1. Horizontal boundary designs. As a first illustration of our methods, con-

sider the class of horizontal boundary designs with a fixed sampling rule, π, and

the stopping time τ̂ = inf {t : |xn(t)| ≥ γ}, where xn(t) is defined as in (4.3). As a

concrete example, suppose µ1, µ0 denote the mean values of outcomes from each

treatment, with σ1, σ0 their corresponding standard deviations. If the goal of the

experiment is to determine the treatment with the largest mean while minimizing

the number of samples, which are costly, then, as shown in Adusumilli (2022), the

minimax optimal sampling strategy is the Neyman allocation π∗1 = σ1/(σ1 + σ0),

and optimal stopping rule is τ̂ = inf {t : |xn(t)| ≥ γ} with the efficient influence

functions ψ1(Y ) = ψ0(Y ) = Y .

We are interested in testing the null of no treatment effect, H0 : µ1 − µ0 = 0 vs

H1 : µ1 − µ0 6= 0. Let Fµ(·) denote the distribution of τ in the limit experiment

where x(t) ∼ σ−1µt + W (t) and τ = inf{t : |x(t)| ≥ γ}. In Adusumilli (2022),

this author suggested employing the test function ϕ̂ = I{τ̂ ≤ F−1
0 (α)}. This

corresponds to the test ϕ∗ = I{τ ≤ F−1
0 (α)} in the limit experiment. However, no
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argument was given as to its optimality. The following result, proved in Appendix

B.2, shows that ϕ̂ is in fact the UMP asymptotically unbiased test.

Lemma 1. Consider the sequential experiment described above with a fixed sam-

pling rule π and stopping time τ̂ = inf {t : |xn(t)| ≥ γ}. The test, ϕ̂ = I{τ̂ ≤

F−1
0 (α)}, is the UMP asymptotically unbiased test (in the sense that it attains the

upper bound in Proposition 3) of H0 : µ1 = µ0 vs H1 : µ1 6= µ0 in this experiment.

6.1.1. Numerical Illustration. To illustrate the finite sample performance of this

test, we ran Monte-Carlo simulations with Y (1)
i = δ + ε

(1)
i and Y (0)

i = ε
(0)
i where

ε
(1)
i , ε

(0)
i ∼

√
3 × Uniform[−1, 1]. The threshold, γ, was taken to be 0.536 (this

corresponds to a sampling cost of c = 1 for each observation in the costly sampling

framework), and the treatments were sampled in equal proportions (π = 1/2).

Figure 6.1, Panel A plots the size of the test for different values of n under the

nominal 5% significance level. Even for relatively small values of n, the size is close

to nominal. We also plot the size of the standard two-sample test for comparison;

due to the adaptive stopping rule, this test is not valid and its actual size is close to

9%. Panel B of the same figure plots the finite sample power functions for ϕ̂ under

different n. The power is computed against local alternatives; the reward gap in

the figure is the scaled one, µ =
√
n|δ|. But for any given n, the actual difference

in mean outcomes is µ/
√
n. The same plot also displays the asymptotic power

envelope for unbiased tests, obtained as the power function of the best unbiased

test, ϕ∗ = I{τ ≤ F−1
0 (α)}, in the limit experiment. Even for small samples, the

power function of ϕ̂ is close to the asymptotic upper bound.

6.2. Group sequential experiments. In this application, we suggest methods

for inference on treatment effects following group sequential experiments. To sim-

plify matters, suppose that the researchers assign the two treatments with equal

probability in each stage. Let µ1, µ0 denote the expectation of outcomes from the

two treatments. Also, take xn(·) to be the scaled difference in sample means, i.e.,

it is the quantity defined in (4.3) with ψ1(Y ) = ψ0(Y ) = Y . While there are

a number of different group sequential designs, see, e.g., Wassmer and Brannath

(2016) for a textbook overview, the general construction is that the experiment is

terminated at the end of stage t if xn(t) is outside some interval It. The stopping
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A: Size B: Power function

Note: Panel A plots the size of ϕ̂ along with that of the standard two-sample test at the nominal 5%
level (solid blue line) when the errors are drawn from a

√
3×Uniform[−1, 1] distribution for each

treatment. Panel B plots the finite sample power envelopes of ϕ̂ under different n, along with
asymptotic power envelope for unbiased tests. The scaled treatment effect is defined as µ =

√
n|δ|.

Figure 6.1. Finite sample performance of ϕ̂ under horizontal
boundary designs

time τ̂ thus satisfies {τ̂ > t − 1} ≡ ∩t−1
l=1 {xn(l) ∈ Il}. The intervals {It}Tt=1 are

pre-determined and chosen by balancing various ethical, cost and power criteria.

We take them as given.

We are interested in testing the drifting hypotheses H0 : µ1 − µ0 = µ̄/
√
n vs

H1 : µ1 − µ0 > µ̄/
√
n at some spending level α that is chosen by experimenter.1

We can then invert these tests to obtain one-sided confidence intervals for the

treatment effect µ1−µ0. The limit experiment in this setting consists of observing

x(t) ∼ σ−1µt + W (t), where µ := µ1 − µ0, along with a discrete stopping time

τ ∈ {1, . . . , T} such that {τ > t− 1} if and only if x(l) ∈ Il for all l = 1, . . . , t− 1.

Let Pµ(·) denote the induced probability measure over the sample paths of x(·)

between 0 and T , and Eµ[·] its corresponding expectation. In view of the results

in Section 2.4, the optimal level-α test ϕ∗(·) of H0 : µ = µ̄ vs H1 : µ > µ̄ in the

limit experiment is given by

ϕ∗(τ, x(τ)) =


1 if Pµ̄(τ = t) ≤ αt

I {x(t) ≥ γ(t)} if Pµ̄(τ = t) > αt,
(6.1)

1In most examples of group sequential designs, the intervals It are themselves chosen to maximize
power under some ᾱ-spending criterion, given the null of µ1 = µ0. In general, our α here may
be different from ᾱ. Furthermore, we are interested in conducting inference on general null
hypotheses of the form H0 : µ1 − µ0 = µ̄/

√
n; these are different from the null hypothesis of no

average treatment effect used to motivate the group sequential design.
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where γ(t) is chosen such that Eµ̄[ϕ∗(τ, x(τ))|τ = t] = αt/Pµ̄(τ = t).

A finite sample version, ϕ̂, of this test can be constructed by replacing τ, x(τ)

in ϕ∗ with τ̂ , xn(τ̂). The resulting test would be asymptotically optimal under

a suitable non-parametric version of the α-spending requirement. We refer to

Appendix B.3 for the details and for the proof that ϕ̂ is asymptotically optimal,

in the sense that it attains the power of ϕ∗ in the limit experiment. A two-sided

test for H0 : µ1−µ0 = µ̄/
√
n vs H1 : µ1−µ0 6= µ̄/

√
n can be similarly constructed

by imposing a conditional unbiasedness restriction as in Section 2.4.3.

6.2.1. Numerical Illustration. To illustrate the methodology, consider a group se-

quential trial based on the widely-used design of O’Brien and Fleming (1979),

with T = 2 stages. This corresponds to setting I1 = [−2.797, 2.797]. We would

like to test H0 : µ1 − µ0 = µ̄/
√
n vs H1 : µ1 − µ0 > µ̄/

√
n at the spending

level (α/Pµ̄(τ = 1), α/Pµ̄(τ = 2)), equivalent to a conditional size constraint,

Pµ̄(ϕ = 1|τ = t) = α ∀ t. Figure 6.2 Panel A plots the thresholds, (γ(1), γ(2)),

for this test under α = 0.05 and σ1 = σ0 = 1. Unsurprisingly, the thresholds are

increasing in µ̄ , but it is interesting to observe that they cross at some µ̄.

To describe the finite sample performance of this test, we ran Monte-Carlo

simulations with Y
(1)
i = µ̄/

√
n + ε

(1)
i and Y

(0)
i = ε

(0)
i where ε(1)

i , ε
(0)
i ∼

√
3 ×

Uniform[−1, 1]. The treatments were sampled in equal proportions (π = 1/2).

Since σ1, σ0 are unknown in practice, we estimate them using data from the first

stage. Figure 6.2, Panel B plots the overall size of the test (which is the sum

of the α-spending values at each stage) for different values of n and µ̄ under the

nominal α-spending level of (0.05/Pµ̄(τ = 1), 0.05/Pµ̄(τ = 2)). We see that the

asymptotic approximation worsens for larger values of µ̄, but overall, the size is

close to nominal even for relatively small values of n.

6.3. Bandit experiments. Here, we describe inferential procedures for the batched

Thompson-sampling algorithm. For illustration, we employ K = 2 treatments

and J = 10 batches. Let (µ̄1, µ̄0) and (σ2
1, σ

2
0) denote the population means and

variances for each treatment. For simplicity, we take σ2
1 = σ2

0 = 1. The limit ex-

periment can be described as follows: Suppose the decision maker (DM) employs

the sampling rule π(a)
j in batch j. The DM then observes Z(a)

j ∼ N (µ̄aπa, πa) for
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A: Critical values B: Finite sample size

Note: Panel A plots the threshold values in each stage for the optimal, one-sided, level-α test, (6.1), at
the (0.05/Pµ̄(τ = 1), 0.05/Pµ̄(τ = 2)) spending level. Panel B plots the overall type-I error in finite
samples for different values of n and null values, µ̄, when the errors are drawn from a√

3×Uniform[−1, 1] distribution for each treatment.

Figure 6.2. Testing in group sequential experiments

a ∈ {0, 1} and updates the state variables xa, qa (which are initially set to 0) as

xa ← xa + Z
(a)
j , qa ← qa + πa.

Under an under-smoothed prior, suggested by Wager and Xu (2021), the Thomp-

son sampling rule in batch j + 1 is

π
(1)
j+1 = Φ

q−1
1 x1 − q−1

0 x0√
j/q1q0

 .
We set π(a)

1 = 1/2 for first batch. In what follows, we let µa := Jµ̄a. We are

interested in testing H0 : (µ1, µ0) = (0, 0).

Figure 6.3, Panel A plots the asymptotic power envelope for testing H0 :

(µ1, µ2) = (0, 0). Clearly, the envelope is not symmetric; distinguishing (a, 0)

from (0, 0) is easier than distinguishing (−a, 0) from (0, 0) for any a > 0. This

is because of the asymmetry in treatment allocation under Thompson sampling;

under (−a, 0), treatment 1 is sampled more often than treatment 0 but the data

from treatment 1 is uninformative for distinguishing (−a, 0) from (0, 0).

6.3.1. Numerical illustration. To determine the accuracy of our asymptotic ap-

proximations, we ran Monte-Carlo simulations with Y (a)
i = µa+ε(a)

i where ε(1)
i , ε

(0)
i ∼

√
3 × Uniform[−1, 1]. Figure 6.4, Panel A plots the finite sample performance of

the Neyman-Pearson tests in the limit experiment for testing H0 : (µ1, µ0) = (0, 0)
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Note: The figure plots the asymptotic power envelope for any test of H0 : (µ, µ) = (0, 0) against
different values (µ1, µ0) under the alternative.

Figure 6.3. Power envelope for Thompson-sampling with 10 batches

vs H1 : (µ1, µ0) = (µ, µ) under various values of µ (due to symmetry, we only re-

port the results for positive µ). Panel B repeats the same calculation, but against

alternatives of the form H1 : (µ, 0). As noted earlier, power is higher here for µ > 0

as opposed to µ < 0. Both plots show that the asymptotic approximation is quite

accurate even for n as small as 20 (note that the number of batches is 10, so this

corresponds to 200 observations overall). The approximation is somewhat worse

for testing µ < 0; this is because Thompson-sampling allocates much fewer units

to treatment 0 in this instance, even though it is only data from this treatment

that is informative for distinguishing the two hypotheses.

7. Conclusion

Conducting inference after sequential experiments is a challenging task. How-

ever, significant progress can be made by analyzing the optimal inference problem

under an appropriate limit experiment. We showed that the data from any se-

quential experiment can be condensed into a finite number of sufficient statistics,

while still maintaining the power of tests. Furthermore, we were able to estab-

lish uniquely optimal tests under reasonable constraints such as unbiasedness and

α-spending, in both parametric and non-parametric regimes. Taken together,
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A: Power against H1 : (µ, µ) B: Power against H1 : (µ, 0)

Note: Panel A plots the finite sample power of Neyman-Pearson tests at the nominal 5% level (solid
blue line) for testing H0 : (µ1, µ0) = (0, 0) against H1 : (µ1, µ0) = (µ, µ) when the errors are drawn
from a

√
3×Uniform[−1, 1] distribution for each treatment. Panel B repeats the same calculation for

alternatives of the form H1 : (µ1, µ0) = (µ, 0). Both panels also display the asymptotic power envelope.

Figure 6.4. Finite sample performance of Neyman-Pearson tests
in bandit experiments

these findings offer a comprehensive framework for conducting optimal inference

following sequential experiments.

Despite these results, there are still several avenues for future research. While we

believe that our results for experiments with adaptive sampling rules apply without

batching, this needs be formally verified. Our characterization of uniquely optimal

tests is also limited in this context, as α-spending restrictions are not feasible.

Therefore, exploring other types of testing considerations such as invariance or

conditional inference may be worthwhile. We believe that the techniques developed

in this paper will prove useful for analyzing these other types of tests.
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Appendix A. Proofs

A.1. Proof of Theorem 1. To prove the first claim, observe that both τ̂ and

xn(τ̂) are tight under PnT,0: the former by Assumption 2, and the latter by the

fact maxt≤T xn(t) is tight (by the continuous mapping theorem it converges to the

tight limit maxt x(t) under PnT,0). Hence, the joint (τ̂ , xn(τ̂)) is a also tight, and

by Prohorov’s theorem, converges in distribution under sub-sequences. The first

part of the theorem then follows from Le Cam (1979, Theorem 1).

To prove the second claim, denote ynt = (Y1, . . . , Ynt). Defining

ln dPnt,h
dPnt,0

(ynt) =
bntc∑
i=1

ln
dpθ0+h/

√
n

dpθ0
(Yi),

we have by the SLAN property, (2.3), and Assumption 1(i) that

ln dPnτ̂ ,h
dPnτ̂ ,0

(ynτ̂ ) = hᵀI1/2xn(τ̂)− τ̂

2h
ᵀIh+ oPnT,0(1).

Combining the above with the first part of the theorem gives

ln dPnτ̂ ,h
dPnτ̂ ,0

(ynτ̂ ) d−−−→
PnT,0

hᵀI1/2x(τ)− τ

2h
ᵀIh, (A.1)

where x(·) has the same distribution as d-dimensional Brownian motion.

Now, ϕn is tight since ϕn ∈ [0, 1]. Together with (A.1), this implies the joint(
ϕn, ln dPnτ̂,h

dPnτ̂,0
(ynτ̂ )

)
is also tight. Hence, by Prohorov’s theorem, given any se-

quence {nj}, there exists a further sub-sequence {njm} - represented as {n} with-

out loss of generality - such that ϕn
dPnτ̂.,h
dPnτ̂,0

(ynτ̂ )

 d−−−→
PnT,0

 ϕ̄

V

 ; V ∼ exp
{
hᵀI1/2x(τ)− τ

2h
ᵀIh

}
, (A.2)

where ϕ̄ ∈ [0, 1]. It is a well known property of Brownian motion that M(t) :=

exp
{
hᵀI1/2x(t)− t

2h
ᵀIh

}
is a martingale with respect to the filtration Ft. Since

τ is an Ft-adapted stopping time, the optional stopping theorem then implies

E[V ] ≡ E[M(τ)] = E[M(0)] = 1.

We now claim that

ϕn
d−−−→

PnT,h
L; where L(B) := E[I{ϕ̄ ∈ B}V ] ∀ B ∈ B(R). (A.3)
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It is clear from V ≥ 0 and E[V ] = 1 that L(·) is a probability measure, and that

for every measurable function f : R → R,
∫
fdL = E[f(ϕ̄)V ]. Furthermore, for

any f(·) lower-semicontinuous and non-negative,

lim inf EnT,h[f(ϕn)] ≥ lim inf EnT,0
[
f(ϕn)dPnT,h

dPnT,0

]

= lim inf EnT,0
[
f(ϕn)dPnτ̂ ,h

dPnτ̂ ,0

]
≥ E[f(ϕ̄)V ],

where the equality follows from the law of iterated expectations since ϕn is a

function only of ynτ̂ and dPnτ̂ ,h/dPnτ̂ ,0 is a martingale under PnT,0; and the last

inequality follows from applying the portmanteau lemma on (A.2). Finally, ap-

plying the portmanteau lemma again, in the converse direction, gives (A.3).

Since ϕn is bounded, (A.3) implies

lim
n→∞

βn(h) := lim
n→∞

EnT,h [ϕn] = E
[
ϕ̄eh

ᵀI1/2x(τ)− τ2h
ᵀIh
]
. (A.4)

Define ϕ(τ, x(τ)) := E[ϕ̄|τ, x(τ)]; this is a test statistic since ϕ ∈ [0, 1]. The right

hand side of (A.4) then becomes

E
[
ϕ(τ, x(τ))ehᵀI1/2x(τ)− τ2h

ᵀIh
]
.

But by the Girsanov theorem, this is just the expectation, Eh[ϕ(τ, x(τ))], of

ϕ(τ, x(τ)) when x(t) is distributed as a Gaussian process with drift I1/2h, i.e.,

when x(t) ∼ I1/2ht+W (t).

A.2. Proof of Proposition 1. We start by proving the first claim. Denote

H0 ≡ {h : aᵀh = 0} and H1 ≡ {h : aᵀh = c}. Let Ph denote the induced

probability measure over the sample paths generated by x(t) ∼ I1/2ht + W (t)

between t ∈ [0, T ]. As before, Ft denotes the filtration generated by {U, x(s) : s ≤

t}. Given any h1 ∈ H1, define h0 = h1 − (aᵀh1/a
ᵀI−1a)I−1a. Note that aᵀh1 = c

and h0 ∈ H0. Let ln dPh1
dPh0

(Ft) denote the likelihood ratio between the probabilities

induced by the parameters h1, h0 over the filtration Ft. By the Girsanov theorem,

ln dPh1

dPh0

(Fτ ) =
(
hᵀ1I

1/2x(τ)− τ

2h
ᵀ
1Ih1

)
−
(
hᵀ0I

1/2x(τ)− τ

2h
ᵀ
0Ih0

)

= 1
σ
cx̃(τ)− c2

2σ2 τ,
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where x̃(t) := σ−1aᵀI−1/2x(t). Hence, an application of the Neyman-Pearson

lemma shows that the UMP test of H ′0 : h = h0 vs H ′1 : h = h1 is given by

ϕ∗c = I
{
cx̃(τ)− c2

2στ ≥ γ

}
,

where γ is chosen by the size requirement. Now, for any h0 ∈ H0,

x̃(t) ≡ σ−1aᵀI−1/2x(t) ∼ W (t).

Hence, the distribution of the sample paths of x̃(·) is independent of h0 under the

null. Combined with the assumption that τ is F̃t-adapted, this implies ϕ∗c does

not depend on h0 and, by extension, h1, except through c. Since h1 ∈ H1 was

arbitrary, we are led to conclude ϕ∗c is UMP more generally for testingH0 : aᵀh = 0

vs H1 : aᵀh = c.

The second claim is an easy consequence of the first claim and Theorem 1.

A.3. Proof of Proposition 2. By the Girsanov theorem,

β(h) := Eh[ϕ] = E0
[
ϕ(τ, x(τ))ehᵀI1/2x(τ)− τ2h

ᵀIh
]
.

It can be verified from the above that β(h) is differentiable around h = 0. But

unbiasedness requires Eh[ϕ] ≥ α for all h and E0[ϕ] = α. This is only possible if

β′(0) = 0, i.e., E0[x(τ)ϕ(τ, x(τ))] = 0.

A.4. Proof of Theorem 2. Since τ̂ is bounded, it follows by similar arguments

as in the proof of Theorem 1 that
(
ϕn, τ̂ , ln dPnτ̂,h

dPnτ̂,0
(ynτ̂ )

)
is tight. Consequently, by

Prohorov’s theorem, given any sequence {nj}, there exists a further sub-sequence

{njm} - represented as {n} without loss of generality - such that
ϕn

τ̂
dPnτ̂.,h
dPnτ̂,0

(ynτ̂ )

 d−−−→
PnT,0


ϕ̄

τ

V

 ; V ∼ exp
{
hᵀI1/2x(τ)− τ

2h
ᵀIh

}
. (A.5)

It then follows as in the proof of Theorem 1 that ϕn

τ̂

 d−−−→
PnT,h

L; where L(B) := E[I{(ϕ̄, τ) ∈ B}V ] ∀ B ∈ B(R2). (A.6)
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The above in turn implies

lim
n→∞

EnT,h [ϕnI{τ̂ = t}] = E
[
ϕ̄I{τ = t}ehᵀI1/2x(τ)− τ2h

ᵀIh
]
, and (A.7)

lim
n→∞

EnT,h [I{τ̂ = t}] = E
[
I{τ = t}ehᵀI1/2x(τ)− τ2h

ᵀIh
]
. (A.8)

for every t ∈ {1, 2, . . . , T}.

Denote ϕ(τ, x(τ)) = E[ϕ̄|τ, x(τ)]; this is a level-α test, as can be verified by

setting h = 0 in (A.7). The right hand side of (A.7) then becomes

E
[
ϕ(τ, x(τ))I{τ = t}ehᵀI1/2x(τ)− τ2h

ᵀIh
]
.

An application of the Girsanov theorem then shows that the right hand sides of

(A.7) and (A.8) are just the expectations, Eh[ϕ(τ, x(τ))I{τ = t}] and Eh[I{τ = t}]

when x(t) ∼ I1/2ht+W (t). What is more, the measures P0(·),Ph(·) are absolutely

continuous, so P0(τ = t) = 0 if and only if Ph(τ = t) = 0 for any h ∈ Rd. We are

thus led to conclude that

lim
n→∞

βn(h|t) := lim
n→∞

EnT,h [ϕnI{τ̂ = t}]
EnT,h [I{τ̂ = t}] = Eh [ϕnI{τ̂ = t}]

Eh [I{τ̂ = t}] := β(h|t)

for every h ∈ Rd, and t ∈ {1, 2, . . . , T} satisfying P0(τ = t) 6= 0. This proves the

desired claim.

A.5. Proof of Proposition 3. Fix some arbitrary g1 ∈ T (P0). To simplify

matters, we set δ = 1. The case of general δ can be handled by simply replac-

ing g1 with g1/δ. By standard results for Hilbert spaces, we can write g1 =

σ−1 〈ψ, g〉 (ψ/σ) + g̃1, where g̃1 ⊥ (ψ/σ) . Define g := (ψ/σ, g̃1/ ‖g̃1‖)ᵀ, and con-

sider sub-models of the form P1/
√
n,hᵀg for h ∈ R2. By (3.2),

bntc∑
i=1

ln
dP1/

√
n,hᵀg

dP0
(Yi) = hᵀ√

n

bntc∑
i=1
g(Yi)−

t

2h
ᵀh+oPnT,0(1), uniformly over t. (A.9)

Comparing with (2.3), we observe that
{
P1/
√
n,hᵀg : h ∈ R2

}
is equivalent to a

parametric model with score g(·) and local parameter h (note that EP0 [ggᵀ] = I).

Let Gn(t) := n−1/2∑n
i=1 g(Yi) denote the score process. By the functional central

limit theorem, Gn(t) d−−−→
PnT,0

G(t) ≡ (x(t), G̃(t)), where x(·), G̃(·) are independent

one-dimensional Brownian motions. Take Gt := σ{G(s) : s ≤ t}, Ft := σ{x(s) :
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s ≤ t} to be the filtrations generated by G(·) and x(·) respectively until time t.

Since the first component of Gn(·) is xn(·) and τ̂ = τ(xn(·)) by Assumption 3(ii),

the extended continuous mapping theorem implies

(Gn(τ̂), τ̂) d−−−→
PnT,0

(G(τ), τ), (A.10)

where τ is a Ft-adapted stopping time, and therefore, Gt-adapted by extension.

Consider the limit experiment where one observes a Ft-adapted stopping time

τ along with a diffusion process G(t) := ht + W (t), where W (·) is 2-dimensional

Brownian motion. Using (A.9) and (A.10), we can argue as in the proof of Theorem

1 to show that any test in the parametric model
{
P1/
√
n,hᵀg : h ∈ R2

}
can be

matched (along sub-sequences) by a test that depends only on G(τ), τ in the limit

experiment. Hence, βn (hᵀg) :=
∫
ϕndPnT,hᵀg converges along sub-sequences to

the power function, β(h), of some test ϕ(τ,G(τ)) in the limit experiment. Note

that by our definitions, 〈ψ,hᵀg〉 is simply the first component of h divided by σ.

This in turn implies, as a consequence of the definition of asymptotically level-α

tests, that ϕ(·) is level-α for testing H0 : (1, 0)ᵀh = 0 in the limit experiment.

Now, by a similar argument as in the proof of Proposition 1, along with the fact

(1, 0)ᵀG(t) = x(t), the optimal level-α test of H0 : (1, 0)ᵀh = 0 vs H1 : (1, 0)ᵀh =

µ1/σ in the limit experiment is given by

ϕ∗µ1(τ, x(τ)) := I
{
µ1x(τ)− µ2

1
2στ ≥ γ

}
.

For all h ∈ H1 ≡ {h : (1, 0)ᵀh = µ1/σ} satisfying the alternative hypothesis,

x(t) = (1, 0)ᵀG(t) ∼ σ−1µ1t+ W̃ (t),

where W̃ (·) is 1-dimensional Brownian motion. As τ is Ft-adapted, the joint dis-

tribution of (τ, x(τ)) therefore depends only on µ1 for h ∈ H1. Consequently, the

power, Eh[ϕ∗µ1(τ, x(τ))], of ϕ∗µ1(·) against such alternatives depends only on µ1, and

is denoted by β∗ (µ1). Since ϕ∗µ1(·) is the optimal test and µ1 = 〈ψ,hᵀg〉, we con-

clude β(h) ≤ β∗ (〈ψ,hᵀg〉). This further implies lim supn βn(hᵀg) ≤ β∗ (〈ψ,hᵀg〉)

for any h ∈ R2. Setting h = (〈ψ, g1〉 /σ, ‖g̃1‖)ᵀ then gives lim supn βn(g1) ≤

β∗ (〈ψ, g1〉). Since g1 ∈ T (P0) was arbitrary, the claim follows.
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A.6. Proof of Proposition 5. For some arbitrary g = (g1, g0) ∈ T (P (1)
0 ) ×

T (P (0)
0 ). To simplify matters, we set δ1 = δ0 = 1. The case of general δ can

be handled by simply replacing ga with ga/δa. In what follows, let π1 = π and

π0 = 1 − π. The vectors y(1)
nt = (Y (1)

1 , . . . , Y
(1)
nπ1t) and y(0)

nt = (Y (0)
1 , . . . , Y

(0)
nπ0t)

denote the collection of outcomes from treatments 1 and 0 until time t, and we

set ynt = (y(1)
nt ,y

(0)
nt ). Define Pnt,g as the joint probability measure over ynt when

each Y (a)
i is an iid draw from P

(a)
1/
√
n,ga

.

As in the proof of Proposition 3, we can write ga = σ−1
a 〈ψa, ga〉a (ψa/σa) + g̃a,

where g̃a ⊥ (ψa/σa). Define ga := (ψa/σa, g̃a/ ‖g̃a‖a)
ᵀ, and consider sub-models

of the form P1/
√
n,hᵀ

1g1 × P1/
√
n,hᵀ

0g0 for h1,h0 ∈ R2. By the SLAN property, (3.2),

and the fact that the treatments are independent,

ln
dPnt,(hᵀ

1g1,h
ᵀ
0g0)

dPnt,0
(ynt) = hᵀ1√

n

bnπ1tc∑
i=1

g1(Y (1)
i )− π1t

2 h
ᵀ
1h1 + . . .

· · ·+ hᵀ0√
n

bnπ0tc∑
i=1

g0(Y (0)
i )− π0t

2 h
ᵀ
0h0 + oPnT,0(1), uniformly over t. (A.11)

Let Ga,n(t) := n−1/2∑bnπatc
i=1 ga(Y (a)

i ) for a ∈ {0, 1}. By a standard functional

central limit theorem,

Ga,n(t) d−−−→
PnT,0

Ga(t) ≡ (za(t), G̃a(t)),

where za(·)/
√
πa, G̃a(·)/

√
πa are independent 1-dimensional Brownian motions.

Furthermore, since the treatments are independent of each other, G1(·), G0(·) are

independent Gaussian processes. Define σ2 :=
(
σ2

1
π1

+ σ2
0
π0

)
,

x(t) := 1
σ

(
σ1

π1
z1(t)− σ0

π0
z0(t)

)
and take Gt := σ{(G1(s), G0(s)) : s ≤ t}, Ft := σ{x(s) : s ≤ t} to be the

filtrations generated by G(·) := (G1(·), G0(·)) and x(·) respectively until time t.

Using Assumption 3(ii), the extended continuous mapping theorem implies

(G1,n(τ̂), G0,n(τ̂), τ̂) d−−−→
PnT,0

(G1(τ), G0(τ), τ), (A.12)

where τ is a Ft-adapted stopping time, and thereby Gt-adapted, by extension.
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Consider the limit experiment where one observes a Gt-adapted stopping time

τ along with diffusion processes Ga(t) := πahat + √πaWa(t), a ∈ {0, 1}, where

W1(·),W0(·) are independent 2-dimensional Brownian motions. By Lemma 2 in

Appendix B, any test in the parametric model
{
P1/
√
n,hᵀ

1g1 × P1/
√
n,hᵀ

0g0 : h1,h0 ∈ R2
}

can be matched (along sub-sequences) by a test that depends only on G(τ), τ in

the limit experiment. Hence,

βn(hᵀ1g1,h
ᵀ
0g0) :=

∫
ϕndPnT,(hᵀ

1g1,h
ᵀ
0g0)

converges along sub-sequences to the power function, β(h1,h0), of some test

ϕ(τ,G(τ)) in the limit experiment. Note that by our definitions, the first com-

ponent of ha is 〈ψa,hᵀaga〉a /σa. This in turn implies, as a consequence of the

definition of asymptotically level-α tests, that ϕ(·) is level-α for testing H0 :

(σ1, 0)ᵀh1 − (σ0, 0)ᵀh0 = 0 in the limit experiment.

Now, by Lemma 3 in Appendix B, the optimal level-α test of H0 : (σ1, 0)ᵀh1 −

(σ0, 0)ᵀh0 = 0 vs H1 : (σ1, 0)ᵀh1 − (σ0, 0)ᵀh0 = µ in the limit experiment is

ϕ∗µ(τ, x(τ)) := I
{
µx(τ)− µ2

2στ ≥ γ

}
.

For all h ∈ H1 ≡ {h : (σ1, 0)ᵀh1 − (σ0, 0)ᵀh0 = µ},

x(t) ∼ σ−1µt+ 1
σ

√σ2
1
π1

(1, 0)ᵀW1(t)−
√
σ2

0
π0

(1, 0)ᵀW0(t)


∼ σ−1µt+ W̃ (t),

where W̃ (·) is standard 1-dimensional Brownian motion. As τ is Ft-adapted, it

follows that the joint distribution of (τ, x(τ)) depends only on µ for h ∈ H1.

Consequently, the power, Eh[ϕ∗µ(τ, x(τ))], of ϕ∗µ against the values in the alter-

native hypothesis H1 depends only on µ, and is denoted by β∗ (µ). Since ϕ∗µ(·)

is the optimal test and µ ∈ R is arbitrary, β(h1,h0) ≤ β∗(µ), which further im-

plies lim supn βn(hᵀ1g1,h
ᵀ
0g0) ≤ β∗(µ) for any µ ∈ R and h1,h0 ∈ R2 such that

〈ψ1,h
ᵀ
1g1〉1 − 〈ψ0,h

ᵀ
0g0〉0 = µ. Setting ha = (σ−1

a 〈ψa, ga〉a , ‖g̃a‖a)
ᵀ for a ∈ {0, 1}

then gives lim supn
∫
ϕndPnT,(g1,g0) ≤ β∗(µ). Since (g1, g0) ∈ T (P (1)

0 )×T (P (0)
0 ) was

arbitrary, the claim follows.
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A.7. Proof of Theorem 3. As noted previously, the first claim is shown in

Hirano and Porter (2023). Consequently, we only focus on proving the second

claim. Let y(a)
j,nq denote the first nq observations from treatment a in batch j.

Define

ln dPn,h
dPn,0

(y(a)
j,nq) =

bnqc∑
i=1

ln
dp

θ
(a)
0 +ha/

√
n

dpθ0
(Y (a)

i,j ).

By the SLAN property, which is a consequence of Assumption 3,

ln dPn,h
dPn,0

(y(a)
j,nπ̂

(a)
j

) = hᵀaI
1/2
a z

(a)
j,n(π̂(a)

j )−
π̂

(a)
j

2 hᵀaIaha + oPn,0(1). (A.13)

The above is true for all j, a.

Denote the observed set of outcomes by ȳ =
(
y(1)

1,nπ̂(1)
1
,y(0)

1,nπ̂(0)
1
, . . . ,y(1)

J,nπ̂
(1)
J

,y(0)
J,nπ̂

(0)
J

)
.

The likelihood ratio of the observations satisfies

ln dPn,h
dPn,0

(ȳ) =
∑
j

∑
a∈{0,1}

ln dPn,h
dPn,0

(y(a)
j,nq)

=
∑
j

∑
a∈{0,1}

hᵀaI1/2
a z

(a)
j,n(π̂(a)

j )−
π̂

(a)
j

2 hᵀaIaha

 , (A.14)

where the second equality follows from (A.13). Combining the above with the first

part of the theorem, we find

ln dPn,h
dPn,0

(ȳ) d−−→
Pn,0

∑
j

∑
a∈{0,1}

hᵀaI1/2
a z

(a)
j (π(a)

j )−
π

(a)
j

2 hᵀaIaha

 , (A.15)

where z(a)
j (t) is distributed as d-dimensional Brownian motion.

Note that ϕn is required to be measurable with respect to ȳn. Furthermore, ϕn is

tight since ϕn ∈ [0, 1]. Together with (A.15), this implies the joint
(
ϕn, ln dPn,h

dPn,0
(ȳ)

)
is also tight. Hence, by Prohorov’s theorem, given any sequence {nj}, there exists

a further sub-sequence {njm} - represented as {n} without loss of generality - such

that ϕn

ln dPn,h
dPn,0

(ȳ)

 d−−→
Pn,0

 ϕ̄

V

 ; V ∼
∏

j=1,...,J

∏
a∈{0,1}

exp

hᵀaI1/2
a z

(a)
j (π(a)

j )−
π

(a)
j

2 hᵀaIaha

 ,
(A.16)
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where ϕ̄ ∈ [0, 1]. Define

V
(a)
j := exp

hᵀaI1/2
a z

(a)
j (π(a)

j )−
π

(a)
j

2 hᵀaIaha

 ,
so that V = ∏

j=1,...,J
∏
a∈{0,1} V

(a)
j . By the definition of z(a)

j (·) and π(a)
j in the limit

experiment, we have that the Brownian motion z(a)
j (·) is independent of data from

the all past batches, and consequently, also independent of π(a)
j . Hence, by the

martingale property of M (a)
j (t) := exp

{
hᵀaI

1/2
a z

(a)
j (t)− t

2h
ᵀ
aIaha

}
,

E[V (a)
j |z

(1)
1 , z

(0)
1 , π

(1)
1 , π

(0)
1 . . . , z

(1)
j−1, z

(0)
j−1, π

(1)
j−1, π

(0)
j−1] = 1

for all j and a ∈ {0, 1}. This implies, by an iterative argument, that E[V ] = 1.

Consequently, we can employ similar arguments as in the proof of Theorem 1 to

show that

lim
n→∞

βn(h) := lim
n→∞

En,h [ϕn]

= E

ϕ̄ ∏
j=1,...,J

∏
a∈{0,1}

eh
ᵀ
aI

1/2
a z

(a)
j (π(a)

j )−
π

(a)
j
2 hᵀaIaha


= E

ϕ̄ ∏
a∈{0,1}

eh
ᵀ
aI

1/2
a xa− qa2 h

ᵀ
aIaha

 , (A.17)

where the last equality follows from the definition of xa, qa. Define

ϕ (q1, q0, x1, x0) := E[ϕ̄|q1, q0, x1, x0].

Then, the right hand side of (A.17) becomes

E

ϕ (q1, q0, x1, x0)
∏

a∈{0,1}
eh

ᵀ
aI

1/2
a xa− qa2 h

ᵀ
aIaha

 .
But by a repeated application of the Girsanov theorem, this is just the expectation,

Eh[ϕ], of ϕ when each z(a)
j (t) is distributed as a Gaussian process with drift I1/2

a ha,

i.e., when z(a)
j (t) ∼ I1/2

a hat+W
(a)
j (t), and {W (a)

j (·)}j,a are independent Brownian

motions.

A.8. Proof of Proposition 8. Denote the observed set of outcomes by ȳ =(
y(1)

1,nπ̂(1)
1
,y(0)

1,nπ̂(0)
1
, . . . ,y(1)

J,nπ̂
(1)
J

,y(0)
J,nπ̂

(0)
J

)
. For some arbitrary g = (g1, g0) ∈ T (P (1)

0 )×
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T (P (0)
0 ). As in the proof of Proposition 5, we can write ga = σ−1

a 〈ψa, ga〉a (ψa/σa)+

g̃a, where g̃a ⊥ (ψa/σa). Define ga := (ψa/σa, g̃a/ ‖g̃a‖a)
ᵀ, and consider sub-models

of the form P1/
√
n,hᵀ

1g1 ×P1/
√
n,hᵀ

0g0 for h1,h0 ∈ R2. Following similar rationales as

in the proofs of Propositions 3 and 5, we set δ1 = δ0 = 1 without loss of generality.

Let Pn,h and Pn,0 be defined as in Section 5.1, and set

Z
(a)
j,n (t) := 1√

n

bntc∑
i=1
ga(Y (a)

i,j ), and z
(a)
j,n(t) := 1

σa
√
n

bntc∑
i=1

ψa(Y (a)
i,j ).

By similar arguments as that leading to (A.14), the likelihood ratio,

ln
dPn,(hᵀ

1g1,h
ᵀ
0g0)

dPn,0
(ȳ),

of all observations, ȳ, under the sub-model P1/
√
n,hᵀ

1g1 × P1/
√
n,hᵀ

0g0 satisfies

ln
dPn,(hᵀ

1g1,h
ᵀ
0g0)

dPn,0
(ȳ) =

∑
a

∑
j

 hᵀa√nZ(a)
j,n (π̂(a)

j )−
π̂

(a)
j

2 hᵀaha

+ oPnT,0(1). (A.18)

Now, by iterative use of the functional central limit theorem and the extended

continuous mapping theorem (using Assumption 6), π̂
(a)
j

Z
(a)
j,n (π̂(a)

j )

 d−−−→
PnT,0

 π
(a)
j

Z
(a)
j (π(a)

j )

 , Z
(a)
j (·) ∼ Wa,j(·), (A.19)

where {Wa,j}a,j are independent 2-dimensional Brownian motions, and π(a)
j is mea-

surable with respect to σ
{
z

(a)
l (·); l ≤ j − 1

}
since π̂(a)

j is measurable with respect

to σ
{
z

(a)
l,n (·); l ≤ j − 1

}
.

Consider the limit experiment where one observes qa = ∑
j π

(a)
j and xa :=∑

j z
(a)
j (π(a)

j ), where

z
(a)
j (t) := µat+W

(a)
j (t), (A.20)

and πj is measurable with respect to σ
{
z

(a)
l (·); l ≤ j − 1

}
. Using (A.18), (A.19)

and employing similar arguments as in Theorem 3, we find that any test in the

parametric model
{
P1/
√
n,hᵀ

1g1 × P1/
√
n,hᵀ

0g0 : h1,h0 ∈ R2
}
can be matched (along

sub-sequences) by a test that depends only on G1,G0, q1, q0 in the limit experi-

ment. Hence,

βn(hᵀ1g1,h
ᵀ
0g0) :=

∫
ϕndPnT,(hᵀ

1g1,h
ᵀ
0g0)
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converges along sub-sequences to the power function, β(h1,h0), of some test

ϕ(q1, q0,G1,G0) in the limit experiment. Note that by our definitions, the first

component of ha is 〈ψa,hᵀaga〉a /σa. This in turn implies, as a consequence of the

definition of asymptotically level-α tests, that ϕ(·) is level-α for testing

H0 : ((σ1, 0)ᵀh1, (σ0, 0)ᵀh0) = (0, 0)

in the limit experiment.

Now, by Lemma 4 in Appendix B, the optimal level-α test of the null H0 vs

H1 : ((σ1, 0)ᵀh1, (σ0, 0)ᵀh0) = (µ1, µ0) in the limit experiment is

ϕ∗µ1,µ0 = I

 ∑
a∈{0,1}

(
µa
σa
xa −

qa
2σ2

a

µ2
a

)
≥ γµ1,µ0

 .
Using (A.20) and the fact πj depends only on the past values of z(a)

j (·), it follows

that the joint distribution of (q1, q0, x1, x0) depends only on µ1, µ0 for h ∈ H1.

Consequently, the power, Eh
[
ϕ∗µ1,µ0

]
, of ϕ∗µ1,µ0 against the values in the alternative

hypothesis H1 depends only on (µ1, µ0), and is denoted by β∗ (µ1, µ0). Since ϕ∗µ1,µ0

is the optimal test and (µ1, µ0) ∈ R2 is arbitrary, β(h1,h0) ≤ β∗(µ1, µ0). This

further implies lim supn βn(hᵀ1g1,h
ᵀ
0g0) ≤ β∗(µ1, µ0) for any (µ1, µ0) ∈ R and

h1,h0 ∈ R2 such that 〈ψa,hᵀaga〉a = µa. Setting ha = (σ−1
a 〈ψa, ga〉a , ‖g̃a‖a)

ᵀ

for a ∈ {0, 1} then gives lim supn
∫
ϕndPnT,(g1,g0) ≤ β∗(µ1, µ0). Since (g1, g0) ∈

T (P (1)
0 )× T (P (0)

0 ) was arbitrary, the claim follows.
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Appendix B. Additional results

B.1. Variance estimators. The score/efficient influence function process xn(·)

depends on the information matrix I (in the case of parametric models) or on

the variance σ (in the case of non-parametric models). For parametric models,

if the reference parameter, θ0, is known, we could simply set I = I(θ0). In most

applications, however, this would be unknown, and we would need to replace I

and σ with consistent estimators. Here, we discuss various proposals for variance

estimation (note that I can be thought of as variance since E0[ψψᵀ] = I).

Batched experiments. If the experiment is conducted in batches, we can simply use

the data from the first batch to construct consistent estimators of the variances.

This of course has the drawback of not using all the data, but it is unbiased and
√
n-consistent under very weak assumptions (i.e., existence of second moments).

Running-estimator of variance. For an estimator that is more generally valid and

uses all the data, we recommend the running-variance estimate

Σ̂a,t = 1
nt

bntc∑
i=1

ψa(Y (a)
i )ψa(Y (a)

i )ᵀ −
 1
nt

bntc∑
i=1

ψa(Y (a)
i )

 1
nt

bntc∑
i=1

ψa(Y (a)
i )

ᵀ , (B.1)

for each treatment a. The final estimate of the variance would then be Σ̂a,τ̂

for stopping-times experiments, and Σ̂a,qa for batched experiments. Let Σa :=

E0,a[ψaψᵀa] and suppose that ψaψᵀa is λ-sub-Gaussian for some λ > 0. Then us-

ing standard concentration inequalities, see e.g., Lattimore and Szepesvári (2020,

Corollary 5.5), we can show that

PnT,0

 T⋃
t=1

∣∣∣Σ̂a,t − Σa

∣∣∣ ≥ C

√
ln(1/δ)
nt


 ≤ nTδ ∀ δ ∈ [0, 1],

where C is independent of n, t, δ (but does depend on λ). Setting δ = n−a for

some a > 0 then implies that Σ̂a,τ̂ and Σ̂a,qa are
√
n-consistent for Σa (upto log

factors) as long as τ̂ , qa > 0 almost-surely under PnT,0.

Bayes estimators. Yet a third alternative is to place a prior on Σa and continuously

update its value using posterior means. As a default, we suggest employing an

inverse-Wishart prior and computing the posterior by treating the outcomes as
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Gaussian (this is of course justified in the limit). Since posterior consistency holds

under mild assumptions, we expect this estimator to perform similarly to (B.1).

B.2. Supporting information for Section 6.1. In this section, we provide a

proof of Lemma 1. The proof proceeds in two steps: First, we characterize the

best unbiased test in the limit experiment described in Section 6.1. Then, we

show that the finite sample counterpart of this test attains the power envelope for

asymptotically unbiased tests.

Step 1: Consider the problem of testing H0 : µ = 0 vs H1 : µ 6= 0 in the limit

experiment. Let Pµ(·) denote the induced probability measure over the sample

paths of x(·) in the limit experiment, and Eµ[·] its corresponding expectation.

Due to the nature of the stopping time, x(τ) can only take on two values γ,−γ.

Let δ denote the sign of x(τ). Then, by sufficiency, any test ϕ, in the limit

experiment can be written as a function only of τ, δ. Furthermore, by Proposition

2, any unbiased test, ϕ(τ, δ), must satisfy E0[δϕ(τ, δ)] = 0.

Fix some alternative µ 6= 0 and consider the functional optimization problem

max
ϕ(·)

Eµ[ϕ(τ, δ)] ≡ E0
[
ϕ(τ, δ)e

1
σ
µδγ− τ

2σ2 µ
2] (B.2)

s.t E0[ϕ(τ, δ)] ≤ α and E0[δϕ(τ, δ)] = 0.

Here, and in what follows, it should implicitly understood that the candidate

functions, ϕ(·), are tests, i.e., their range is [0, 1]. Let ϕ∗ denote the optimal

solution to (B.2). Note that ϕ∗ is unbiased since ϕ = α also satisfies the constraints

in (B.2); indeed, E0[δ] = 0 by symmetry. Consequently, if ϕ∗ is shown to be

independent of µ, we can conclude that it is the best unbiased test.

Now, by Fudenberg et al. (2018), δ is independent of τ given µ. Furthermore,

by symmetry, P0(δ = 1) = P0(δ = −1) = 1/2 for µ = 0. Based on these results,

we have

(0 =)E0[δϕ(τ, δ)] = 1
2

∫
{ϕ(τ, 1)− ϕ(τ, 0)} dF0(τ),

E0[ϕ(τ, δ)] = 1
2

∫
{ϕ(τ, 1) + ϕ(τ, 0)} dF0(τ), and

E0
[
ϕ(τ, δ)e

1
σ
µδγ− τ

2σ2 µ
2] = eµγ/σ

2

∫
ϕ(τ, 1)e−

τ
2σ2 µ

2
dF0(τ) + e−µγ/σ

2

∫
ϕ(τ, 0)e−

τ
2σ2 µ

2
dF0(τ).
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The first two equations above imply E0[ϕ(τ, 1)] = E0[ϕ(τ, 0)] = E0[ϕ(τ, δ)]. Hence,

we can rewrite the optimization problem (B.2) as

max
ϕ(·)

{
eµγ/σ

2

∫
ϕ(τ, 1)e−

τ
2σ2 µ

2
dF0(τ) + e−µγ/σ

2

∫
ϕ(τ, 0)e−

τ
2σ2 µ

2
dF0(τ)

}
(B.3)

s.t.
∫
ϕ(τ, 1)dF0(τ) ≤ α,

∫
ϕ(τ, 0)dF0(τ) ≤ α and∫

ϕ(τ, 1)dF0(τ) =
∫
ϕ(τ, 0)dF0(τ).

Let us momentarily disregard the last constraint in (B.3). Then the optimization

problem factorizes, and the optimal ϕ(·) can be determined by separately solving

for ϕ(·, 1), ϕ(·, 0) as the functions that optimize

max
ϕ(·,a)

∫
ϕ(τ, a)e−

τ
2σ2 µ

2
dF0(τ) s.t.

∫
ϕ(τ, a)dF0(τ) ≤ α

for a ∈ {0, 1}. Let ϕ∗(·, a) denote the optimal solution. It is immediate from the

optimization problem above that ϕ∗(τ, 1) = ϕ∗(τ, 0) := ϕ∗(τ), i.e., the optimal ϕ∗

is independent of δ. Hence, the last constraint in (B.3) is satisfied. Furthermore,

by the Neyman-Pearson lemma,

ϕ∗(τ) = I
{
e−

τ
2σ2 µ

2
≥ γ

}
≡ I {τ ≤ c} ,

where c = F−1
0 (α) due to the requirement that

∫
ϕ(τ, a)dF0(τ) ≤ α. Consequently,

the solution, ϕ∗(·), to (B.2) is given by I
{
τ ≤ F−1

0 (α)
}
. This is obviously indepen-

dent of µ. We conclude that it is the best unbiased test in the limit experiment.

Step 2: The finite sample counterpart of ϕ∗(·) is given by ϕ̂(τ̂) := I
{
τ̂ ≤ F−1

0 (α)
}
,

where it may be recalled that τ̂ = inf{t : |xn(t)| ≥ γ}. Fix some arbitrary g :=

(g1, g0) ∈ T (P (1)
0 )×T (P (0)

0 ). Let PnT,g be defined as in the proof of Proposition 5.

By similar arguments as in the proofs of Adusumilli (2022, Theorems 3 and 5),

τ̂
d−−−→

PnT,g
τ := inf{t : |x(t)| ≥ γ}

along sub-sequences, where x(t) ∼ σ−1µt + W̃ (t) and µ := 〈ψ1, g1〉1 − 〈ψ0, g0〉0.

Hence,

lim
n→∞

β̂(g1, g0) := lim
n→∞

PnT,(g1,g0)
(
τ̂ ≤ F−1

0 (α)
)

= Pµ
(
τ ≤ F−1

0 (α)
)
,
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where Pµ(·) is the probability measure defined in Step 1. But β̃∗(µ) := Pµ
(
τ ≤ F−1

0 (α)
)

is just the power function of the best unbiased test, ϕ∗, in limit experiment. Hence,

ϕ̂(·) is an asymptotically optimal unbiased test.

B.3. Supporting information for Section 6.2.

B.3.1. Nonparametric level-α and conditionally unbiased tests. Here, we define

non-parametric versions of the level-α and conditionally unbiased requirements.

We follow the same notation as in Section 4. A test, ϕn, of H0 : µ1 − µ0 = µ/
√
n

is said to asymptotically level-α if

sup
{h:〈ψ1,h1〉1−〈ψ0,h0〉0=µ}

lim sup
n

∫
I{τ̂ = k}ϕndPnT,h ≤ αk ∀ k. (B.4)

Similarly, a test, ϕn, of H0 : µ1 − µ0 = µ/
√
n vs H1 : µ1 − µ0 6= µ/

√
n is

asymptotically conditionally unbiased if

sup
{h:〈ψ1,h1〉1−〈ψ0,h0〉0=µ}

lim sup
n

∫
I{τ = k}ϕndPnT,h

≥ inf
{h:〈ψ1,h1〉1−〈ψ0,h0〉0 6=µ}

lim inf
n

∫
ϕndPnT,h.

B.3.2. Attaining the bound. Recall the definition of xn(·) in (4.3). While xn(·)

depends on the unknown quantities σ1, σ0, we can replace them with consistent

estimates σ̂1, σ̂0 using data from the first batch without affecting the asymptotic

results, so there is no loss of generality in taking them to be known. Let ϕ̂ :=

ϕ∗(τ̂ , xn(τ̂)) denote the finite sample counterpart of ϕ∗.

By an extension of Proposition 5 to α-spending tests, as in Theorem 2, the

conditional power function, β∗(µ|k), of ϕ∗ in the limit experiment is an upper

bound on the asymptotic power function of any test in the original experiment. We

now show that the local (conditional) power, β̂(g1, g0|k), of ϕ̂ against sub-models

P1/
√
n,g1 × P1/

√
n,g0 converges to β∗(µ|k). This implies that ϕ̂ is an asymptotically

optimal level-α test in this experiment.

Fix some arbitrary g := (g1, g0) ∈ T (P (1)
0 )× T (P (0)

0 ). Let PnT,g be defined as in

the proof of Proposition 5. By similar arguments as in the proofs of Adusumilli
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(2022, Theorems 3 and 5),

xn(·) d−−−→
PnT,g

x(·)

along sub-sequences, where x(t) ∼ σ−1µt + W̃ (t) and µ := 〈ψ1, g1〉1 − 〈ψ0, g0〉0.

Since τ̂ is a function of xn(·), the above implies, by an application of the extended

continuous mapping theorem (Van Der Vaart and Wellner, 1996, Theorem 1.11.1),

that

lim
n→∞

∫
I{τ̂ = k}ϕ̂PnT,(g1,g0) =

∫
I{τ = k}ϕ∗dPµ, and

lim
n→∞

∫
I{τ̂ = k}PnT,(g1,g0) =

∫
I{τ = k}dPµ.

Hence, as long as P0(τ = k) 6= 0, by the definition of conditional power, we obtain

lim
n→∞

β̂(g1, g0|k) =
∫
I{τ = k}ϕ∗dPµ
I{τ = k}dPµ

:= β∗(µ|k),

for any µ ∈ R. This implies that ϕ̂ is asymptotically level-α (as can be verified

by setting µ = 0 etc), and furthermore, its conditional power attains the upper

bound β∗(·|k). Hence, ϕ̂ is an asymptotically optimal level-α test.

B.4. Supporting results for the proof of Proposition 5.

Lemma 2. Consider the setup in the proof of Proposition 5. Let P (a)
1/
√
n,hᵀ

aga
denote

the probability sub-model for treatment a, and suppose that it satisfies the SLAN

property

ln dPnt,h
ᵀ
aga

dPnt,0
(y(a)

nt ) = hᵀa√
n

bnπatc∑
i=1

ga(Y (a)
i )− πat

2 h
ᵀ
aha + +oPnT,0(1), uniformly over t.

Then, any test in the parametric model
{
P1/
√
n,hᵀ

1g1 × P1/
√
n,hᵀ

0g0 : h1,h0 ∈ R2
}
can

be matched (along sub-sequences) by a test that depends only onG(τ), τ in the limit

experiment.

Proof. Recall that Ga,n(t) := n−1/2∑bnπatc
i=1 ga(Y (a)

i ) for a ∈ {0, 1}. Then, by the

statement of the lemma, we have

ln dPnτ̂ ,h
ᵀ
aga

dPnτ̂ ,0
(y(a)

nτ̂ ) = hᵀaGa,n(τ̂)− πaτ̂

2 hᵀaha + oPnT,0(1), (B.5)
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for a ∈ {0, 1}. In the proof of Proposition 5, we argued that

(G1,n(τ̂), G0,n(τ̂), τ̂) d−−−→
PnT,0

(G1(τ), G0(τ), τ), (B.6)

whereGa(t) ∼
√
πaWa(t) withW1(·),W (·) being independent 2-dimensional Brow-

nian motions; and τ is a Gt-adapted stopping time. Equations (B.5) and (B.6)

imply

ln
dPnt,(hᵀ

1g1,h
ᵀ
0g0)

dPnt,0
(ynt) d−−−→

PnT,0

∑
a∈{0,1}

{
hᵀaGa(τ)− πaτ

2 hᵀaha

}
. (B.7)

Now, any two-sample test, ϕn, is tight since ϕn ∈ [0, 1]. Then, as in the proof

of Theorem 1, we find that given any sequence {nj}, there exists a further sub-

sequence {njm} - represented as {n} without loss of generality - such that ϕn
dP
nt,(h

ᵀ
1 g1,h

ᵀ
0g0)

dPnt,0
(ynt)

 d−−−→
PnT,0

 ϕ̄

V

 ; V ∼ exp
∑
a

{
hᵀaGa(τ)− πaτ

2 hᵀaha

}
,

(B.8)

where ϕ̄ ∈ [0, 1]. Now, given that Ga(t) ∼
√
πaWa(t),

V ∼ exp
∑
a

{√
πah

ᵀ
aWa(τ)− πaτ

2 hᵀaha

}
.

Clearly, Va is the stochastic/Doléans-Dade exponential of ∑a

{√
πah

ᵀ
aWa(τ)

}
.

Since W1(·),W0(·) are independent, the latter quantity is in turn distributed as

(∑a πah
ᵀ
aha)

1/2 W̃ (t), where W̃ (·) is standard 1-dimensional Brownian motion.

Hence, by standard results on stochastic exponentials,

M(t) := exp
∑
a

{
hᵀaGa(t)−

πat

2 h
ᵀ
aha

}

is a martingale with respect to the filtration Gt. Since τ is an Gt-adapted stopping

time, E[V ] ≡ E[M(τ)] = E[M(0)] = 1 using the optional stopping theorem.

The above then implies, as in the proof of Theorem 1, that

lim
n→∞

βn(hᵀ1g1,h
ᵀ
0g0) := lim

n→∞

∫
ϕndPnT,(hᵀ

1g1,h
ᵀ
0g0) = E

[
ϕ̄e
∑

a{hᵀ
aGa(τ)−πaτ2 hᵀ

aha}
]
.

(B.9)
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Define ϕ(τ,G(τ)) := E[ϕ̄|τ,G(τ)]; this is a test statistic since ϕ ∈ [0, 1]. The

right hand side of (B.9) then becomes

E
[
ϕ(τ,G(τ))e

∑
a{hᵀ

aGa(τ)−πaτ2 hᵀ
aha}

]
.

But by the Girsanov theorem, this is just the expectation, Eh[ϕ(τ,G(τ))], of

ϕ(τ,G(τ)) when Ga(t) ∼ πahat+√πaWa(t) . This proves the desired claim. �

Lemma 3. Consider the limit experiment where one observes a stopping time τ

and independent diffusion processes G1(·), G0(·), where Ga(t) := πahat+
√
πaWa(t).

Let σ, x(·) and Ft be as defined in the proof of Proposition 5, and suppose that τ

is Ft-adapted. Then, the optimal level-α test of H0 : (σ1, 0)ᵀh1− (σ0, 0)ᵀh0 = 0 vs

H1 : (σ1, 0)ᵀh1 − (σ0, 0)ᵀh0 = µ in the limit experiment is given by

ϕ∗µ(τ, x(τ)) := I
{
µx(τ)− µ2

2στ ≥ γ

}
.

Proof. For each a we employ a change of variables ha →∆a as ∆a = Λaha, where

Λa :=

 σa 0

0 1

 .
Set ∆ := (∆1,∆0). The null and alternative regions are then H0 ≡ {∆ :

(1, 0)ᵀ∆1 − (1, 0)ᵀ∆0 = 0} and H1 ≡ {∆ : (1, 0)ᵀ∆1 − (1, 0)ᵀ∆0 = µ}. Let

P∆ ≡ Ph denote the induced probability measure over the sample paths generated

by G1(·), G0(·) between t ∈ [0, T ], when Ga(t) ∼ πaΛ−1
a ∆at + √πaWa(t). Also,

recall that

x(t) := 1
σ

(
σ1

π1
z1(t)− σ0

π0
z0(t)

)
,

where z1(·), z2(·) are the first components of G1(·), G0(·).

Fix some ∆̄ := (∆̄1, ∆̄0) ∈ H1. Let ∆̄11 and ∆̄01 denote the first components

of ∆̄1, ∆̄0, and define γ, η so that

(∆̄11, ∆̄01) =
(
γ + σ2

1η

π1
, γ − σ2

0η

π0

)
. (B.10)

Clearly, η = µ/σ2 and γ = ∆̄11−σ2
1η/π1. Now construct ∆̃ = (∆̃1, ∆̃0) as follows:

The second components of ∆̃1, ∆̃0 are the same as that of ∆̄1, ∆̄0. As for the first
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components, ∆̃11, ∆̃01 of ∆̃1, ∆̃0 , take them to be

(∆̃11, ∆̃01) = (γ, γ) . (B.11)

By construction, (∆̃1, ∆̃0) ∈ H0.

Consider testing H ′0 : ∆ = ∆̃ vs H ′1 : ∆ = ∆̄. Let ln dP∆̄
dP∆̃

(Gt) denote the

likelihood ratio between the probabilities induced by the parameters h̃, h̄ over the

filtration Gt. Since G1(·), G0(·) are independent, the Girsanov theorem gives

ln dP∆̄

dP∆̃
(Gt) =

(
∆̄ᵀ

1Λ−1
1 G1(τ)− π1τ

2 ∆̄ᵀ
1Λ−2

1 ∆̄1

)
−
(
∆̃ᵀ

1Λ−1
1 G1(τ)− π1τ

2 ∆̃ᵀ
1Λ−2

1 ∆̃1

)

+
(
∆̄ᵀ

0Λ−1
0 G0(τ)− π0τ

2 ∆̄ᵀ
0Λ−2

0 ∆̄0

)
−
(
∆̃ᵀ

0Λ−1
0 G0(τ)− π0τ

2 ∆̃ᵀ
0Λ−2

0 ∆̃0

)

= σηx(τ)− η2σ2

2 τ,

where the last step follows from some algebra after making use of (B.10) and

(B.11). Based on the above, an application of the Neyman-Pearson lemma shows

that the UMP test of H ′0 : ∆ = ∆̃ vs H ′1 : ∆ = ∆̄ is given by

ϕ∗µ = I
{
σηx(τ)− η2σ2

2 τ ≥ γ̃

}
= I

{
µx(τ)− µ2

2στ ≥ γ

}
.

Here, γ is to be determined by the size requirement. Now, for any ∆ ∈ H0,

x(t) ≡ 1
σ

√σ2
1
π1

(1, 0)ᵀW1(t)−
√
σ2

0
π0

(1, 0)ᵀW0(t)
 ∼ W̃ (t),

where W̃ (·) is standard 1-dimensional Brownian motion. Hence, the distribution

of the sample paths of x(·) is independent of ∆ under the null. Combined with

the assumption that τ is Ft-adapted, this implies ϕ∗µ does not depend on ∆̃ and,

by extension, ∆̄, except through µ. Since ∆̄ ∈ H1 was arbitrary, we are led to

conclude ϕ∗µ is UMP more generally for testing H0 ≡ {∆ : (1, 0)ᵀ∆1− (1, 0)ᵀ∆0 =

0} vs H1 ≡ {∆ : (1, 0)ᵀ∆1 − (1, 0)ᵀ∆0 = µ}. �

B.5. Supporting results for the proof of Proposition 8.

Lemma 4. Consider the limit experiment where one observes qa = ∑
j π

(a)
j and

xa := (1, 0)ᵀ∑j Z
(a)
j (π(a)

j ), where

Z
(a)
j (t) := hat+W

(a)
j (t),
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and πj is measurable with respect to

Fj−1 ≡ σ
{

(1, 0)ᵀZ(a)
l (·); l ≤ j − 1, a ∈ {0, 1}

}
.

Then, the optimal level-α test of H0 : ((1, 0)ᵀh1, (1, 0)ᵀh0) = (0, 0) vs H1 :

((1, 0)ᵀh1, (1, 0)ᵀh0) = (µ1, µ0) in the limit experiment is

ϕ∗µ1,µ0 = I

 ∑
a∈{0,1}

(
µaxa −

qa
2 µ

2
a

)
≥ γµ1,µ0

 .
Proof. Denote

H0 ≡ {h : ((1, 0)ᵀh1, (1, 0)ᵀh0) = (0, 0)} , and

H1 ≡ {h : ((1, 0)ᵀh1, (1, 0)ᵀh0) = (µ1, µ0)} .

Let Ph denote the induced probability measure over the sample paths generated

by {z(a)
j (t) : t ≤ π

(a)
j }j,a.

Given any (h1,h0) ∈ H1, define h̃a = ha − (1, 0)ᵀha(1, 0) for a ∈ {0, 1}. Note

that (h̃1, h̃0) ∈ H0 and (1, 0)ᵀha = µa. Let

ln
dP(h̃1,h̃0)

dP(h1,h0)
(G)

denote the likelihood ratio between the probabilities induced by the parameters

(h̃1, h̃0), (h1,h0) over the filtration

G ≡ σ
{
Z

(a)
j (t) : t ≤ π

(a)
j ; j = 1, . . . , J ; a ∈ {0, 1}

}
.

By the Girsanov theorem, noting that {z(a)
j (t) : t ≤ π

(a)
j }j are independent across

a and defining Ga := ∑
j Z

(a)
j (π(a)

j ), we obtain after some straightforward algebra

that

ln
dP(h̃1,h̃0)

dP(h1,h0)
(F) =

∑
a

{(
h̃ᵀaGa −

qa
2 h̃

ᵀ
ah̃a

)
−
(
hᵀaGa −

qa
2 h

ᵀ
aha

)}

=
∑
a

(
µaxa(τ)− µ2

a

2 qa
)
,

where xa is the first component of Ga. Hence, an application of the Neyman-

Pearson lemma shows that the UMP test of H ′0 : h = (h̃1, h̃0) vs H ′1 : h = (h1,h0)
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is given by

ϕ∗µ1,µ0 = I
{∑

a

(
µaxa(τ)− µ2

a

2 qa
)
≥ γ

}
,

where γ is determined by the size requirement.

Now, for any h ∈ H0, both xa and qa measurable with respect to F by as-

sumption. Since (1, 0)ᵀZ(a)
j (·) is independent of ha given µa for all j, a, it follows

that the distribuion of xa, qa is independent of h ∈ H0 under the null. This im-

plies that ϕ∗µ1,µ0 does not depend on (h̃1, h̃0) and, by extension, (h1,h0), except

through (µ1µ0). Since (h1,h0) ∈ H1 was arbitrary, we are led to conclude ϕ∗µ1,µ0

is UMP more generally for testing the composite hypotheses H0 vs H1. �
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